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Improved direct solver for building energy simulation

M E Crowley&dagger; BSc HDipEd CEng MCIBSE and M S J Hashmi&Dagger; BSc MSc PhD DSc CEng FIMechE FIEI MASHME
&dagger;Department of Engineering Technology, Dublin Institute of Technology, Bolton Street, Dublin I, Ireland
&Dagger;Head of School of hsechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland

Summary Finite-difference methods, when applied to the differential equations modelling energy
flows in buildings, give rise to a system of non-linear difference equations. A frequently used direct
solution method involving linearisation is analysed and a related method is proposed. These and one
other connected method are compared using a building-related test problem prepared for this purpose.
The proposed numerical method is found to produce least error, about 30% less than the commonly
used method, and it is recommended for inclusion in building energy simulation software. A
fundamental method for estimating the pre-conditioning period of a building, arising from the work, is
discussed.

List of symbols
c Specific heat of material represented by a node

CT kg-I K-1)
d Slab thickness (m)
fi ) Vector of derivative functions

g, G Constituents of f
h Space increment (m)
i Space step level or node number
I Identity matrix
j Time step level
J Jacobian matrix of f
k Time increment (s)
K Convergence factor
L Lipschitz constant
rra Mass of material represented by a node (kg)
n Total number of equations
z( ) Order of magnitude
R Alternative iteration function
t Time (s)
T Nodal temperature (K)
T Vector of dependent variables
x Space coordinate (m)

I I Magnitude
I I Spectral (12) norm
Greek symbols
a Thermal diffusivity (m2 S-1)
8 Mean temperature difference benveen reference solu-

tion and test solution (K)
~8~ Mean absolute temperature difference between refer-

ence solution and test solution (K)
[~ Maximum absolute temperature difference between

reference solution and test solution (K)
A. Eigenvalues of J
~§. Eigenvalues of Jacobian matrix oaf R
il Stiffness ratio

§ Nodal heat gain (W)

1 Introduction

In Europe and the United States over 50% of all energy use
can be associated with buildings and a considerable portion of
this is consumed to moderate internal environmental condi-
tions(’). The costs of this energy together with the global

warming effect of the carbon dioxide produced by its conver-
sion make energy-conscious design and operation of buildings
imperative.

To this end a variety of building energy analysis and simula-
tion tools are increasingly used to determine peak heating and
cooling loads, to size thermal plant, to anticipate annual
energy consumption and to analyse thermal comfort. These
tools are generally produced as computer programs and range
from coded manual methods to detailed ’first principles’
energy models with few experimentally calibrated parameters.
The mathematical techniques employed include response
function methods, finite-difference methods and electrical
analogue methods. Finite-difference techniques are consid-
ered the most flexible.

2 Model formulation and discretisation

A dynamic thermal model of a building consists of a set of
partial differential equations (PDE) and ordinary differential
equations (ODE) for the dependent temperatures and heat
fluxes, which generally cannot be solved analytically. For
example, the diffusion of heat through a solid building
element, such as a homogeneous wall layer, is most often
treated as one-dimensional and so the resulting temperature
field can be described by the equation

The finite-difference approach involves replacing the differ-
ential equations with consistent difference equations that are
tractable. Solutions are obtained at discrete points in space
and time rather than as continuous functions. One way of

implementing this approach would be to decompose equation
1 into a set of oDES by the method oflines~, in which space is
discretised but not time. A typical nodal equation would be

To these must be added ODES for room air masses and other
finite volumes of material assumed to have spatially uniform
temperatures. Each volume is represented by a single nodal
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temperature that varies in time according to an equation of the
form

where the right-hand side represents the sum of the thermal
driving forces acting on that node. The 0 are in general non-
linear functions of T. A complete building energy model can,
therefore, be written succinctly as

a vector equation depicting a non-linear system of first-order
ODES.

The above is, of necessity, a very brief description of a
building thermal model. A detailed treatment of the construc-
tion of such a model is given by darker To complete the
process of discretisation, numerical methods for ODEs are
applied to equation 4. For instance, the first-order accurate
Euler method gives the difference equation

I

and the second-order Trapezoidal Rule (equivalent to the
Crank-Nicolson scheme for PDES) gives

when applied to the same equation. The stability of any
numerical method applied to equation 4 is determined by the
value of the product kr7fl~T for a single equation and the prod-
ucts kA, for a system of equations where the A (i = 1, 2,
..., n) are the eigenvalues of J = 9/7t)T, the Jacobian matrix of
f. For Euler’s method, the product(s) must lie within a unit
circle in the complex plane centred at (- 1,0). The Trapezoidal
Rule is described as A-stable because its region of stability is
defined by Re(k~1)c0, that is, the whole of the left half-plane.
The size of the time increment k is limited if Euler’s method
is applied to a building thermal model, the reason being that
(4) is a staff system of equations. An equation system, such as
equation 4, is said to be stiff if

and, in addition, the stiffness ratio ~ satisfies

A stiff system is often referred to as one with a large Lipschitz
constant L where

When the physical entities or processes modelled by the equa-
tions have widely differing time constants (14Re(A)I), stiffness
ensues. Systems may be considered marginally stiff if the stiff-
ness ratio is 0(10), while ratios up to O(106) are not uncommon.
A building thermal model is moderately stiff. Sample rooms
examined in connection with this work were found to have
ratios of O(10’-) for a lightweight room and 0(101) for a heavy-
weight room. Stiffness is not uncommon in practical problems

arising in such fields as chemical kinetics, nuclear physics,
process control, electronics and mathematical biology.
It can be seen that if Euler’s method is applied to a stiff system
max, I Re(A)1 forces a small time step k to keep all the products
kA, within the limited region of stability and a large number
of such steps is required to pass through the slowest transient
solution (with time constant 1/minJRe(A¡)I) to steady state.
Euler’s method is therefore computationally inefficient for
stiff systems of equations, and this is the case for most explicit
methods. The Trapezoidal Rule, being A-stable, is stable for
all values of k but, of course, accuracy as well as stability must
be considered when choosing a time increment.

Finally, in connection with time constants, it is worth

drawing attention to a useful quantity that can be extracted
from J. It is the pre-conditioning period of the building repre-
sented by equation 4. The pre-conditioning period is the
simulation time required to allow the temperatures of all
nodes to converge to values that are no longer affected by their
arbitrarily chosen initial values. A number of different
methods have been proposed to quantify it, including empir-
ical relations and simulation experiments(3). In this case an
estimate is provided by calculating the time taken for the
slowest transient solution of equation 4 (with time constant
1/min~~Re(~I~)~) to decay to, say, 1% of its initial value. For the
heavyweight example room mentioned above, the largest time
constant was 1/(1.65 X 10-6) implying a pre-conditioning
period of 32.3 days. This is of the same order of magnitude as
an estimate in Pinney and Parandt3> for a ’modem heavy-
weight’ domestic building.

3 Solution of difference equations

The set of equations represented by (6) is implicit, requiring
simultaneous solution at each time step. However, the addi-
tional work that this entails is often more than offset by a
reduction in the number of steps needed. For instance, the
time increment for Euler’s method, an explicit method, must
satisfy

resulting typically in a limiting value for k of the order of
minutes. Simulation runs ranging from a few days to a year
are routinely undertaken.

As well as being implicit, equation 6 is non-linear and so an
iterative solution method is indicated. The Newton-Raphson
process is the most widely accepted method for stiff systems~2~.
Applied to equation 6 it would take the form

11 ,.

The Newton-Raphson method converges quadratically and
generally it will converge for any time increment. However, a
good initial estimate for TI+1 1 is required. A modified
Newton-Raphson method is almost invariably employed in
which triangular (LU) factorisation of the matrix (I-kJ/2)
replaces inversion and the same factors are used throughout
the iteration. If the Jacobian does not vary too rapidly, it is
often possible to retain the factors for a number of integration
steps.
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A simple fixed-point iteration can also be used in which equa-
tion 6 is iterated directly for 7~. The process is linearly
convergent and will converge for any starting value, provided
all the eigenvalues of the Jacobian matrix of the right-hand
side are less than 1 in magnitude, in the neighbourhood of
the solution. Differentiating the right-hand side of equation
6 with respect to each of the elements of Tj+l one gets
kJ(t’+1,Tl+l)/2, leading to the convergence condition

Assuming equation 4 is stiff, this condition restricts the time
increment to values similar to explicit methods; compare with
condition (10). It is possible, however, to rearrange equation 6
so that a different iteration function appears on the right-hand
side. It is shown in the appendix that, for this revised iterative
method, stiffness actually promotes rapid convergence and
long time steps are facilitated rather than prohibited.
In darker for example, the function f in equation 6 is first
decomposed in the manner done in equation 17. For instance,
the T24-T14 expression in the long-wave radiation model is
factorised to give

and the first two factors are included in G. There is no contri-
bution to g from this expression. The terms are then
rearranged to give equation 20, the alternative iterative

method, which is renumbered and repeated here:

Notice that the superscript notation of the appendix has been
dropped and full arguments have been restored because the
arguments in later equations may be evaluated at different
time step levels.

4 Proposed method

Non-linear systems such as equation 6, when they crop up in
building energy simulation(’) or more generally in conduction
modelling(’), are usually linearised before being solved by
matrix inversion or some equivalent direct process. Linearis-
ation methods, such as extrapolation and lagging of depen-
dent variables by one time step, eliminate the need for
iteration. Equation 13 is linearised in Ciarket’> to give

in which the dependent variables are evaluated one time step
in arrears. All the terms on the right-hand side of equation 14
are known and so it can be solved directly for TJ+1.

Linearisation simplifies the solution of the problem, but there
are some advantages in viewing the resulting direct solution
process as the first iteration of an underlying iterative method:
- It is possible to investigate the benefits and costs of iter-

ating more than once. Generally, stiffer systems require
fewer iterations to achieve a given level of accuracy.

- The convergence factor K can be estimated using equa-
tion 21.

- A number of apparently different direct methods can be
produced by changing the initial estimate used and iter-
ating just once.

Regarding the final point, it is necessary to estimate Tl+’, the
unknown, on the right-hand side of equation 13 before itera-
tion can commence. Equation 14 is generated by substituting
for both TJ+~ and Tj in equation 13 even though the latter is
already knotvn. If this unnecessary substitution is eliminated,
another direct method can be put fonvard:

Notice that the proposed method requires just one vector of
starting values whereas equation 14 requires two and so must
be primed using an independent single-step method. One
further initial estimate can be formed by using a Newton-
Gregory extrapolation from previous time steps. T~+I in
equation 13 is replaced by Ti+l = 2Ti-Ti-l, leading to the
method:

5 Evaluation of numerical methods

Three direct solution methods, arising from the iterative
method specified by equation 13, are available for assessment.
They will be referred to as LL (linearisation by lagging, equa-
tion 14), P.B1 (the proposed method, equation 15) and LE
(linearisation by extrapolation, equation 16). The Newton-
Raphson (NR) method was also included for comparison
because it is so widely used, together with the Trapezoidal
Rule, to solve stiff systems in a wider context. Each method
can, of course, be iterated to convergence, but few practical
building energy applications require such rigour.

5.1 Test problem

Analytical tests, based on physically simple heat transfer prob-
lems with known solutions, are decisive but very limited in
scope. Empirical validation using measured data from a real
structure, a necessary and appropriate application of the scien-
tific method to whole model validation, is unsuitable here
because it is difficult to separate the error due to the numer-
ical method, which is sought, from errors in other parts of the
model and in the input data. A mathematical test was used in
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which the methods were applied to an equation set with the
attributes of the building energy problem that is characterised
mathematically in Crowley and Hashmi~5~. The test equations
were generated by considering the heat flows at a cubic space
enclosed by five identical plane slabs and one vertical glass
sheet. Each 3 m-square slab was represented by three nodes
and exchanged heat by convection with the enclosed air mass,
as did the glass sheet, which was represented by one node.
Internal long-wave radiation was exchanged between opposite
faces only. External surfaces were exposed to a sinusoidally
varying air temperature with a period of 24 h, and no other
thermal influence. Short-wave radiation, entering through the
glass, acted on just one internal surface. This solar term was
represented by the positive part of a sinusoid with a 15%
ripple superimposed. A casual heat gain to the internal air
mass was switched on in the morning and off again in the
afternoon. A proportionally controlled convective air-condi-
tioning terminal unit could be activated for the whole of the
simulated period.
This test example is small enough to be computed quickly and
yet detailed enough to capture the essential features of the
application. It is a demanding problem that includes step
changes and discontinuous derivatives in the thermal driving
terms. It consists of 17 differential equations that are, in
general, non-linear, and stiffness ratios ranging from 0(10) to
0(104) were generated during the testing process.

5.2 Computatiortal procedures

Programs were produced for the four numerical methods
being assessed. Each incorporated one iteration and one
matrix inversion per time step. A Newton-Gregory extrapola-
tion was used to construct a starting value for the Newton-
Raphson method.

The work was carried out on a personal computer using a
general-purpose mathematical software package<6>. During a
typical test run, two independent solutions were generated
using built-in differential equation solvers, and a reference
solution was formed by averaging them. Both of these

methods, the method of Rosenbrock and the fourth-order
Runge-Kutta method(6,7). include adaptive step-size control,
and the tolerance variable was set to 10-1 in each case. The

agreement between these two solutions was excellent (Table
1). The four test solutions were calculated at 15 minute and
1 hour intervals. The longer time increment led to large errors
in the test solutions when the terminal unit was inactive
(Table 1). Further iteration reduced these errors, but they
were still appreciable, indicating the need for shorter time
steps, at least where thermal disturbance was most intense. It
was decided to carry out the assessment using a time incre-
ment of 15 minutes. The reference solution was subtracted
from each of the test solutions in turn at every node and
time step over a 4 day period following the pre-conditioning
period. The statistics presented in Table 1 were extracted from
the sets of differences for two test runs. The cross-correlation
coefficient gives a measure of the phase relationship between
the reference solution and each of the other solutions.

Test runs were carried out using slabs of the first four materi-
als listed in Table 2, which between them virtually span the
range of thermal diffusivities encountered in building materi-
als. A variety of slab thicknesses was used leading to character-
istic conduction times, d2la, ranging from 1 s to 26 days and a
correspondingly large range of stiffness ratios. Discontinuities
in the heat gains were expected to lead to the greatest thermal
disturbance, so tests were carried out with both the step
changes and the discontinuous derivatives occurring a fixed
amount of time before some of the assessment points. Time
delays (prior to assessment) of between 2 and 8 minutes were
used, the shortest time constant for 0.1 m concrete construc-
tion being 5 minutes in the absence of the terminal unit and
less than 1 minute with the unit active. The casual heat gain
period was also moved back and then forward by 1 hour so as
to substantially change its time of application relative to other
loads. These changes in timing were examined lest fixed rela-
tive times favoured some numerical methods. In all cases tests
were done with the free-running cell, and then repeated with
the terminal unit active and sized for 120% of the peak thermal
load. A 2 K proportional band was used.

Table 1 Accuracy statistics for test runs 1 and 2
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Table 2 Material properties

5.3 Comparison of n~ethods
The results obtained for the test runs outlined in section 5.2
are given in Table 3. The difference statistics for LL were
divided into the corresponding statistics for each of the other
three methods in turn. The geometric mean values of these
ratios, calculated for the full set of test runs in each case, are
presented in Table 4. They measure the average factor by
which the difference statistic is changed when LL is replaced
by one of the other methods.

All three methods achieved a reduction in both mean absolute
difference and maximum absolute difference when compared
with LL. The decrease in maximum error was greatest for Pht
at 27%. Mean error reduction was greatest for NR, but this
method requires the construction of a Jacobian matrix or, at
least, an approximation to it. PM achieved a reduction in mean
error of 29%. The performance of L~ was not as good as might
be expected. Its initial estimate is extrapolated from two
previous solution values and should, therefore, be better than
the one used with the proposed method. LL performed as
expected. Its initial estimate is the same as that used with PAl,
namely the last solution value, but an unnecessary substitu-
tion is also made, which reduces the accuracy of the method.

6 Conclusions

The use of finite-difference methods to discretise the differ-
ential equations representing heat flows in buildings and else-
where produces a system of algebraic equations that are, in
general, non-linear. A commonly used linearisation procedure
results in a direct solution method that can be regarded as the
first iteration of an underlying iterative method. The iterative
process is examined and found to be well suited to the solu-
tion of stiff systems. Two other direct methods emerge from
this iterative procedure. One is a proposed change to the
previously mentioned linearisation scheme and the other
involves extrapolation. The proposed method was found to be
the most accurate of the three direct solution methods for a

representative test problem. Generally similar results were
obtained for three other test examples, two of which were
building related. The improved accuracy can, of course, be
traded for greater speed of execution. The proposed method is
a single-step one requiring only minor changes in building
energy simulation softvare that includes the more commonly
used linearisation method.

All of the tested methods can, of course, be used in conjunc-
tion with other implicit solvers for ODEs, for example the
Backward Differentiation Formulae. Another of these

implicit methods has been shoivn<5> to offer significant accu-
racy and stability advantages over the Trapezoidal Rule in this
application.

Appendix

Another iterative solution method for equation 6 can be
constructed if the function f can be decomposed in the
following way:

where IGI is large and ~~g/~T~ is small over the interval of
interest; that is, the stiffness of f expresses itself in G rather
than in g. In this case equation 6 becomes

Here superscripts have been placed on the functions to indi-
cate the time step level. Equation 18 can be rearranged to give

Therefore

Equation 20 is another possible fixed-point iteration. If its
right-hand side is denoted by R and if gi (i = 1, 2,..., n) are
the eigenvalues of ORIaTill, the Jacobian matrix of R, the
condition for convergence of equation 20 is

and small values for K result in rapid convergence. A typical
column of the Jacobian would be

The identity
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Table 4 Geometric mean reduction in error achieved for the test problem
when LL is replaced by other numerical methods

has been used here. The derivative of an array M (matrix or
vector) is defined as an array whose elements are the deriva-
tives of the elements ofM.

Substituting from equation 19 for the final expression in
braces, equation 22 simplifies to

The properties of the alternative iterative method can be
deduced from this last equation. Most importantly, G appears
only in the inverted expression and, because 11 G 11 is assumed
to be large (and found to be so for the systems examined),
c?R/c7T~~1 will have small elements and so 11 aR/~T!+’ ]] will be
small. Stiffness, therefore, increases the rate of convergence
since

It can also be inferred from equation 24 that K increases only
very slowly with k when the kGi+l/2 term dominates the
inverted expression. In other words, large time increments do
not jeopardise convergence. The convergence rate of equation
20 is, of course, also dependent on the magnitudes of Ti+1,
~7g~+’/c7T~+’ and ~?G~+’/c7T~+’ as measured by their norms.
Finally, it is worth noting that the three iterative methods:
- simple fixed point iteration (equation 6)
- the alternative iterative method (equation 20) and
- the Newton-Raphson process (equation 11)
become one when IIJ 11, and consequently 11 G 11, is small.
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