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An Explicit Super-Time-Stepping Scheme for
Non-Symmetric Parabolic Problems

K.F. Gurski∗ and S. O’Sullivan†

∗Department of Mathematics, Howard University, Washington, DC 20059, kgurski@howard.edu.
†School of Physical Sciences, Dublin City University, Dublin, Ireland

Abstract. Explicit numerical methods for the solution of a system of differential equations may suffer from a time step
size that approaches zero in order to satisfy stability conditions. When the differential equations are dominated by a skew-
symmetric component, the problem is that the real eigenvalues are dominated by imaginary eigenvalues. We compare results
for stable time step limits for the super-time-stepping method of Alexiades, Amiez, and Gremaud (super-time-stepping
methods belong to the Runge-Kutta-Chebyshev class) and a new method modeled on a predictor-corrector scheme with
multiplicative operator splitting. This new explicit method increases stability of the original super-time-stepping whenever
the skew-symmetric term is nonzero, which occurs in particular convection-diffusion problems and more generally when the
iteration matrix represents a nonlinear operator. The new method is stable for skew symmetric dominated systems where the
regular super-time-stepping scheme fails. This method is second order in time (may be increased by Richardson extrapolation)
and the spatial order is determined by the user’s choice of discretization scheme. We present a comparison between the two
super-time-stepping methods to show the speed up available for any non-symmetric system using the nearly symmetric Black-
Scholes equation as an example.

Keywords: explicit method, symmetric, skew-symmetric, multiplicative operator splitting, super-time-stepping, Black-Scholes
PACS: 02.30.Hq, 02.30.Jr, 02.60.Cb, 02.70.Bf

INTRODUCTION

In our problem, space discretization has converted the parabolic equations in R
n × [t0,T ] into a system of ordinary

differential equations in [t0,T ]. This discretization may be chosen to be of any order. We therefore consider the initial

value problem

Y′(t) = F(Y(t)), Y(t0) = Y0. (1)

We denote the current time as tℓ and seek the solution at a later time tℓ+1 = tℓ+ τ , where τ is a positive and real time

step. In particular we consider a system of ordinary differential equations that may be discretized as

Yℓ+1 = (I− τM)Yℓ. (2)

The system (2) may be solved using an explicit scheme by calculating Y at the time tℓ+1 using Y(tℓ), while an

implicit scheme will calculate Y by solving an equation involving both tℓ+1 and Y(tℓ). The solution to implicit

schemes will require extra computations and are more difficult to implement, especially if the code is to be solved

on a parallel machine. The difficulty with explicit schemes is based on satisfying the Courant-Friedrichs-Lewy (CFL)

stability condition [4] which requires a numerical scheme satisfy ρ(I−τM)< 1 where ρ(·) denotes the spectral radius.

If M is symmetric then this requires

τ <
2

λ1(M)
, (3)

using the notation that the eigenvalues of an n× n symmetric matrix M are ordered λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M).
The CFL stability restriction on the time step forces the stepsize τ to be much smaller than the necessary size to satisfy

the accuracy condition for the computation.

The method presented in this paper builds on two approaches, super-time-stepping (STS) [1] and multiplicative

operator splitting [2] in order to increase the time-step with an explicit scheme. Super-time-stepping schemes belong

to the class of Runge-Kutta-Chebyshev methods which are discussed in [8, 9] as well as many other sources.

Multiplicative operator splitting is used frequently in separate convection-diffusion problems into two parts: one to

be solved with an explicit method, the other with an implicit method.

761

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:



In the following section we present the regular super-time-stepping scheme and our scheme skew dominated super-

time-stepping scheme. In [5] we have shown analytically that in a system without a symmetric component, the regular

STS method must have a time step that goes to zero, while the skew dominated STS retains a nonzero time step. In this

paper we provide a numerical comparison of the two methods using the Black-Scholes equation. The numerical results

indicate that the skew dominated super-time-stepping scheme provides benefits even for a slightly nonsymmetric

system.

SUPER-TIME-STEPPING SCHEMES

The super-time-stepping method of Alexiades, Amiez, and Gremaud [1] for a symmetric M, uses N intermediate steps

Yℓ+1 =

(

N

∏
j=1

(I− τ jM)

)

Yℓ. (4)

The benefit from the STS method follows by enforcing the CFL condition on the exterior step rather than enforcing

the CFL condition on each of the N interior steps resulting in larger time steps.

We wish to consider a real, non-symmetric M split into symmetric and skew-symmetric components. This decom-

position into symmetric and skew-symmetric components is P= 1
2
(M+M

T ) and S= 1
2
(M−M

T ) respectively. Thus,

the system is

Y ℓ+1 = (I− τP− τS)Y ℓ. (5)

We refer to the regular super-time-stepping scheme as

T=
N

∏
k=1

[I− τk (P+S)] . (6)

The analytic results for the STS method been extended in [5] from symmetric M to nonsymmetric M. The full analysis

shows that if τ̄explicit is the time step for one time step of equation (4), then

τT =
τ̄explicit

2

N

∑
k=1









1+

√

√

√

√

√1+
(ν −1)cos

(

(2k−1)π
2N

)

+1+ν

λ1(P)τ̄explicit









, (7)

where λ1(P)> 0 and ν is a practical implementation of the damping factor that can be manipulated directly to modify

the time-step size.

Our new scheme improves the stability of the scheme by allowing a much larger time-step for the instances when

skew-symmetric term dominates the symmetric term. This scheme incorporates multiplicative operator splitting [2]

with a predictor-corrector scheme.

H=
N

∏
k=1

(I− τkP)× (I− τkS+ τ2
k S

2),

which is equivalent to a super-time-step version of the three step scheme:

Y ℓ+1 = (I− τP)Ỹ
ℓ+1

,

Ỹ
ℓ+1

= Y ℓ− τSȲ
ℓ+1

,

Ȳ
ℓ+1

= (I− τS)Y ℓ.

Since even powers of a skew operator are symmetric this correction adds a pure symmetric component back into the

scheme and stabilizes it allowing a time step of τH for a stable scheme H for a n×n matrix M= P+S and λ1(P)> 0

to be bounded above by

τH =
τ̄explicit

2

N

∑
k=1









1+

√

√

√

√

√1+
(ν −1)cos

(

(2k−1)π
12N

)

+1+ν

λ1(P)τ̄explicit









. (8)
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BLACK-SCHOLES EQUATION

A modified Black-Scholes model [3] for the European option pricing in the form of a finite domain initial boundary

value problem [10] can be written as

∂w

∂ t
=

1

2
σ2s2 ∂ 2w

∂ s2
+(r−d)s

∂w

∂ s
− rw, (s, t) ∈ (0,Smax)× (O,T ) (9)

w(s,0) = max(s−E,0), 0 ≤ s ≤ Smax,

w(0, t) = 0, 0 ≤ t ≤ T,

w(Smax, t) = Smax exp(−dt)−E exp(−rt), 0 ≤ t ≤ T,

where w = w(s, t) is the call option price at the underlying asset price s at the expiration time t up to the expiration

date T , E is the strike price, r is the interest rate, d is the dividend yield, σ = σ(s) is the volatility of the underlying

asset.

The analytic solution for the infinite domain problem is given by the Black-Scholes formula [3]

w(s, t) =
s

2
exp(−dt)

(

erf(
d1√

2
)+1

)

− E

2
exp(−rt)

(

erf(
d2√

2
)+1

)

,

where erf(s) = (2/
√

π)
∫ s

0 e−u2
du, d1 =

(

log(s/E)+(r−d+σ2/2)t
)

/(σ
√

t) and d2 = d1 −σ
√

t.

We scale the problem to solve on [0,1] rather than [0,Smax] with m nodes. Using a central difference scheme to

approximate the derivatives on the asset price domain gives us a local error of order 2. A more sophisticated scheme

will give a higher order, but to illustrate the effect of the effect of the super-time-stepping time derivative scheme, a

scheme of 2nd order is sufficient. For central differences we have the tridiagonal matrices P and S

P =







b1
1
2
(a2 + c1) · · · 0

...
. . .

. . .
...

0 · · · 1
2
(am+1 + cm) bm






S =







0 − 1
2
(a2 − c1) · · · 0

...
. . .

. . .
...

0 · · · 1
2
(am+1 − cm) 0






(10)

where

an =
1

2
(r−d)

sn

h
− 1

2
σ2 s2

n

h2
, bn = r+σ2 s2

n

h2
, cn =−1

2
(r−d)

sn

h
− 1

2
σ2 s2

n

h2
, (11)

and h = ∆s = 1/m.

A real square matrix is positive definite if and only if its symmetric part is positive definite [7]. Furthermore, by

Sylvester’s criterion, a matrix is positive definite if and only if the determinants of all upper-left sub-matrices are

positive. Therefore it suffices for us to prove the Sylvester criterion holds for P. The determinant, D j , for the upper-

left j× j sub-matrix of the tridiagonal matrix are easily expressed by means of a simple three-term recurrence relation

[6]

D j = b jD j−1 −a jc j−1D j−2, (12)

with D1 ≡ 0 and D0 ≡ 1. It is straightforward to show that we can express the above expression as a simple product

D j =
j

∏
k=1

∣

∣

∣

∣

1

2
(k+1)(σ2 + r)

∣

∣

∣

∣

. (13)

Under the condition r > 0, P is positive-definite and therefore M is necessarily positive definite. Note that this result

does not depend on uniform σ(s)and r(s).

NUMERICAL RESULTS

We choose r = 0.05, d = 0.01, σ = 0.35, E = 70, m = 1000, and Smax = 200. We make two choices for the damping

factor ν . The closer ν is to zero, the larger differential in the number of time steps for the schemes T and H. N

represents the number of interior steps in the super-time-stepping-scheme. The results are shown in Table 1. With this
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TABLE 1. Comparison of super time stepping schemes: T and H.

N, Number of
Internal Steps ν

Number of
Super Steps

Step Ratio
T/H

Error
|H −T |

T : Regular STS 1 0.002 1233368 3.39 4.16E-09
H: Skew STS 1 0.002 363452

T : Regular STS 5 0.002 177584 3.09 2.21E-07
H: Skew STS 5 0.002 57491

T : Regular STS 10 0.002 81219 2.83 2.65E-07
H: Skew STS 10 0.002 28706

T : Regular STS 50 0.002 15537 2.71 3.71E-07
H: Skew STS 50 0.002 5743

T : Regular STS 100 0.002 7769 2.71 8.94E-07
H: Skew STS 100 0.002 2871

T : Regular STS 1 0.0 1242641 3.59 2.10E-08
H: Skew STS 1 0.0 346370

T : Regular STS 5 0.0 174987 4.28 1.99E-07
H: Skew STS 5 0.0 40885

T : Regular STS 10 0.0 77524 4.48 2.67E-07
H: Skew STS 10 0.0 17323

T : Regular STS 50 0.0 12261 4.79 4.73E-07
H: Skew STS 50 0.0 2559

T : Regular STS 100 0.0 5623 4.89 9.11E-07
H: Skew STS 100 0.0 1149

choice for r, d, and σ , the eigenvalues λ1(P) are much larger than |λ (S|1. For example, if m = 5, λ1(P) = 3.98759 and

|λ (S|1 = 0.24526. If m = 9, λ1(P) = 14.1723 and |λ (S|1 = 0.518488. As m increases, λ1(P) will continue growing

faster than |λ (S|1.

Consequently, this problem is nearly symmetric, and the effect of S should be small compared to P. However, that

the skew-symmetric scheme H completes the calculation in fewer time steps than the regular super-time-stepping

scheme T .
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