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Using semi-supervised classifiers for credit scoring (Accepted for Publication)

K. Kennedya,∗, B. Mac Nameea, S.J. Delanyb

aSchool of Computing, Dublin Institute of Technology, Ireland
bDigital Media Centre, Dublin Institute of Technology, Ireland

Abstract

In credit scoring, low-default portfolios are those for which very little default history exists. This makes it problem-
atic for financial institutions to estimate a reliable probability of a customer defaulting on a loan. Banking regulation
(Basel II Capital Accord), and best practice, however, necessitate an accurate and valid estimate of the probability of
default. In this article the suitability of semi-supervised one-class classification algorithms as a solution to the low-
default portfolio problem are evaluated. The performance of one-class classification algorithms is compared with the
performance of supervised two-class classification algorithms. This study also investigates the suitability of oversam-
pling, which is a common approach to dealing with low-default portfolios. Assessment of the performance of one-
and two-class classification algorithms using nine real-world banking data sets, which have been modified to replicate
low-default portfolios, is provided. Our results demonstrate that only in the near or complete absence of defaulters
should semi-supervised one-class classification algorithms be used instead of supervised two-class classification al-
gorithms. Furthermore, we demonstrate for data sets whose class labels are unevenly distributed that optimising the
threshold value on classifier output yields, in many cases, an improvement in classification performance. Finally, our
results suggest that oversampling produces no overall improvement to the best performing two-class classification
algorithms.

Keywords: banking, credit scoring, low-default portfolio, supervised classification, one-class classification,
benchmarking

1. Introduction

The upheaval in the financial markets that accompanied the sub-prime mortgage crisis has emphasised the large
proportion of the banking industry based on consumer lending (Thomas, 2009). Credit scoring is an important part
of the consumer lending process that attempts to predict the repayment behaviour of borrowers. It is an endeavour
regarded as one of the most important application fields for both data mining and OR techniques (Baesens et al.,
2009). The objective is to assign borrowers to one of two groups: good or bad. A member of the good group is
considered likely to repay their financial obligation. A member of the bad group is considered likely to default on
their financial obligation.

Generally, credit scoring models are categorised into two different types, application scoring and behavioural
scoring. Application scoring attempts to predict a customer’s default risk at the time an application for credit is made
based on information such as applicant characteristics and credit bureau records. Behavioural scoring assesses the risk
of existing customers based on their recent accounting transactions. In this paper, we focus on application scoring due
to the availability of suitable data sets. The techniques we describe and our findings, however, could equally apply to
behavioural scoring.

Under the Basel II Capital Accord (BCBS, 2005a), using the internal ratings-based approach, banks can calculate
their capital requirements by using their internal data to construct credit risk models. As a consequence of this
approach greater emphasis is placed on an accurate estimation of customers’ probability of default (PD) rather than
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the ability to correctly rank customers based on their default risk (Malik and Thomas, 2010). PD also has to be
predicted not just at an individual level but also for segments of the loan portfolio. Modelling the PD is essentially
a discrimination problem (good or bad), consequently one may resort to the numerous classification techniques that
have been suggested in the literature. Many of these classification models are derived from statistical methods, non-
parametric methods, and artificial intelligence approaches.

At certain stages of an economic cycle the number of defaulters can be very low, which complicates the modelling
process. It is well known that the performance of standard supervised classification techniques deteriorates in the
presence of imbalanced data (Chawla et al., 2010). Imbalanced data refers to a situation where one class is under-
represented compared to the other class. This imbalance may be due to two reasons. The first is that the proportion
of one class in the sample is lower than the proportion in the population. The second is that in both the sample and
population the proportion of one class differs from the other. In this paper we are interested in assessing the latter as it
can affect classifier training, for example an increase in the variation of the coefficients obtained by logistic regression
(Hand and Henley, 1993). In credit scoring imbalanced data is common due to the usual absence of defaulters and
this is known as the low-default portfolio problem. Even in the current financial crisis low-default portfolios are the
norm - for the second quarter of 2010, the Council of Mortgage Lenders, UK, reported that the number of mortgages
three or more months in arrears stood at 2.17% of total outstanding mortgages (CML, 2010).

One possible approach to addressing the low-default portfolio problem is the use of one-class classification (OCC)
algorithms (also known as outlier detection). OCC has attracted much attention in the data mining community (Chawla
et al., 2004). It is a recognition-based methodology that draws from a single class of examples to identify the normal
or expected behaviour of a concept. This is in contrast to standard supervised classification techniques that use a
discrimination-based methodology to distinguish between examples of different classes.

In this article we compare one-class classification methods with more common two-class classification approaches
on a number of credit scoring data sets, over a range of class imbalance ratios. As a means for handling imbalanced
data we oversample the minority class along with adjusting the threshold value on classifier output. The purpose of
this study is to determine whether or not the performance of OCC methods warrants their inclusion as an approach
to addressing the low-default portfolio (LDP) problem. To the best of our knowledge, no attempt has been made to
examine OCC as a solution to the LDP problem before.

The comparative assessment of classification methods can be a subjective exercise. It is influenced, amongst other
factors, by the expertise of the user with each of the methods used and the effort invested in refining and optimising
each method (Hand and Zhou, 2009; Thomas, 2009). We attempt to overcome this problem by restricting our study
to a single application area (low-default portfolios); by selecting appropriate performance measures (H measure and
harmonic mean); and finally by using nine different data sets of varying size and dimension to capture as many as
possible of the particular aspects of the LDP problem.

The remainder of this article is organised as follows. A review of the relevant literature is provided in Section 2.
The two-class and one-class classification algorithms used in the study are covered in Section 3. Section 4 describes
the experimental methodology, and Section 5 presents experimental results. Section 6 discusses conclusions and
directions for future work.

2. The low-default portfolio problem: previous work

The introduction and implementation of the Basel II Capital Accord (BCBS, 2005a) has had a major impact on
credit scoring. Regulation stipulates that banks must set aside adequate capital buffers to withstand losses and sustain
lending during unanticipated turbulence in the economic environment. Regulating the minimum capital buffer, or
regulatory capital, is a primary area of interest for banking supervision (Ingolfsson and Elvarsson, 2010). Basel II
allows banks to adopt an internal ratings-based (IRB) approach to regulatory capital. This allows banks to calculate
their regulatory capital based on their own assessment of key risk components, including the PD which is considered
to be the likelihood that a borrower will default in the next 12 months. The PD is the “central measurable concept on
which the IRB approach is built” (BCBS, 2001). Normally the PD is calibrated using an internal data source with a
sufficient history (e.g. 5+ years) to which a score function, such as logistic regression, is applied. The PD is calculated
yearly counting defaults versus non-defaults and averaging.

To use the IRB approach, lenders must be able to build models that are validated to have consistent and accurate
predictive capacity (BCBS, 2005a, Paragraph 500). This has raised concern in the financial industry that institutions
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with low-default portfolios may be excluded from the IRB approach due to inability to build and validate accurate
models (BBA, 2004). As a consequence such institutions would be forced to use simpler approaches requiring greater
amounts of regulatory capital.

Many of the papers addressing the LDP problem do not investigate the issue of comparing the predictive per-
formance of classification models through out-of-sample testing. Focus is instead given to the application of various
statistical techniques that attempt to bolster the information generated by the monotonic ordering of the portfolio or by
the small number of defaults in the portfolio. Such papers are concerned with the accurate model validation of LDPs.
Some of the more well known works include Pluto and Tasche (2006) who address the LDP problem by proposing the
“most prudent estimation principle”. This approach relies on the assumption that the ordinal ranking of the borrowers,
who are split into grades of decreasing credit-worthiness, is correct. Forrest (2005) adopted a similar method to Pluto
and Tasche (2006), but in contrast this method is based on a likelihood approach working in multiple dimensions,
where each dimension corresponds to a rating grade and each point represents a possible choice of grade-level PDs.

Overall, the two main technical challenges presented by LDPs are: (i) estimating an accurate PD when no historical
defaults are available; and (ii) assessing a model’s predictive performance (Stefanescu et al., 2009). Both of these
issues arise not only during the validation of the model, but also prior to this, during the construction of the model. In
this article we are concerned primarily with model construction and the comparison of the predictive performance of
classification models. In many of the works addressing the LDP problem, the construction of the model is dependent
on: (i) making assumptions about the ordering of the data; (ii) incorporating expert opinion; or (iii) the availability of
a certain number of historical defaults generated either artificially or occurring in reality.

Given one of these dependencies, the models constructed are typically either: (i) statistical models constructed
from a representative pool of data; or (ii) expert systems (or knowledge-based approaches) whose parameters are
determined by financial experts. van Gestel and Baesens (2009) highlight several experimental studies from various
domains which conclude that quantitative statistical models outperform human experts (e.g. Meehl, 1955). This is
not to say that certain knowledge-based approaches, (e.g. fuzzy classification rules) cannot be successfully utilised
to achieve good predictive ability amongst loan applicants (Tang and Chi, 2005). Indeed, an advantage of such
approaches is the ability to generate explanatory models which provide the expert with an explanation as to why a
certain credit applicant is accepted or rejected (Hoffmann et al., 2007). However, such systems are beyond the scope
of this article in which we focus on quantitative approaches. The two main types of statistical models are duration
models and classification models. Duration models focus on the time to default and rely on a large data set (Medema
et al., 2009). Much research has been conducted on adapting classification techniques to construct credit scoring
models. Such classification techniques and studies include: (i) traditional statistical methods such as; discriminant
analysis (Eisenbeis, 1977) and logistic regression (Westgaard and van der Wijst, 2001), (ii) non-parametric statistical
methods: for example, k-nearest neighbour (Henley and Hand, 1996), (iii) decision trees (Quinlan, 1993); and (iv)
neural networks (West, 2000). Additional techniques include support vector machines (Schebesch and Stecking,
2005), genetic algorithms (Desai et al., 1997), and ant colony optimisation (Martens et al., 2009). It is possible to
combine many of these methods to create an ensemble classification technique. Much of this research is performed
on the basis that the constructed credit scoring models use data sets containing a representative number of historical
defaults. The LDP problem is not assessed.

The question of which classification technique to select for credit scoring remains a complex and challenging
problem. Baesens et al. (2003) highlight the confusion resulting from comparing conflicting studies. Some studies
may recommend one particular classification algorithm over another, whilst other studies recommend the opposite.
Furthermore, many of these studies evaluate a limited number of classification techniques, restricted to a small num-
ber of credit scoring data sets. To compound this, many of the data sets are not publicly available, thus curtailing
reproducibility and verifiability. Another problem is authors’ expertise in their own method and failure to undertake
a corresponding effort with existing methods (Michie et al., 1994). Indeed, Thomas (2009) highlights that studies
which have endeavoured to avoid the aforementioned problems (Baesens et al., 2003; Xiao et al., 2006) have reported
that the differences between the performance of classification techniques were small and regularly not statistically
significant. Great care and consideration was taken to avoid these issues in this work, details of which are given in
Section 4.

To the best of our knowledge a benchmarking study of the performance of classification techniques on low-
default portfolios has not been described in the literature. Indeed, a comparative study of one-class classifiers used
in the context of credit scoring has not been described in the literature. The most closely related, work to this is

3



Juszczak et al. (2008), which describes a comparison of one- and two-class classification algorithms used for detecting
fraudulent plastic card transactions. The results of that study found that two-class classifiers will outperform one-class
classifiers - provided that the training and test objects are from the same distribution. Plastic card fraud detection is
also examined by Krivko (2010) who provide a framework for combining one- and two-class classifiers to identify
fraudulent activity on debit card transaction data. The following section will introduce the classification techniques
used in this study.

3. Classification techniques

In supervised classification a model is induced from a set of labelled data examples. Previously unseen examples
are then assigned to one of the classes learnt by the model. In this article we compare eight well-known supervised
classification methods that are suitable for credit scoring and require minimal parameter tuning: Fisher’s Linear
Discriminant Analysis (LDA) (see Webb, 2002), Linear Bayes Normal (LDC) (see Duda and Hart, 1973), Quadratic
Bayes Normal (QDA) (see Duda and Hart, 1973), Logistic Regression (LOG) (see Hosmer and Lemeshow, 2000),
Naı̈ve Bayes Kernel Estimation (NB) (see Hand and Yu, 2001), Support Vector Machines (SVM) Vapnik (1995),
Neural Network Back Propagation Feed-Forward Network (NN) (see Bishop, 1995), and k-Nearest Neighbour (k-
NN) (see Henley and Hand, 1996). The OCC techniques used are less well known and so are covered in greater
detail.

OCC techniques distinguish a set of target objects from all other objects (Moya et al., 1993). This is a form
of semi-supervised classification as the training data consists of labelled examples for the target class only. OCC
techniques have been applied to a wide range of real-world problems such as machine fault detection (Sarmiento
et al., 2005), fraud detection (Juszczak et al., 2008), and identity verification (Hempstalk, 2009). The term OCC is
believed to have originated from Moya et al. (1993) and is only one of a number of terms used to describe similar
approaches - other terms include outlier detection (Ritter and Gallegos, 1997), novelty detection (Bishop, 1994), and
concept learning (Japkowicz, 1999).

Following the taxonomy described by Tax (2001), OCC techniques can be divided into three groups: density
methods, boundary methods, and reconstruction methods. This is by no means an exhaustive discrimination, but
conceptually it is the simplest and most popular. For a detailed description of OCC taxonomies refer to (Chandola
et al., 2009).

All OCC methods share two common elements: a measure of the proximity of an object, z, to the target data; and
a threshold, θ, to which the proximity measure is compared. An object, z, is considered to be a member of the target
class when the proximity of z to the target data is less than the threshold θ.

Density estimation approaches to OCC directly estimate the probability distributions of features for the target
class by fitting a statistical distribution, such as Gaussian, to the target data. The success of this approach depends on
factors such as the target data sample size and whether the selected statistical distribution is appropriate for the target
data. The density techniques provide the most complete description of the target data, but as a drawback to this they
may require large amounts of data (Tax and Duin, 1999).

OCC approaches based on boundary estimation fit a boundary around the target class data, whilst simultaneously
attempting to minimise the volume of the enclosed area. Boundary methods offer a degree of flexibility in that an
estimate of the complete probability density is not necessary. The computation of the boundary is based on the
distances between the objects in the target data. In some cases a kernel function is used to define a flexible boundary.
This approach works well with small sample sizes and an uncharacteristic training data set (Tax, 2001).

Reconstruction methods are trained to reproduce an input pattern by assuming a model of the data generation
process. The parameters of the assumed data generation model are estimated during the learning phase. This differs
from density and boundary methods as reconstruction methods do not rely on statistical assumptions made about the
data. A reconstruction error is used to determine if the object belongs to the target or outlier class.

A good OCC model should maximise both the number of target objects accepted and outlier objects rejected.
Specifying the trade-off between the fraction of target objects accepted and the fraction of outlier objects rejected
,through the threshold θ is the most important feature of OCC (Tax, 2001). The threshold is usually adjusted heuristi-
cally (and evaluated using a test data set) to attain the desired trade-off. Too small a value for θ will cause the model
to underfit the data and cover the entire feature space, whereas a large θ will over-fit the data, resulting in a minimised
target space.
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In some circumstances certain OCC models can incorporate outlier data. The performance of a OCC model may
be compromised if outlier data is used as the performance of the model becomes dependent on the outlier data and
poor quality data or low quantities of outlier data which are not representative of the problem will damage performance
(Hempstalk, 2009). For clarity such models are not used in this study although they may be considered in future work.
The remainder of this section will describe each of the OCC algorithms used in our evaluations (in all cases the actual
implementation used is from the Matlab Data Description Toolbox (DDTools) (Tax, 2009) and some specific details
given stem from this).
Gaussian (Gauss): A density estimation method that assumes the target data is generated from a unimodal multivari-
ate normal distribution, the Gaussian model is one of the simplest OCC techniques (see Tax, 2001). For an object, z,
the Mahalanobis distance to the training set distribution is calculated as follows:

f (z) = (z − µ)T Σ−1(z − µ) (1)

where µ is the mean and Σ is the covariance matrix of the training set, both of which are estimated using an
Expectation-Maximisation (EM) approach. This distance is compaed to a threshold θ to make a classification. The
Mahalanobis distance is used in order to avoid numerical instabilities. A caution to the use of the Gaussian method
is that if the assumption that the data fits a normal distribution is violated the model may introduce a large bias (Tax,
2001).
Mixture of Gaussians (MOG): A mixture of Gaussians model (see Bishop, 1995) is a linear combination of k Gaussian
distributions. Although this is a more flexible approach than the single Gaussian method it requires more data as it
may display greater variance when only a limited amount of data is available. To build a mixture of gaussians model
the training data is divided into k clusters, each of which is modelled by a Gaussian distribution. For an object z a
superposition of k Gaussian densities can be written as:

f (z) =

k∑
i=1

αiexp
{
−(z − µi)T Σ−1

i (z − µi)
}

(2)

where αi are the mixing coefficients, again µ is the mean and Σ is the covariance matrix. For each cluster i, αi, µi and
Σi are estimated using the EM algorithm. Given a mixture, the threshold, θ on the density determines if z is classified
as target or non-target data.
Parzen Density Estimation (Parzen): The Parzen density estimator (Parzen, 1962) is an extension of the mixture of
Gaussians method. It is a non-parametric technique that uses a kernel to estimate the probability density function.
Each object in the target class is treated as the centre of a Gaussian distribution. Based on this, a measure of the
likelihood that an object belongs to the target data is computed by averaging the probability of membership of the
Gaussian distributions. Classification is obtained by comparison to a threshold, θ. Let p(z) be the density function to
be estimated. Given a set D = {z1, z2 . . . zn} of n target objects, the Parzen density estimate of p(z) is:

p(z) =
1

nh

n∑
i=1

ρ
( z − zi

h

)
(3)

where h is a smoothing parameter, and ρ is typically a Gaussian kernel function:

ρ(z) =
1
√

2π
e−

1
2 z2

(4)

The width of the Gaussian kernel, h, is optimised by maximising the likelihood in a leave-one-out fashion, as per
Kraaijveld and Duin (1991).

When large differences in density exist, the Parzen kernel method will give poor results in low density areas. Like
all density approaches, it requires a large amount of target data to make a reliable probability density estimation.
Naı̈ve Parzen (NParzen): The naı̈ve Parzen is a simplification of the Parzen density estimator inspired by the naı̈ve
Bayes approach (see Hastie et al., 2005). A Parzen density is estimated in each feature dimension separately, and the
probabilities are multiplied to give the final target probability.
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k-Nearest Neighbour (k-NN): The k-nearest neighbour (Cover and Hart, 1967) method can be adopted to construct a
one-class classifier. The one-class k-NN (Tax and Duin, 2000) classifier is a boundary-based approach that is based
on the number of target objects in a region of a certain volume. Classification is performed using a threshold on the
ratio between two distances. The first is the distance between the test object z and its kth nearest neighbour in the
training set, NN(zi, k) (k is a parameter of the approach). The second distance is measured as the distance between the
kth nearest training object and its kth nearest neighbour. The ratio is calculated as follows:

p(z) =
‖(z,NN(z, k))‖

‖(NN(z, k),NN(NN(z, k), k))‖
(5)

where Euclidean distance is used to measure the distance between objects. For further details refer to Tax (2001).
Support Vector Domain Description (SVDD): The SVDD (Tax and Duin, 1999) is a kernel-based boundary method
which attempts to find the most compact hypersphere that encloses as many target instances as possible. By minimis-
ing the volume of the hypersphere, the chance of accepting outlier objects is reduced. To generate a flexible boundary
the input space can be mapped into a higher dimensional and more separable feature space. This transformation
is typically performed using a Gaussian kernel. Classification is performed by comparing the distance between an
object, z, and the target boundary to a threshold, θ.
k-Means: k-Means clustering (see Bishop, 1995) can be adapted into a relatively straight-forward reconstruction
approach to OCC. The approach subdivides the output space, onto which new objects are projected, into k cluster
prototypes or centres. The prototypes are located such that the average distance to a prototype centre is minimised as
follows:

εk−means = Σi(mink ‖zi − µk‖
2) (6)

where µk represents the k-th cluster centre. The objects in the training set are clustered, and when a new object is to
be classified its distance from the nearest prototype is used as a measure that can be thresholded in order to identify
outliers. If the distance is greater than a threshold, θ, the object will be classed as non-target data. A drawback can be
that outliers form in clusters by themselves.
Auto-encoders (AE): An auto-encoder, also referred to as an auto-associator, is a reconstruction based approach
introduced by Japkowicz (1999) based on the work of Hinton (1989). An auto-encoder is a particular type of neural
network, which is trained to reproduce an input pattern X at the output of the network, NN(X). Because the network
has a narrow hidden layer (or bottleneck), it compresses redundancies in the input. This feature can be utilised to train
the network to reconstruct examples from a target class as accurately as possible. Such a network will then perform
poorly at reconstructing non-target data which present different structural irregularities. Classification is achieved by
comparing the reconstruction error when test examples are presented to the network to a threshold.

The next section will explain the experimental methodology used to compare the performance of these classifica-
tion algorithms in an LDP scenario.

4. Evaluation experiment

The aims of this evaluation described are to examine the effectiveness of oversampling and the use of one-class
classification in addressing the LDP problem. This is achieved by comparing the performance of one-class classifiers
to that of two-class classifiers. Furthermore, we investigate to what extent optimising the threshold value on classifier
output yields an improvement in classification performance. To accomplish the above aims we adopt three separate
approaches:

(i) Classifying an imbalanced data set using a selection of two-class classifiers.

(ii) Oversample the minority class of the data set and employ a selection of two-class classifiers.

(iii) Remove the minority class completely and use one-class classification.

The first two approaches compare various two-class classifiers on credit scoring data sets with different degrees
of class imbalance. Both approaches illustrate the adverse consequences of class imbalance. Based on the results of
(i) and (ii) the best performing two-class classifier is then used in approach (iii) where its performance is compared
to a selection of one-class classifiers on the same data sets but with a greater degree of class imbalance. This section
describes the data sets, performance measures and methodology used.
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4.1. Data sets

The characteristics of the nine data sets used are presented in Table 1. The Australia, German and Japan credit data
sets are publicly available at the UCI Machine Learning repository (http://archive.ics.uci.edu/ml/datasets.html). The
Japan data set is commonly mistaken for the Australia data set, for example, by Tsai and Wu (2008) and Nanni and
Lumini (2009). The Iran data set is an updated version of a data set that appears in Sabzevari et al. (2007). It consists
of corporate client data from a small private bank in Iran. The Poland data set contains bankruptcy information of
Polish companies recorded over a two-year period (Pietruszkiewicz, 2008). The Spain data set compiled by Dionne
et al. (1996) comes from a large Spanish bank and details personal loan applicants. The Thomas data set is a CD ROM
accessory of Thomas et al. (2002) describing applicants for a credit product. Two of the original fourteen features
have been removed due to incomplete records. The Pacific-Asia Knowledge Discovery and Data Mining conference
(PAKDD) data set is a modified version of the PAKDD 2009 competition data set. We removed redundant features
and in order to reduce the size of the data set we limit our selection of instances based on four different phone code
feature values. The University College of San Diego (UCSD) set is also a modified competition data set used in
the 2007 University College of San Diego/Fair Issac Corporation (UCSD/FICO) data mining contest. We randomly
undersampled both classes to reduce the size of the data set and removed redundant identity features.

Table 1: Characteristics of the nine data sets used in the evaluation experiment.

# Numeric # Nominal # Instances # Good # Bad Good:Bad

Australia 6 8 690 307 383 44:56
German 7 13 1000 700 300 70:30

Iran 19 2 413 332 81 80:20
Japan 5 5 125 85 40 68:32

PAKDD 6 10 1764 1404 360 80:20
Poland 30 0 240 128 112 53:47

Spain 1 17 2446 2110 336 86:14
Thomas 11 1 1225 902 323 74:26

UCSD 32 6 5397 2684 2713 50:50

All numerical attributes are normalised to values between 0 and 1 by applying min-max range normalisation. The
sample sizes vary considerably from 125 to 5,397 instances. Although commercially used scorecards are usually
constructed from an initial sample size of between 10,000 and 50,000 (Thomas, 2009), the above data sets are all
easily available in public literature whereas many other data sets used in credit scoring studies are privately held and
cannot be shared amongst researchers. As per Keogh (2007), we believe that the irreproducibility of results caused by,
amongst other things, the refusal to share data or to give parameter settings hinders the research process. To ensure
reproducibility of the contents of this paper, we have provided access to all of the data and developed techniques used
in this article at: http://www.comp.dit.ie/aigroup/jorsCreditScoringCode.zip.

4.2. Evaluation measures

Two evaluation measures are used in this study: the harmonic mean and the H measure. The harmonic mean
measures classification performance at a specific classification threshold, whereas the H measure assesses classifier
performance over a distribution of costs. Differences between the performance of various techniques were analysed
with a Friedman test (Friedman, 1937) with post hoc pairwise comparisons performed with a Holm’s procedure
(Holm, 1979) (all tests testing for significance were at the 5% level). The remainder of this section will describe the
two measures used.

4.2.1. Harmonic mean
Classifier output is typically binary: 1 for accepting (non-defaulter) or 0 for rejecting (defaulter) a credit applicant.

Many ranking classifiers also produce a numeric score which can be binarised by the use of a threshold. The threshold
determines true positive (TP), true negative (TN), false positive (FP) (classified as positive, but actually negative) and
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false negative (FN) (classified as negative, but actually positive) counts for a given test set. We use Sensitivity and
Specificity, as used by Baesens et al. (2003), to measure the classification quality of all classifiers used in our study.
Sensitivity is calculated as: T P

T P+FN and measures the proportion of positive (non-default) examples that are predicted
to be positive. Specificity, calculated as: T N

T N+FP , measures the proportion of negative (default) examples that are
predicted to be negative. As per Hoff et al. (2008), in order to provide a suitable composite measure of sensitivity and
specificity we employ the harmonic mean, which is calculated as shown in Equation 7.

Harmonic Mean =
2 ∗ Sensitivity ∗ Specificity

Sensitivity + Specificity
(7)

Lessmann et al. (2008) opted out of selecting a classification threshold contending that studies comparing the
same classifiers and data sets could easily come to different conclusions as a result of employing different methods for
determining classification thresholds. We address this issue by clearly defining the harmonic mean. It assumes equal
misclassification costs for both false positive and false negative predictions. This may be a problem if we consider
that one type of classification error may be a lot more costly than the other. However, in the absence of available cost
matrices the harmonic mean is the most appropriate performance criteria as a means of assessing the accuracy of a
classifier at a specific threshold.

4.2.2. H measure
The Kolmogorov-Smirnov statistic, the Gini coefficient and the AUC are commonly used in credit scoring to

estimate the performance of classification algorithms in the absence of information on the cost of different error types.
Hand (2009), however, demonstrates how these measures actually use costs derived from the data used and suggests
that their application may produce misleading results about classification performance. For example, the AUC uses
a probability distribution of the likely cost values that depend on the actual score distributions of the classifier. As
a result the probability distribution of the likely cost values will vary from classifier to classifier, as per the score
distribution. This prevents different classifiers from being compared in an equal manner.

As an alternative, Hand proposes the H measure (Hand, 2009) that uses a probability distribution of the likely
cost values that is independent of the data. This Beta distribution (see Hand, 2009) contains two parameters, α and β
that can increase the probability on certain ranges of the cost believed to be more likely. It is recommended that for
situations when nothing is known about the costs then a Beta distribution with α = 2 and β = 2 should be used. In
this study we adopt the recommended α and β settings so as to allow for universally comparable results.

4.3. Methodology

Each data set used was divided into three subsets: (i) the training set (55%); (ii) the validation set (15%), and (iii)
the test set (30%). The training set and the validation set were used to train and tune the classifiers while the test set
was used to verify their performance. This procedure was performed repeatedly over a number of turns. At the end of
each turn the number of instances in the defaulter class of the training set was reduced by 10%. The model was then
retrained and retuned using the training and the validation sets. Figure 1 illustrates this process which we refer to as
the normal process.

We conduct a second set of experiments on the same data sets whereby we oversample the number of instances
from the defaulter class. This process was similar to the normal process except that after reducing the instances in
the defaulter class of the training set by 10% the remaining defaulter class instances were oversampled to produce a
balanced training set. This oversampling occurs in the training data only. The validation set and the test set remain
unchanged. We call this the oversample process, Figure 2 illustrates the procedure.

Finally, a third set of experiments using one-class classifiers is performed. To perform OCC we remove all the
instances of the defaulter class from the training set, so that only instances from the non-defaulter class are used
to build the model. Again, the validation set and testing set remain unchanged. We call this process the one-class
classification process (OCC process).

In all three groups each experiment was conducted 10 times using different randomly selected training, test and
validation set splits and the results reported are averages of these 10 runs.
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Figure 1: Normal process; training set - TRAIN, validation set - VALIDATE, test set - TEST.

Figure 2: Oversample process; training set - TRAIN, validation set - VALIDATE, test set - TEST.

9



4.4. Classifier tuning

The parameter settings for each classifier used are based on best practice. The naı̈ve Bayes, linear Bayes normal
and Fisher’s linear discriminant analysis supervised classifiers require no parameter tuning. For the quadratic Bayes
normal classifier, the regularisation parameters used to obtain the covariance matrix were optimised using the vali-
dation set. For the neural network the number of hidden layers was fixed at 1 and the number of units in the hidden
layer matched the dimensionality of the input space, as per Piramuthu (1999). The k-NN classifier uses k =10 and
Euclidean distance to determine the similarity between instances. For the logistic regression classifier the number of
cross validation iterations used to obtain the optimal feature class weights is optimised between 1 and 20 using the
validation set. The SVM classifier uses a linear kernel and the cost function parameter is fixed at 0.5. The linear Bayes
normal, Fisher’s linear discriminant analysis, neural network, and quadratic Bayes normal supervised classifiers were
implemented using PrTools (Duin et al., 2008). The k-NN, logistic regression, and naı̈ve Bayes supervised classifiers
were implemented in the Weka (version 3.7.1) machine learning framework (Witten and Frank, 2000). The SVM
clasifier was implemented using LibSVM (Chang and Lin, 2001).

The one-class classifiers were implemented using the Matlab DDTools toolbox (Tax, 2009). For the Gaussian one-
class classifier the regularisation added to the estimated covariance matrix is optimised using the validation set. For the
mixture of Gaussians, the number of clusters containing defaulters is optimised between 1 and 3 using the validation
set. For each cluster the full covariance matrix was calculated. The regularisation for the covariance matrices was
optimised using the validation set. For both the k-Means and k-NN classifiers k was set at 10. Both the Parzen and
naı̈ve Parzen used automated parameter settings. For the Auto-encoder the number of hidden layers was fixed at 1
(the default value). The number of hidden units was set to 5 (the default setting). With the SVDD, the parameter
controlling the tightness of the boundary, σ, was optimised between 1 and 12 using the validation set.

The next section will describe the results of this experimental process.

5. Results

Figure 3 illustrates the resulting H measure when eight two-class classifiers using the normal process and eight
one-class classifiers using the OCC process were tested on the Australia data set. The horizontal axis represents the
percentage of defaulters present in the training data set. The two-class classifiers are identifiable by their deteriorating
performance caused by the gradual removal of defaulters from the training data set. As the number of non-defaulters
used to train the one-class classifiers is fixed, the performance of the one-class classifiers remains static throughout.
Due to space restrictions, we only display results for the Australia data set as the pattern shown is similar for all
datasets.

Three separate segments have been highlighted in Figure 3, each representing a level of class imbalance (70:30,
80:20, and 90:10) at which we compare the performance of two-class classifiers. For some data sets (e.g. Spain) the
initial level of imbalance only allows the two-class classifiers to be compared at class imbalances of 80:20 or 90:10.

5.1. Two-class classifier performance with imbalance

The effects of class imbalance using the normal process are clearly evident in Figure 3. Beginning with a class
imbalance of 44:56 (44% non-defaulter, 56% defaulter) the performance of the two-class classifiers gradually deteri-
orates as the class imbalance increases through the removal of instances from the defaulter class in the training set.
The performance of the naı̈ve Bayes and logistic regression classifiers remains relatively robust while, in contrast,
the performance of the Lin SVM, k-NN and NN classifiers deteriorates rather more rapidly. So that more general
comparisons can be made Table 2 shows the H measure for each two-class classifier at imbalance ratios of 70:30,
80:20, and 90:10 for the nine data sets used.

10



Figure 3: Normal process and one-class classification process test set H measure performance. Selected class imbalance ratios are also highlighted
at 70:30, 80:20 and 90:10.
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80:20
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Total

k-NN(10)
64.1

59.9
50.6

17.5
15.5

11.0
29.3

24.7
19.0

36.0
32.8

27.1
28.2

21.7
11.1

12.1
2.0

1.0
4.6

3.5
2.0

8
NB

64.0
62.8

59.2
25.4

25.3
21.0

37.4
35.3

31.0
45.8

45.4
43.6

47.0
44.0

41.6
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6.7
4.9

5.1
4

LinSVM
70.4

70.0
61.4

23.2
14.4

5.8
39.5

38.6
37.0

47.1
46.9

40.8
46.4

43.4
39.2

25.2
0.9

0.7
3.4

1.5
1.1

5
LOG

65.8
63.9

63.5
26.3

26.0
23.0

38.0
38.8

36.5
49.2

47.9
44.8

54.0
52.9

34.2
24.0

5.7
5.2

7.6
7.8

4.9
1

NN
68.4

61.7
50.6

20.7
14.9

9.5
40.9

37.3
35.7

49.5
45.4

33.7
41.2

40.6
22.7

18.2
3.5

2.3
3.9

2.7
2.0

7
LDA

70.9
70.1

69.3
23.7

22.4
18.4

27.2
27.9

22.2
46.4

45.9
43.7

43.4
40.5

31.6
28.5

6.0
5.1

7.9
7.4

5.2
2

LDC
71.6

69.1
66.9

23.4
23.5

19.4
25.8

24.9
22.1

46.2
45.7

43.3
46.7

44.0
32.3

21.8
6.1

5.6
7.3

7.7
4.9

3
QDC

70.7
68.3

64.8
19.9

19.2
16.2

35.1
32.7

29.1
45.0

44.9
43.4

34.4
33.0

30.6
26.0

3.7
4.1

6.4
5.8

4.4
6
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AR
70:30

80:20
90:10

70:30
80:20

90:10
70:30

80:20
90:10

70:30
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
90:10

Total

k-NN(10)
62.3

54.3
48.5

18.1
13.5

13.2
32.4

27.8
24.2

35.0
31.6

26.2
29.7

22.4
12.3

15.9
2.4

1.1
4.7

4.3
1.4

8
NB

61.3
56.3

50.6
25.3

22.1
17.3

38.3
34.7

21.9
45.8

45.0
41.2

45.8
37.8

36.4
29.9

5.6
4.7

7.1
6.6

5.3
5

LinSVM
69.7

62.5
64.0

23.8
21.7

17.8
38.1

39.5
35.9

46.9
46.7

44.8
44.6

41.2
25.5

13.9
5.9

5.2
6.8

7.8
4.7

2
LOG

63.1
60.3

56.7
25.5

24.1
21.3

39.7
38.3

36.7
50.1

48.8
45.1

54.5
51.0

33.8
26.7

5.3
4.8

7.9
7.8

5.0
1

NN
66.9

61.4
59.9

20.3
18.4

14.5
32.2

34.2
32.5

49.5
47.0

43.2
40.5

33.7
27.4

17.0
4.4

4.0
6.5

6.1
3.4

6
LDA

71.0
65.7

67.8
23.6

21.7
18.9

25.3
25.4

19.8
46.2

45.7
43.1

41.3
38.1

32.0
21.3

6.1
5.6

7.7
7.9

5.0
4

LDC
71.0

65.7
67.8

23.6
21.7

18.9
25.6

28.3
22.5

46.2
45.7

43.3
43.9

41.1
32.0

21.3
6.0

5.6
7.6

8.0
5.0

3
QDC

70.3
62.9

66.0
20.7

17.4
16.6

27.1
30.8

29.6
44.9

45.0
43.3

32.5
30.1

25.9
26.3

4.0
3.5

6.6
6.2

4.5
7
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Table 2 confirms that the performance of naı̈ve Bayes, logistic regression, LDA, LDC and possibly QDC remain,
for the most part, robust even as far as a class imbalance of 90:10. In comparison, at 90:10, the performance of the
NN, Lin SVM and k-NN begins to languish. For each data set and class imbalance ratio in Table 2 we compute a
ranking of the different classifiers assigning rank 1 to the classifier yielding the best test set H measure and rank 8 to
the classifier giving the worst test set H measure. The average ranking of each classifier over the three selected class
imbalance ratios is computed. This figure is then averaged over the nine data sets and reported as the average rank.
Based on average rank logistic regression performs best. This should come as no surprise as both (Baesens et al.,
2003) and (Xiao et al., 2006) reported logistic regression as performing strongly when assessed using credit scoring
data.

At 70:30, the differences in performance of logistic regression and the other supervised classifiers are not statis-
tically significant. This is not surprising as previous studies (Baesens et al., 2003) have reported that the majority of
classification techniques yield classification performances that are quite competitive with each other. At 80:20 k-NN,
NN and QDC perform significantly worse than logistic regression. At 90:10, the performance of Lin SVM shows a
marked deterioration compared to QDC, resulting in k-NN, NN and Lin SVM performing significantly worse than
logistic regression. It should be noted that the performance range of the H measure values varies considerably from
data set to data set. Unlike the AUC, AUCH or Gini coefficient, the H measure does depend on the class priors. Hence,
for two datasets the H measure may be different because of two effects. Firstly, the classification performance may be
different, due to the discriminating power of the attributes. Secondly, the class distribution can be different, affecting
the H measure through the class priors. As the datasets display different degrees of skewness, it seems likely that the
difference in H measure values is caused by a mixture of both effects (see Acknowledgments).

To summarise, our findings show that the performance of two-class classifiers deteriorates as class imbalance
increases - highlighting why LDPs are such a problem. Up as far as a class imbalance of 90:10 the rate of deterioration
in the performance of many of the two-class classifiers is gradual with no sudden decreases. Some of the classifiers
(naı̈ve Bayes, logistic regression, LDA, LDC) remain relatively robust to class imbalance.

5.2. The impact of oversampling

The results of the oversampling process are detailed in Table 3. Oversampling improves the performance of the
weaker two-class classifiers - NN, Lin SVM, and k-NN - but fails to raise the performance of the stronger ones - naı̈ve
Bayes, logistic regression, LDA, LDC and QDC. In fact naı̈ve Bayes, QDC and LDA show a decline in performance.
Kolcz et al. (2003) previously reported that at high levels of data duplication the performance of naı̈ve Bayes deterio-
rates. As per the normal process, logistic regression performs best based on the average rank. At 70:30 no statistically
significant difference between the classifiers is detected. At 80:20, k-NN and QDC perform significantly worse than
logistic regression. At 90:10, k-NN and NN perform significantly worse than logistic regression.

Table 4 compares the difference between the normal process and oversample process averaged over the nine data
sets at each of the three separate class imbalance ratios. A positive figure indicates that the oversample process
performed better than the normal process. Lin SVM shows the largest improvement, this is generated in part by
the oversample process performance on the PAKDD and Thomas data sets. We conjecture that the reason for this
large improvement in performance is the increase in the number of support vectors and the fixed cost parameter. Even
though the performance of NN and k-NN improve with oversampling, it is insufficient to make a statistically significant
difference. The best performing two-class classifier, logistic regression, shows a small decline in performance when
the data is duplicated.

To summarise, our findings show that oversampling improves the performance of the two-class classifiers worst
affected by class imbalance. However, the performance of the more robust two-class classifiers displays no overall
benefit from oversampling, suggesting that it is not an appropriate solution to the LDP problem.

5.3. One-class classifiers

Based on Figure 3, the cross-over in performance between the best two-class classifier and best one-class classifier
occurs at a high level of imbalance, typically 99:1 (i.e. 99% non-defaulter, 1% defaulter). We select this class
imbalance ratio in order to best mirror the LDP problem.

Based on the results presented in Sections 5.1 and 5.2 logistic regression using the normal process (LOG Norm)
is the classifier that is taken forward for comparison with a selection of one-class classifiers at a class imbalance ratio
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Table 4: Average difference in test set H measure performance, oversample process versus normal process. A positive figure indicates the over-
sample process outperformed the normal process.

Technique 70:30 80:20 90:10

k-NN(10) 2% 4% 8%
NB -1% -2% -5%

Lin SVM -1% 83% 171%
LOG 0% -2% -2%

NN -6% 16% 38%
LDA -2% -3% -3%
LDC 0% 0% 0%
QDC -5% -4% -1%

of 99:1. The level of class imbalance does not affect the one-class classifiers as they do not employ non-target data
during training.

Table 5 reports the H measure performance for LOG Norm at a class imbalance of 99:1, along with the one-class
classifiers using the OCC process. The average ranking of the classifiers over the nine data sets is also provided which
shows that LOG Norm performs best.

Table 5: Test set H measure performance of logistic regression normal process (LOG Norm), and OCC process at a class imbalance ratio of 99:1.
The best test set H measure per data set is underlined. The average rank (AR) of the classifiers is also provided. H measure figures should be
multiplied by 10−2.

Technique Australia German Iran Japan PAKDD Poland Spain Thomas UCSD AR

LOG Norm 50.1 7.7 30.5 20.5 1.8 26.9 2.3 4.5 40.1 1
Gauss 52.3 7.1 4.6 25.8 1.6 15.7 1.1 2.9 35.3 2

k-Means(10) 30.0 7.0 5.5 28.0 1.3 8.1 1.0 2.2 21.2 5
k-NN(10) 27.2 8.1 3.9 23.3 0.9 4.7 0.8 2.2 23.3 9

MoG 51.9 6.5 2.8 19.7 1.4 7.6 0.9 2.0 40.6 8
NParzen 20.5 5.3 5.8 19.8 0.3 14.9 1.0 0.6 40.8 7

Parzen 34.4 9.7 3.6 25.6 1.2 8.2 0.6 2.0 25.8 6
SVDD 32.5 9.1 5.4 23.1 1.8 14.5 1.0 3.0 22.6 3

AE 51.8 8.3 3.7 31.1 2.2 10.4 0.9 2.8 17.7 4

Even at such a high imbalance of 99:1, LOG Norm performs competitively with the one-class classifiers. The
OCC process outperforms LOG Norm on 5 of the 9 data sets albeit with different OCC classifiers.

To summarise, no evidence exists from our experimentation to show that one-class classification outperforms
two-class classification with differences that are statistically significant. In some ways this is to be expected as the
two-class classifiers use more instances during training. However, the fact that OCC outperforms two-class classifiers
on a majority of our selected data sets indicates that, under an extreme imbalance (a defaulter class rate of 1% or
lower) one should employ OCC as an approach to addressing the LDP problem.

5.4. Optimising the threshold

In practice it is necessary to select a threshold on classification output in order to make actual classifications.
The validation data set is used to identify an optimised threshold for both the one- and two-class classifiers. When a
classification threshold is used we use the harmonic mean to measure performance.

Table 6 compares the performance of the two-class classifiers using a standard threshold of 0.5 and an optimised
threshold on two data sets at a class imbalance of 90:10.

In all but three of the constructed models, the optimised threshold improves the performance of the two-class
classifiers. This supports the recommendation of previous studies (Provost, 2000; Vinciotti and Hand, 2003) which
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Table 6: Test set harmonic mean performance of Default threshold (D) versus Optimised threshold (O) at a class imbalance ratio 90:10 using the
Australia and German data sets. Harmonic mean figures should be multiplied by 10−2.

Technique Austr (D) Austr (O) Ger (D) Ger (O)

k-NN(10) 39.9 80.7 2.0 58.3
NB 83.6 83.5 67.5 67.5

Lin SVM 45.5 78.8 0.0 50.2
LOG 85.2 85.2 23.6 67.2

NN 68.4 79.1 34.9 57.4
LDA 69.2 87.6 0.9 65.5
LDC 86.7 86.9 66.8 67.8
QDC 82.9 84.5 62.7 63.3

cite that adjusting the threshold is the most straight-forward approach to dealing with imbalanced data sets. Based
on the harmonic mean performance measure, we compare the performance of two-class classifiers using the normal
process when an optimised threshold is used. Table 7 displays the results of the two-class classifiers across our three
selected class imbalances of 70:30, 80:20 and 90:10. The harmonic mean performance of the classifiers using an
optimised threshold remains stable across the selected class imbalances. The deterioration in performance arising
from class imbalance is not as immediate as when a default threshold is used.

As per Table 3, the average ranking of the two-class classifiers across the selected class imbalances is also pro-
vided. Logistic regression performs best, as per the previous experiments. The performance of the two-class classifiers
declines as the class imbalance increases. At a class imbalance ratio of 70:30 no statistical significance between the
two-class classifiers is detected. At 80:20, significance is detected, with logistic regression outperforming NN. At
90:10 the performance of k-NN, Lin SVM and NN are inferior to that of logistic regression.

Table 8 displays the results for the oversample process. The average ranking of the oversampled two-class clas-
sifiers reveals that logistic regression performs best again. At a class imbalance of 70:30 no statistically significant
difference is detected between the oversampled classifiers but at the 80:20 and 90:10 class imbalance ratios, k-NN and
QDC perform significantly worse than logistic regression.

The average difference, over the nine data sets, between the normal process and oversample process of the two-
class classifiers is displayed in Table 9. Based on the harmonic mean at the class imbalance ratio of 70:30 oversampling
makes no overall difference to the performance of the two-class classifiers. At higher levels of class imbalance,
the non-parametric classifiers NN and Lin SVM benefit from oversampling, as observed previously. Again, the
performance of naı̈ve Bayes is somewhat impeded by oversampling and the best performance for logistic regression
occurs using the normal process rather than the oversample process.
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Technique
Australia

German
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UCSD
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AR
70:30

80:20
90:10

70:30
80:20

90:10
70:30

80:20
90:10

70:30
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
90:10

Total

k-NN(10)
86.7

85.4
80.7

66.0
63.5

58.3
68.9

66.8
62.4

75.1
73.6

70.5
72.6

71.4
48.5

54.2
52.7

45.6
52.9

51.2
52.9

7
NB

85.5
84.8

83.5
69.3

70.0
67.5

67.3
66.2

65.9
78.7

78.2
77.7

75.3
74.5

67.2
63.1

56.9
55.9

58.5
58.6

64.2
4

LinSVM
77.3

71.7
78.8

68.7
30.4

50.2
67.0

65.1
63.5

79.8
79.7

77.1
77.1

74.5
58.5

50.8
17.7

40.0
40.6

42.8
44.1

8
LOG

86.1
84.9

85.2
69.0

69.2
67.2

68.7
65.3

64.0
80.7

80.1
78.9

80.9
79.6

62.2
61.6

57.3
56.1

58.4
57.7

62.6
1

NN
84.9

84.8
79.1

66.4
60.0

57.4
70.1

65.6
67.6

80.7
79.2

73.7
74.1

75.7
45.8

41.1
52.0

52.5
52.5

49.0
52.8

5
LDA

87.7
86.6

87.6
69.9

68.7
65.5

65.3
60.8

61.4
79.8

79.5
78.1

76.5
74.4

63.2
58.4

59.0
59.0

58.2
58.1

64.4
2

LDC
88.4

87.5
86.9

69.5
68.1

67.8
61.4

64.4
60.2

79.6
79.5

78.2
76.6

73.1
64.2

52.5
59.5

58.5
58.1

58.2
64.3

3
QDC

87.7
86.4

84.5
66.9

66.7
63.3

63.1
62.4

56.7
78.8

78.7
78.2

74.5
68.7

59.2
51.8

56.5
54.7

55.4
54.2

61.8
6
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Australia

German
Poland
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Iran

Japan
PAKDD

Thomas
Spain

AR
70:30

80:20
90:10

70:30
80:20

90:10
70:30

80:20
90:10

70:30
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
80:20

90:10
90:10

Total

k-NN(10)
84.6

81.1
80.2

63.9
61.6

62.1
70.0

63.1
62.4

74.2
72.6

63.9
72.1

66.0
52.0

52.6
53.8

52.4
52.3

55.0
55.0

8
NB

83.9
82.1

80.3
69.7

67.2
64.1

68.7
64.2

57.9
78.8

78.5
77.3

75.2
71.3

59.4
59.4

58.2
57.1

56.1
55.3

63.6
5

LinSVM
79.7

84.1
85.9

70.1
67.0

64.8
66.7

69.0
67.1

79.6
79.3

78.9
74.7

74.0
59.2

46.5
54.2

58.3
58.0

58.0
63.7

4
LOG

83.7
81.7

81.1
70.3

69.5
67.2

67.1
66.0

65.7
81.2

80.5
79.3

80.3
77.9

61.6
58.1

57.9
55.1

58.4
57.5

64.7
1

NN
87.2

83.2
82.2

66.5
65.5

62.6
66.2

65.3
64.9

80.7
80.1

78.4
71.8

72.6
57.3

43.6
56.1

56.0
57.7

57.4
58.6

6
LDA

87.6
85.8

86.4
69.9

67.0
67.1

61.6
63.3

56.8
79.7

79.1
78.3

75.1
72.4

60.8
53.3

57.4
58.1

59.4
58.2

63.5
3

LDC
87.6

85.8
86.4

69.9
67.0

67.1
62.6

65.8
60.0

79.7
79.2

78.6
74.7

73.0
60.8

53.3
57.3

58.1
59.5

58.3
63.5

2
QDC

88.0
83.9

86.4
66.8

65.7
65.2

60.2
63.7

59.4
78.6

78.5
78.0

73.2
69.4

54.7
51.1

57.2
54.8

54.9
54.5

61.5
7
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Table 9: Average difference in test set harmonic mean performance, oversample process versus normal process. Positive figure indicates oversample
process outperformed normal process.

Technique 70:30 80:20 90:10

k-NN(10) -1% -1% 1%
NB 0% -3% -4%

Lin SVM 1% 49% 18%
LOG -1% 0% -1%

NN -1% 6% 6%
LDA -1% -1% -2%
LDC 0% -1% 0%
QDC -1% -1% 1%

We next compare logistic regression using the normal process to a selection of one-class classifiers at an imbalance
of 99:1. Optimised thresholds are calculated for all techniques used. The results of this comparison are displayed in
Table 10 and are, in general, very similar to the results in Section 5.3. Logistic regression remains the best performing
classifier. Further to the results of the H measure, in which logistic regression performs significantly better than k-
NN and MOG, the performance of logistic regression with an optimised classification threshold is significantly better
than a number of one-class classifiers (including SVDD, naı̈ve Parzen, mixture of Gaussians and k-NN). Of the one-
class classifiers, based on average ranking, the Gaussian performs best. Based on the average ranking, it is worth
noting that the harmonic mean performance of the SVDD classifier is somewhat worse compared to its corresponding
H measure performance. This difference highlights the sensitivity of selecting appropriate SVDD parameters at a
specific classification threshold.

Table 10: Test set harmonic mean performance of logistic regression normal process (LOG Norm), and OCC process at a class imbalance ratio of
99:1. The best test set harmonic mean per data set is underlined. The average rank (AR) of the classifiers is also provided. Harmonic mean figures
should be multiplied by 10−2.

Technique Australia German Iran Japan PAKDD Poland Spain Thomas UCSD AR

LOG Norm 79.8 58.5 73.5 53.3 52.4 64.4 57.1 55.4 76.4 1
Gauss 79.6 55.9 51.5 56.8 53.3 57.9 52.3 52.4 73.9 2

k-Means(10) 67.7 56.4 54.8 57.1 52.0 47.2 51.6 49.9 67.0 5
k-NN(10) 66.4 55.6 50.0 58.6 51.1 42.1 51.9 48.5 68.9 6

MoG 69.9 55.2 46.1 49.6 39.7 46.9 45.1 46.6 73.0 9
NParzen 63.5 53.8 46.8 49.8 46.3 56.0 53.3 44.4 77.4 8

Parzen 70.9 58.8 49.2 55.2 50.4 48.6 52.5 48.1 69.7 3
SVDD 68.0 57.5 34.3 56.3 52.2 50.7 50.7 51.5 68.3 6

AE 79.3 55.4 44.3 56.8 55.4 53.9 51.1 53.9 65.5 4

To summarise, selecting an appropriate threshold can substantially improve the performance of a two-class clas-
sifier. Similarly, by optimising the threshold of a one-class classifier a representative proportion of the training data is
accepted as target data. As the harmonic mean measures performance at a specific threshold it is important to select
appropriate classifier parameters.

6. Conclusions

This article presented an extensive evaluation of approaches to solving the low-default portfolio problem when
building credit scoring models. We believe that when both target and non-target data is available, the semi-supervised
OCC techniques should not be expected to outperform the supervised two-class classification techniques. This is
based on the fact that two-class classifiers use more information during training. Our findings also match Lee and Cho
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(2007) who performed a modest comparison of one- and two- class classifiers for response modelling and found that
with a response rate (the minority class) of 1% or lower one should apply OCC to the majority class.

Sampling is one of the simplest and most popular solutions to the class imbalance problem. Although oversam-
pling improves the performance of some two-class classifier, it does not lead to an overall improvement of the best
performing classifiers, i.e. the strong do not become stronger. In fact in our experiment the performance of the best
performing two-class classifier, logistic regression, registered a small decline when oversampling was applied which
matches the results of Bellotti and Crook (2009). Based on these findings, oversampling should not be employed with
logistic regression as a suitable technique to address the LDP problem.

Adjusting the threshold yields a large improvement in performance. It is therefore advisable to optimise the clas-
sification threshold before pursuing some of the more sophisticated methods associated with data sampling and cost
sensitive learning. Although many studies discuss the importance of classification threshold selection (see Baesens
et al., 2003), very few actually conduct any sort of assessment of the predictive performance of classifiers using an
optimised classification threshold. Many studies sidestep the problem of choosing a specific classification threshold
by using the AUC. However, as demonstrated by Hand (2009), it is “inappropriate” to compare classifiers using the
AUC.

Using OCC, however, can allow financial institutions to reduce their dependency on expert human judgement
during the construction of a LDP model. It also reduces the need to pool external data, combine different loan segments
or expand the definition of a defaulter in order to boost the number of non-credit worthy applicants. Even though it
cannot be unanimously proven that OCC is better than two-class classification at very low levels of defaulters, the
performance of OCC merits consideration as a solution to the LDP problem.

It is important to note, furthermore, that the two-class classification methods are based on modelling both the
distribution of past loan repayers and past defaulters. Whereas one-class classification methods are modelled solely
on the distribution of past loan repayers. In situations of population drift, where the behaviour of defaulters changes
over time due to unrecorded macro-economic factors or, indeed, personal reasons, then the performance of the two-
class classifiers will deteriorate. This has been proven by Juszczak et al. (2008) in the field of fraud detection whose
findings indicate that supervised classifiers, to some degree, overfit the current training data set such that when drift is
introduced to the class distributions, the supervised classifiers deteriorate faster than the semi-supervised classifiers.
This has serious implications for areas such as microcredit. Consider payday loans which are typically small, short
duration (less than one month) with extremely high interest rates. It is necessary to construct scorecards that can
respond in a timely fashion to shifts in economic and market behaviour, as well as to sudden changes in the borrower’s
circumstances and behaviour (Thomas, 2009). Clearly one-class classification is suited to such tasks.

Future work should concentrate on situations for which OCC is well suited. OCC is best applied in situations
with a heterogeneous non-target class where it can be difficult to model or obtain representative training examples. In
retail loans the reasons for defaulting are typically unvarying across the portfolios (e.g. loss of income, loss of job,
marriage breakdown, poor health). However for models which include economic and market conditions and can thus
experience differing scenarios of an economic cycle, two-class classifiers may not be able to model all heterogeneous
loan defaulters.

Future work could also look at more sophisticated OCC techniques that can utilise small amounts of non-target
data. A more sophisticated form of oversampling, such as SMOTE (Chawla et al., 2002), could also be examined.
Another feature of oversampling to consider is the class distribution ratio. Khoshgoftaar et al. (2007) reported that an
even distribution is not always optimal when dealing with data rarity. To ensure a more representative minority class,
clusters could be identified in the minority class from which to sample the data.

Finally, the fact that OCC techniques did not yield significantly better performance should not exclude it as an ap-
proach to the LDP problem. Thomas (2009) highlights the idea that a new methodology, using the same characteristics
of the data as used by existing methods, producing a superior performance is questioned by many experts (see Hand,
2006). Indeed, Overstreet et al. (1992) observe that based on the flat maximum effect, the predictive performance of
supposedly different classification techniques is almost indistinguishable as it is likely that most classification tech-
niques will generate a model close to the best discrimination possible. Many other issues need to be considered when
comparing the performance of a model, some of which have been outlined above and will be addressed in future work.
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