
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Masters Science

2006-01-01

Point of Care Healthcare Quality Control for Patients Using Mobile Point of Care Healthcare Quality Control for Patients Using Mobile

Devices Devices

Owen Lynch
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scienmas

 Part of the Environmental Health and Protection Commons

Recommended Citation Recommended Citation
Lynch, O. (2006). Point of care healthcare qualty control for patients using mobile devices. Masters
dissertation. Technological University Dublin. doi:10.21427/D7SC85

This Theses, Masters is brought to you for free and open access by the Science at ARROW@TU Dublin. It has been
accepted for inclusion in Masters by an authorized administrator of ARROW@TU Dublin. For more information,
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scienmas
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/scienmas?utm_source=arrow.tudublin.ie%2Fscienmas%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/172?utm_source=arrow.tudublin.ie%2Fscienmas%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Point of Care Healthcare Quality Control

For Patients Using Mobile Devices

Owen Lynch BE

School of Control Systems and Electrical Engineering,

Dublin Institute of Technology

A thesis presented to Dublin Institute of Technology,

Faculty of Engineering

For the degree of

Master of Philosophy (MPhil)

January 2006

Research Supervisors:

Mr. John McGrory
Dr. Eugene Coyle
Dr. Mike Murphy

Abstract

i

Abstract

The advances made in the domain of mobile telecommunications over the last decade

offer great potential for developments in many areas. One such area that can benefit

from mobile communications is telemedicine, which is the provision of medical

assistance, in one form or another, to patients who are geographically separated from

the healthcare provider. When a person is ill, individual attention from medical

professionals is of the utmost importance until they have returned to full health.

However, people who suffer with long term and chronic illnesses may need life long

care and often must manage their condition at home. Many chronically ill patients

manage their condition themselves and perform ‘self-testing’ with Point of Care Test

(POCT) equipment as part of this condition management. When a specimen sample is

analysed at home with a POCT device, a result is available to the patient almost

immediately, but the result cannot be proven to be plausible for the patient unless it is

validated by the hospital systems. In addition to this the hospital is unaware of the

patients condition and progress between hospital visits. This research addresses some of

the issues and problems that face patients who use POCT equipment to ‘self-manage’

their condition at home. Using mobile phone technologies and the Java platform, three

alternative methods for providing patients with a service of POCT result validation and

storage were designed. The implementation and test of these systems, proves that a

mobile phone solution to the issues associated with patient self-testing is possible and

can greatly contribute to improving the quality of patient care.

Declaration

ii

Declaration

I certify that this thesis which I now submit for examination for the award of
MPhil, is entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the
text of my work.

This thesis was prepared according to the regulations for postgraduate study by
research of the Dublin Institute of Technology and has not been submitted in
whole or in part for an award in any other Institute or University.

The work reported on in this thesis conforms to the principles and requirements of
the Institute's guidelines for ethics in research.

The Institute has permission to keep, to lend or to copy this thesis in whole or in
part, on condition that any such use of the material of the thesis be duly
acknowledged.

Signature: __________________________________
 Owen Lynch

Date: 9th January 2006

Acknowledgements

iii

Acknowledgements

I would like to thank the following people without whose help and support I would have

had great difficulty completing this research. Mr. John McGrory, my project supervisor,

for his guidance and assistance over the course of the project and Dr. Eugene Coyle and

Dr. Mike Murphy for their helpful criticism during the writing of this thesis. Maggie and

my family for their constant support, advice and understanding. Also, I would like to

thank my colleagues in the research department namely Will, Dan, Eileen, Jim, Mark,

Niall, Pauline and Sharon for always being happy to discuss a problem even if they didn’t

know the solution.

Table of Contents

iv

Table of Contents

ABSTRACT ...I

DECLARATION ... II

ACKNOWLEDGEMENTS..III
TABLE OF CONTENTS.. IV

LIST OF FIGURES...VII
LIST OF TABLES... VIII

1 INTRODUCTION... 1
1.1 BACKGROUND.. 1
1.2 PROJECT AIM ... 2
1.3 THESIS OUTLINE .. 3

2 OVERVIEW OF TELEMEDICINE AND MEDICAL INFORMATICS 4
2.1 TELEMEDICINE... 4
2.2 HOSPITAL AND LABORATORY COMMUNICATION ... 5

2.2.1 Hospital Information Systems .. 6
2.2.2 Laboratory Information Systems.. 7

2.2.2.1 ASTM E1934 .. 7
2.2.2.2 Integrated Networked Clinical Analyser (INCA) [16] 8

2.3 ELECTRONIC PATIENT RECORD (EPR) .. 8
2.4 HEALTH LEVEL SEVEN (HL7)... 10
2.5 CLINICAL ANALYSIS AND VALIDATION ... 12

2.5.1 Sample Acquisition and Analysis ... 12
2.5.2 Quality Control and Result Validation... 12

2.6 POINT OF CARE TESTING .. 12
2.6.1 Introduction... 12
2.6.2 Patient Self-Testing and Home-Based POCT 12

2.7 POINT OF CARE AND HOME TESTING ISSUES ... 12
2.8 POINT OF CARE TESTING EQUIPMENT ... 12

2.8.1 Handheld Blood Analysers .. 12
2.8.1.1 Glucose Meters (Glucometers)... 12
2.8.1.2 Prothrombin Time (INR) meters .. 12

2.9 SUMMARY AND CONCLUSION ... 12

3 TECHNOLOGY OVERVIEW... 12
3.1 MOBILE PHONE CAPABILITIES .. 12

3.1.1 Mobile Handsets.. 12
3.1.2 Mobile Networks.. 12

3.2 MOBILE PHONE TECHNOLOGIES CONSIDERED ... 12
3.2.1 Short Messaging Service.. 12
3.2.2 Wireless Application Protocol ... 12

3.3 JAVA TECHNOLOGIES ... 12
3.4 JAVA 2 MICRO EDITION.. 12

3.4.1 Introduction... 12
3.4.2 Connected Limited Device Configuration (CLDC)............................... 12

Table of Contents

v

3.4.3 The K Virtual Machine (KVM)... 12
3.4.4 Mobile Information Device Profile (MIDP) ... 12
3.4.5 Additional API’s and Packages.. 12

3.5 XML ... 12
3.6 SERVER SIDE TOOLS .. 12

3.6.1 Common Object Request Broker Architecture (CORBA) [62] 12
3.6.2 Java Servlets.. 12
3.6.3 Java Web Services ... 12
3.6.4 J2ME Web Services APIs (JSR 172)... 12
3.6.5 Apache Tomcat Web Server ... 12
3.6.6 Relational Database Management System.. 12

3.7 SUMMARY AND CONCLUSION ... 12

4 SYSTEM DESIGN.. 12
4.1 OVERALL REQUIREMENTS .. 12

4.1.1 Overview ... 12
4.2 OVERVIEW OF ALTERNATIVE DESIGNS ... 12

4.2.1 Version One... 12
4.2.2 Version Two .. 12
4.2.3 Version Three .. 12

4.3 RESULT DATA FORMAT.. 12
4.4 WEB SERVER DATABASE.. 12
4.5 DESIGN OF VERSION ONE ... 12

4.5.1 Client MIDlet .. 12
4.5.2 Server .. 12

4.6 DESIGN OF VERSION TWO... 12
4.6.1 Client Application.. 12
4.6.2 Server .. 12

4.7 DESIGN OF VERSION THREE.. 12
4.7.1 Web Service... 12
4.7.2 Client Application.. 12

4.8 SUMMARY AND CONCLUSION ... 12

5 IMPLEMENTATION AND TEST .. 12
5.1 INTRODUCTION .. 12
5.2 SERVER DATABASE .. 12
5.3 VERSION ONE .. 12

5.3.1 Example Scenarios .. 12
5.3.1.1 Add and Validate a Result.. 12
5.3.1.2 View and Upload Results... 12
5.3.1.3 Delete Records .. 12
5.3.1.4 Update Program... 12

5.4 VERSION TWO.. 12
5.4.1 Example Scenarios .. 12

5.4.1.1 Add and Validate Result .. 12
5.5 VERSION THREE... 12

5.5.1 Example Scenarios .. 12
5.5.1.1 Add and Validate Result .. 12

5.6 TESTING THE APPLICATIONS... 12
5.6.1 Phone Emulator Tests.. 12

Table of Contents

vi

5.6.2 Phone Tests ... 12
5.7 SUMMARY AND CONCLUSION ... 12

6 CONCLUSIONS AND SUGGESTED FUTURE WORK............................... 12
6.1 CONCLUSIONS OF RESEARCH .. 12
6.2 SUGGESTED IMPROVEMENTS AND FUTURE WORK ... 12

6.2.1 Device Connectivity ... 12
6.2.2 Security and Encryption... 12
6.2.3 Display Size... 12
6.2.4 Alternative Client Types... 12

APPENDIX A: NOMENCLATURE.. 12

APPENDIX B: POCT EQUIPMENT .. 12
APPENDIX C: INCA ... 12

BACKGROUND TO INCA .. 12
DATABASE .. 12
THE IMPLEMENTED INCA SYSTEM... 12

APPENDIX D: BLOOD TEST REFERENCE RANGES....................................... 12

APPENDIX E: PUBLICATIONS .. 12
REFERENCES ... 12

List of Figures

vii

List of Figures

Figure 1: Departments and communication structure in hospitals [11] (modified) 6
Figure 2: HL7 2.x message structure [6] ... 11
Figure 3: Overview of tasks performed by an LIS during a test request cycle [13] 12
Figure 4: Warfarin risks [37]... 12
Figure 5: Java 2 Platform [53](modified) .. 12
Figure 6: Software layers of a J2ME device [56]... 12
Figure 7: Overview of J2ME components [58] (modified) .. 12
Figure 8: J2ME web services architecture [65] (modified) .. 12
Figure 9: General overview of required system... 12
Figure 10: E-R Diagram for web server database .. 12
Figure 11: Overview of version one .. 12
Figure 12: Version 1 MIDlet Class diagram.. 12
Figure 13: Class diagram for the web server ... 12
Figure 14: Overview of version two.. 12
Figure 15: Class diagram for version 2 client .. 12
Figure 16: Class diagram for version 2 server application ... 12
Figure 17: Overview of version 3 system.. 12
Figure 18: Web service interface and implementation... 12
Figure 19: Class diagram for version 3 client application .. 12
Figure 20: Web server database .. 12
Figure 21: Sequence Diagram for Adding Result .. 12
Figure 22: Screen Flow for Adding Result .. 12
Figure 23: View and upload results sequence diagram .. 12
Figure 24: Result Servlet sequence diagram for version one.. 12
Figure 25: Screen flow diagram for viewing stored results and sending to hospital 12
Figure 26: Delete records screen flow ... 12
Figure 27: Delete records sequence diagram ... 12
Figure 28: Screen flow for update... 12
Figure 29: Sequence diagram for MIDlet updating reference ranges 12
Figure 30: Sequence diagram for update Servlet ... 12
Figure 31: Sequence diagram for adding a new result ... 12
Figure 32: Java Servlet sequence diagram for version 2 .. 12
Figure 33: Screen flow for Add/Upload Result ... 12
Figure 34: Validation service sequence diagram ... 12
Figure 35: Sequence diagram for version 3 client application...................................... 12
Figure 36: Version 3 screen flow .. 12
Figure 37: Validation service implementation... 12
Figure 38: E-R diagram for INCA database .. 12
Figure 39: Add request sequence diagram... 12
Figure 40: Internal INCA sequence diagram ... 12
Figure 41: Validation sequence diagram on INCA system .. 12
Figure 42: Sequence diagram for retrieving requested results...................................... 12

List of Tables

viii

List of Tables

Table 1: Validation Checks [23] (Modified).. 12
Table 2: Computing device sales for 2003 [42] ... 12
Table 3: Three versions of the remote validation system ... 12
Table 4: Attributes of result data... 12
Table 5: Version 1 MIDlet Classes ... 12
Table 6: Version 1 servlet Classes... 12
Table 7: Version 2 MIDlet Classes ... 12
Table 8: Overview of version 2 Servlet classes ... 12
Table 9: Network connection times with emulators... 12
Table 10: Network connection times on a real system... 12
Table 11: POCT Devices .. 12
Table 12: Blood test reference ranges ... 12

Chapter 1: Introduction

1

1 Introduction

This chapter presents the aims and scope of this MPhil research project. The problems

addressed by the research will be explained to highlight its importance. A detailed

discussion of the research area and technologies will be given in subsequent chapters.

1.1 Background

This research is in the area of telemedicine. Telemedicine uses telecommunications

technology to connect patients with healthcare providers at a distance. For example, a

nurse can transmit digital images of a patient's condition to a doctor, house alarms can

alert medical services to an elderly patient's fall and home care systems can monitor the

vital signs of the housebound. The older share of the population, with whom chronic

illnesses are associated, is set to double by 2030 [1], which heightens the need for

developments and innovation in telemedicine.

Patients with many different conditions, especially chronic illnesses like diabetes, are

often required to self-manage their condition and perform Point of Care Testing (POCT)

at home. Patient self-testing and POCT in the home is a rapidly growing area in the

healthcare arena. It gives patients an opportunity to take control of their conditions and

can reduce their length of stay in hospital. The results of these tests can be used to help

determine medication dosage or simply to monitor their condition. However, this patient

‘self-monitoring’ raises quality control issues that would not arise in a clinical setting,

since the sample acquisition and testing procedures are not overseen by professional

hospital staff. In hospital the nurses and laboratory staff must be trained and certified in

the testing procedure, the instrumentation used to perform the test, and quality control

practices. There is no such requirement for consumers who purchase home tests, even

the ones prescribed or recommended by their doctors.

Another key issue, the main focus of this research, is that results from such tests are not

clinically validated to ensure that they are plausible for that patient at the time of testing.

In hospital, tests taken by clinicians are validated by dedicated computer validation

Chapter 1: Introduction

2

systems as part of the quality control process, before a diagnosis is made. Thus, for

people testing at home with POCT devices, there is a need to implement a system of

result validation, either locally or by the hospital validation system itself.

Communications and mobile phone technologies are rapidly developing. Most mobile

phones available today are more than simple voice-centric devices. They are complex

data communication terminals and are continually evolving to an “always on” form of

network computer, capable of availing of Internet services continuously. Java 2 Micro

Edition (J2ME) comprises a set of technologies and specifications developed for small

devices with limited memory and computation possibilities such as mobile phones. It

encompasses a portable, platform independent language so applications developed with

J2ME can run on any mobile device that supports Java.

1.2 Project Aim

This research takes advantage of the ubiquity of mobile phones and how they may be

used to link patients, who manage their condition in the home, with the hospital

information system (HIS) to upload and validate their results. The aim of this research is

to investigate the use of mobile communications to allow patients using POCT

equipment to link into the hospital sample validation systems so that their sample can be

independently validated. In addition to validating the result, the result can be stored in

the patient’s electronic patient record (EPR). It is proposed that a generic Java

application will be developed to run on a mobile phone, which will take the result value

from the patient’s POCT device, transmit it to the hospital for validation and storage

and then return instructions or advice to the patient based on the outcome of the

validation process.

Three different versions of this system have been designed and a proof of concept of

each of these versions was implemented and tested. Each version consists of J2ME

client applications, and more powerful server programs for processing the data and

storing it in databases (to simulate the HIS and electronic patient record) [2]. The

system proposed could help patients better manage their condition, ensure a higher level

of quality control in the results they obtain and keep the hospital up to date with their

medical status.

Chapter 1: Introduction

3

1.3 Thesis Outline

Following upon this introductory chapter, Chapter 2 will embrace the relevant medical

topics that this research is concerned with. This includes telemedicine, hospital

protocols and information systems, laboratory testing, point of care testing and patient

self-testing.

Chapter 3 discusses the technical aspects of the thesis. This work is primarily concerned

with mobile phone client applications, thus mobile phone capabilities and wireless

networks are investigated. It also discusses client and server technologies relevant to the

research and that were used in developing the proof of concept system.

In Chapter 4, the proposed solution to the problems that this research addresses is

introduced. The systems to enable patients to transmit test result data to the hospital are

discussed and the design of these systems specified.

The proof of concept applications for the three versions of the system were

implemented and tested. A full discussion of all the client and server programs

implemented is discussed in Chapter 5.

Chapter 6 concludes the research and comments on the outcomes of developed

implementations. Some suggestion and ideas for improving the system in any future

work are proposed.

Additional information including a nomenclature and publications are provided in the

appendices. A CD containing all of the source code for the applications described is also

included with this thesis.

Chapter 2: Overview of Telemedicine and Medical Informatics

4

2 Overview of Telemedicine and Medical Informatics

The purpose of this chapter is to give the reader some background information on

telemedicine, medical informatics, and patient self-testing, three of the main areas that

this research is concerned with. After an introduction to telemedicine various relevant

sections of medical informatics will be discussed. This includes hospital data

communication protocols, electronic patient records and clinical laboratory methods for

testing and validating results. Point of care testing and patient self-testing will be

examined as will the problems associated with home-based self-testing. Finally some

point of care equipment will be explained together with information on the medical

conditions that they are used to manage.

2.1 Telemedicine

The remote delivery of health care to patients is known by many terms including

telecare, telehealth, e-health and telemedicine and these terms are often used

interchangeably [3]. For simplicity this thesis will use telemedicine. Telemedicine is the

use of information and communication technologies (ICT) to provide clinical care to

individuals at a distance and the transmission of information to provide that care [4].

Telemedicine is mainly used to provide patients who are living in rural and remote

locations with quality and specialty care. It is a broad field and can range from a simple

case of two physicians discussing a patient over the phone to the high speed and high

bandwidth transmission of commands to a surgical robot in another country [5]. Other

applications of telemedicine include the use of video-conferencing to provide tele-

consultation to a patient in a remote location and the exchange of data between health

centres [6]. This data could be high-resolution images for a dermatologist, ECGs or

elements of a patient record.

The upsurge in interest and use of telemedicine recently is mainly due to the advances

that have been made in ICT since the end of the 20th century, but telemedicine has been

around for thirty or so years and was first used by NASA during their space program in

the 1960’s to monitor the physiological parameters of astronauts [7]. Although the

efficacy of Telemedicine is still an area of much research, it has been shown that home-

Chapter 2: Overview of Telemedicine and Medical Informatics

5

based telemedicine in the area of chronic disease management is the most efficient

application [8] [9].

Telemedicine is also concerned with at-home patients who self-manage their conditions

[10]. These are generally patients with chronic diseases such as diabetes, cardiovascular

diseases, chronic respiratory diseases such as asthma, and some cancers as well as post-

surgery patients. The benefits of moving the care of a patient from formal health care

systems such as hospitals and clinics to the home are clear for both the patient and the

health care system. It allows patients to become more active in their own care, can

reduce the length of stay in hospital and gives patients more independence as they do

not have to make as many regular trips to hospital. Patient self-testing is the most

patient-friendly method for long-term condition management and can provide outcomes

that are as good as traditional methods [9]. It is this type of patient, who self-manage

their conditions with POCT, that this research is primarily focused on. Patient self-

testing is discussed further in section 2.6.2.

2.2 Hospital and Laboratory Communication

Data in hospitals are handled by large information systems. These systems can be

broken down to enterprise and department level. They are responsible for

communication of data within the hospital and for storing information. The Hospital

Information System (HIS) is responsible for all data handling at the enterprise level.

Specific healthcare domains within the hospital, such as the laboratory, pharmacy or

radiology department have their own sub-systems. These departmental systems are

dedicated to the internal processes of the department and they also deal with device

data. For instance, control of analytical equipment and collection of result data in the

laboratory or collection and storage of images such as x-rays in the radiology

department.

Chapter 2: Overview of Telemedicine and Medical Informatics

6

Figure 1: Departments and communication structure in hospitals [11] (modified)

In addition to this internal data processing, these systems also communicate with the

hospital information system. For example, obtaining demographic data of a patient or

storing results in a patient record [11]. Figure 1 depicts a simplified block diagram of

the different enterprise and department systems in a hospital and how they communicate

with each other. To enable these systems to communicate with each other, agreed

messaging standards must be used. Health Level Seven (HL7) is the messaging standard

most widely used for HIS communication and interfacing between hospitals, insurance

companies and other health organisations [12]. HL7 is discussed further in section 2.4.

As this research is concerned with laboratory systems and analyser results only, the

Laboratory Information Systems (LIS) on the departmental level will be discussed

further.

2.2.1 Hospital Information Systems

Data communication and processing at the enterprise level in a hospital are handled by

the Hospital Information System (HIS). A hospital information systems purpose is to

collect, store, process, retrieve and communicate patient and administrative information.

So a comprehensive HIS is responsible not only for clinical information but for hospital

admissions and discharge, billing and finance. In addition, the HIS is used to support

clinical research, through use of the HIS database, and teaching. The users of the HIS

are wide ranging and could be a nurse entering or retrieving patient data or the head of a

Chapter 2: Overview of Telemedicine and Medical Informatics

7

clinical department creating a service plan [13]. According to Van Bemmel et. al. [13] a

HIS should at least contain the following four elements:

• A facility for the storage of data such as a database,

• facilities for data entry, retrieval and update from the database (i.e. a user

interface application),

• data communication facilities (e.g. a Local Area Network), and

• facilities to allow users to use the system (i.e. computers or workstations)

2.2.2 Laboratory Information Systems

Clinical chemistry and Hematology departments in hospitals provide a very useful

service to doctors and provide them with meaningful information on the chemical and

cellular compositions of body fluids. With this information, doctors can confirm a

suspected diagnosis, monitor effects of treatment and exclude or screen for the presence

of disease. Modern laboratories consist of automated systems and analytical

instruments. Laboratory Information Systems (LIS) are responsible for handling clinical

laboratory data and processes. Some of the key tasks carried out by the LIS are test

request processing, test ordering, sample labelling, specimen analysis, result validation,

report generation and documentation. The LIS can interface with the HIS in order to

obtain demographic data from the electronic patient record and to update information

and test results in the record.

2.2.2.1 ASTM E1934

The American Society for Testing and Materials (ASTM) develops standards in a

diverse range of industries [14]. ASTM E1394 is a standard that is very widely used in

hospital laboratories. It specifies the message structure for communication between

analytical instruments (AI) and a LIS and it allows almost any AI interface with almost

any LIS [15]. Many analytical instruments today offer data-exchange facilities that use

the ASTM E1936 standard. A message conforming to the standard consists of the

following record types: Message Header, Patient Identifying Record, Test Order

Request, Result, Comment, Request Information, Scientific Record and Manufacturer

Information [12].

Chapter 2: Overview of Telemedicine and Medical Informatics

8

2.2.2.2 Integrated Networked Clinical Analyser (INCA) [16]

INCA is the work of a small consortium between Tallaght Hospital (AMNCH), the

Dublin Institute of Technology and Trinity College Dublin. It defines a standard for the

networking of clinical analyser instruments in hospitals and an interface between them

and the Laboratory Information System. The INCA system was developed using

Common Object Request Broker Architecture (CORBA) middleware, which is

discussed in more detail in Chapter 3. This means that it is platform independent and it

is designed to easily implement and merge with existing HIS’s and LIS’s. INCA

provides a system to allow clinicians in a hospital request tests on a specimen sample of

a patient from anywhere within the hospital. These requests are put in a work-list in the

INCA system and the relevant analyser is used to perform the requested tests. Results

are produced which undergo quality and validation checks. Finally they are placed into

the patient’s record and can be viewed by the doctor who ordered the tests. This is a

typical laboratory process and is discussed in more detail in section 2.5. A Java version

of the INCA system was implemented for this research and is described in Appendix C.

2.3 Electronic Patient Record (EPR)

Most hospitals in Ireland file patient data in a paper-based patient record. This is the

traditional method for storing patient information and has been in use for many years.

The paper-based record contains clinical notes relating to the patient that are often

supplemented with data from various hospital departments such as laboratory test

results, electrocardiograms and x-rays. The need to migrate from paper-based medical

records to an electronic version has been recognised for many years now and as

technology advances the drive is stronger. The many disadvantages of the paper-based

record are another reason to move to an electronic form. These include [13]:

• A paper-based record can be lost, stolen or go missing.

• The text is hand written in the record and hence may be illegible or incomplete.

This could give rise to misinterpretation of the data by another clinician.

• Paper-based records can only be in one place at a time.

• Paper-based records are difficult to back up and hence remain susceptible to

physical damage due to fire or flooding and ageing.

Chapter 2: Overview of Telemedicine and Medical Informatics

9

• Searching for information within a record and across all records is a manual task

and is very time consuming.

• Paper-based records can only contribute passively to the treatment of patients.

Doctors do not have state-of-the-art knowledge at their fingertips and the paper

record cannot draw a doctor’s attention to abnormal laboratory results or contra-

indications to drugs.

An electronic patient record (EPR) provides a secure, well-structured and formal

method for storing patient information. As computers play a larger role in all aspects of

hospital systems it makes more sense to use computer based medical records. For

example, medical images from x-rays and MRI scans are now stored digitally. An EPR

allows many different data types to be stored including text, audio, video and digital

images and this data can be viewed by any doctor or clinician within the hospital [6].

Ideally, an EPR will store all clinical information about the patient from the “cradle to

the grave” and will be common to both their General Practitioners (GPs) and hospitals.

Such a record is being implemented by the National Health Service (NHS) in the UK,

where a centralised “NHS care record” is being used. This is replacing the current

system which consists of paper records and electronic systems in surgeries that cannot

communicate with each other [17].

There are many advantages to using an electronic form of the patient record. An

enormous quantity of data can be stored in an EPR, as storage media technology

advances it is becoming cheaper to store more data. Hard disk drives today are capable

of storing hundreds of Gigabytes. Information is entered to the record via forms, which

ensure that all relevant data are entered in a legible and understandable manner and

stored in the right location. The data are stored in a database so that complex queries

specific to only certain attributes can be made and results retrieved easily and instantly.

Databases allow multiple individuals to access the records simultaneously and as they

are networked the users can be separated geographically so they are available to those

who have access permission. The ability to easily search through all records can also

help a researcher to identify trends (trending) and can help a hospital in their healthcare

planning. An electronic record can be made secure and access to it can be restricted to

prevent unauthorised users accessing them. The data can be encrypted so they are

Chapter 2: Overview of Telemedicine and Medical Informatics

10

unintelligible to anyone who does manage to hack into the system. As well as being

able to store all of the static clinical data of a patient, an electronic record can be linked

to intelligent systems to allow it play an active part in patient care. This will enable it to

provide clinical data, suggest certain tests or procedures be carried out and

automatically prescribe drugs for the patient. Alerts and reminders can be scheduled to

help remind a doctor to carry out an action such as order certain tests on the patient.

The introduction of electronic records raises some ethical issues concerning patient

rights and confidentiality. These include issues such as whether the patient should have

the right to only allow selective access to their record and be able to conceal certain

information from certain doctors as well as to be able to restrict casual distribution of

the information to other healthcare providers [18]. These are important issues and must

be considered when a health service introduces an electronic record system. However,

they do not take away from the advantages discussed earlier and using an electronic

patient record ultimately helps to provide greater care and benefits the patient greatly.

The applications that are to be discussed in this thesis require some form of an

electronic patient record to be in place as the automated validation systems require

patient specific data and the digital information from the patient must be stored.

Hospital validation systems will be discussed later in the chapter.

2.4 Health Level Seven (HL7)

Health Level Seven is an American National Standards Institute (ANSI) accredited

standard for hospital data communication. It is the international standard for all

electronic data exchange in healthcare and can define, for example, the exchange of a

message between the EPR and the laboratory system to order a test for a patient. It

covers a wide range of medical messaging including patient admission / discharge,

orders, test results, and billing [6]. It provides interoperability between all departmental

systems in the hospital and is also commonly used for interfacing between hospitals,

insurance companies and other health organisations. The term ‘Level 7’ refers to the

application level in the OSI communications model. The application level defines the

data to be exchanged and the timing of the exchange as well as supporting functions

such as security checks and data exchange structuring [19].

Chapter 2: Overview of Telemedicine and Medical Informatics

11

Figure 2: HL7 2.x message structure [6]

The current version of the

messaging standard is HL7

Version 3.0. The older 2.x series

of standards have continually

evolved over the years and

collectively represent the most

widely implemented standard for

healthcare information in the

world [19].

The 2.x messages consist of a group of segments in a sequence, where a segment is a

logical group of data fields, which can be broken down further if necessary into

components [20]. Each segment contains information of a specific type and there are

many segment types defined in the HL7 standard. For example, MSH is the code for a

HL7 message header, which contains fields such as a time-stamp and sender

information. PID is a patient identification segment, which includes patient

demographic information. Another segment relevant to this thesis is the OBX segment.

This is an observation / result segment and contains information such as the result type,

result ID, units and date/time of result. HL7 version 2.x message structure is shown in

Figure 2. Each data field is separated by a ‘|’ character. An example of what the PID

segment of a HL7 2.x message is shown in Listing 1.

PID|||A123456789||Smith^John||19551212|M|||24SomeStreet
^^Dublin25^IRELAND||(01)1234567|

Listing 1: HL7 2.x message

HL7 version 3 messages are written as XML (eXtensible Markup Language) format

documents, which is the universal format for structured documents and data exchange

on the Internet. XML is discussed in more detail in Chapter 3.

Chapter 2: Overview of Telemedicine and Medical Informatics

12

Each message is a string of text with

information enclosed by tags, which are

derived from the HL7 Reference

Information Model (RIM). The RIM

defines the grammar of HL7 messages and

the basic building blocks of the language.

An example of how the same PID segment

shown above may look in HL7 version 3

format is shown in Listing 2. An XML

HL7 document is a hierarchical structure

with the segments, fields and components

represented as XML elements. The

segment PID is a second level element and

the Field elements are third level elements. <PID.11> is the address Field, which has

components <XAD>, the extended address data type.

HL7 version 3 was chosen as the messaging format for data exchange in this research as

it is a well-defined standard that is used in hospitals worldwide. And, as will be

discussed in Chapter 3, XML is used widely in the web-services community for

exchanging data.

2.5 Clinical Analysis and Validation

Although this research is concerned primarily with test results produced in the home, a

lot of research was carried out on the hospital and laboratory testing procedures as the

system proposed interfaces with the laboratory test result validation system. Thus a

description of the clinical laboratory testing process and result validation will be given.

This will also help to highlight the difference between hospital testing and home-based

testing and the problems associated with home-based testing. Section 2.2.2 has already

given a brief introduction to the process of testing and validation in a laboratory and

there now follows a more in depth discussion of the process.

<?xml version = “1.0”?>
 <PID>
 <PID.3>
 <CX.1>A123456789</CX.1>
 </PID.3>
 <PID.5>
 <XPN.1>Smith</XPN.1>
 <XPN.2>John</XPN.2>
 </PID.5>
 <PID.7>19551212</PID.7>
 <PID.8>M</PID.8>
 <PID.11>
 <XAD.1>24 Some Street</XAD.1>
 <XAD.3>Dublin 25</XAD.3>
 <XAD.4>IRELAND</XAD.4>
 </PID.11>
 <PID.13>
 <CX.1>(01)1234567</CX.1>
 </PID.13>
 </PID>

Listing 2: HL7 version 3 message

Chapter 2: Overview of Telemedicine and Medical Informatics

13

2.5.1 Sample Acquisition and Analysis

For a doctor to manage a patient’s illness, it is common practice to order specific tests

on biological samples taken from the patient. These samples may be blood, urine,

faeces, skin tissue, sweat, etc., and are taken from the patient by trained staff using good

working practice. Figure 3 shows the tasks performed by a LIS when processing test

requests. When a doctor identifies a clinical problem with a patient, s/he orders a set of

tests on the patient. The results of the requested tests provide the doctor with useful

information that will help confirm a diagnosis, monitor the effects of treatment and

assess the patient’s prognosis. A nurse or another clinician may take the biological

sample from the patient, which is stored in the correct container for the sample type and

clearly labelled with the patient’s details and the details of the requested tests to be

performed on the sample. The sample is transported to the laboratory and may be

subjected to some pre-analytical treatments. Depending on the hospital, the sample

information and requested tests may already be present on the LIS, otherwise this

information is entered into the LIS and the sample is queued for analysis.

The clinical laboratory applies gold standard testing regimes on each sample to obtain a

result or set of results. The gold standard is considered the most specific and sensitive

test for this sample type and is completed strictly according to a workflow list. The

analytical instrument usually controls the vital parameters in the functioning of the

instrument as well as the test parameters and calibration data but they are all adjustable

by the operator. The results are put into a temporary buffer, which can only be accessed

by the operator [13]. The results are now validated either by the laboratory staff or a

computer assisted validation system. If they are valid, they are made available to the

doctor. This process is discussed in the following section.

Chapter 2: Overview of Telemedicine and Medical Informatics

14

Figure 3: Overview of tasks performed by an LIS during a test request cycle [13]

2.5.2 Quality Control and Result Validation

In a clinical laboratory, work must be checked at every step in order to validate the

results produced. The aim of validation is to prevent reporting of erroneous test results

to clinicians. Manual result validation is very time consuming and can slow down the

response of the laboratory. Computer assisted validation speeds up the validation

process considerably by using either a rule based decision support system [21],

historical data of test results [22] or both [23]. The best systems allow the laboratory

staff to carry out a personal data check of all results that require verification [24]. Once

a result is obtained the laboratory begins checking if this result is plausible for this

patient in this instance. Result validation is generally divided into two areas, namely

“Technical validation” and “Clinical validation”.

Technical validation checks for instrument calibration, sample tolerance, accuracy

verification, reportable range, reliability and certification. Within a batch of samples

being tested there may be quality control (QC) samples which the analyser will

Chapter 2: Overview of Telemedicine and Medical Informatics

15

recognise as a QC sample and thus put the results from it in a separate file. The

frequency at which an analyser is checked and calibrated with a QC sample is

dependent on the equipment and the type of test it performs [25]. The results from the

analysis of a QC sample allow the laboratory staff to identify any specific analytical

problems. With this data the equipment can be calibrated ensuring the results are from a

calibrated, certified process. Other technical checks are also carried out to verify that

samples are not contaminated.

Clinical validation on the other hand is when the result is checked for plausibility. They

ensure results are relevant to the patient and the complaint being investigated. Types of

clinical validation include checking that the result value falls within age and sex related

reference ranges, as there can be gender-dependent differences in test results. Delta

checks compare patient’s historical test results to the current result to detect analytical

error and inconsistencies. The width of the historical time window in which to include

previous results depends on the type of test. If the window is too wide the delta check

loses sensitivity because the correlation between the actual and the historical test result

weakens with a longer time interval [22]. Results exceeding critical limits during the

validation process are reported immediately to the laboratory operator. An abnormal lab

test result will normally require repeating to confirm the result. Prescribed drugs and

diet can affect test results, thus causing them to fall outside the validation criteria. If this

is the case, the laboratory operator can modify the validation algorithm to suit the

individual case or can manually validate the result with the drug and diet information in

mind.

Table 1 illustrates general QC tests undertaken by a clinical laboratory in the technical

and clinical validation of a blood sample. When the checks are completed and if the

sample results are still plausible the data is considered validated and populated into the

electronic patient record. If at any stage the results are not plausible then the patient

information is forwarded to the laboratory manager where a re-test of the sample can be

authorized or a new sample requested.

Chapter 2: Overview of Telemedicine and Medical Informatics

16

Type of validation checks Description
Basic validation checks Data checked against age and sex related reference

ranges, pathological limits as set down by the
laboratory based on international standards.

Delta checks The patient’s previous results are compared with
the current results using various techniques.

Analyser calibration The instrument being used is checked to ensure it
is calibrated and working correctly.

Instrument specific checks Vary depending on instrument and analytical
process used to generate the result. Often carried
out either by the instrument itself or manually by
the instrument operator.

Internal consistency checks The consistency between pathologically and
physiologically related variables is examined

Sample mix-ups This results when one sample is given the identity
of another, usually an adjacent sample on the
workbench

Table 1: Validation Checks [23] (Modified)

2.6 Point of Care Testing

2.6.1 Introduction

Point of Care Testing (POCT) is defined as analytical testing performed outside of the

clinical laboratory using a device or devices that can be easily transported to the vicinity

of the patient [26]. It can be performed at the patient’s bedside or close by in a

centralised area within the clinical setting. POCT is growing rapidly and is being used

in hospitals more and more because it reduces the turnaround time. Results are received

more quickly than with a laboratory test and hence patients can be diagnosed and treated

sooner. The diversity of testing locations for POCT is wide and includes hospital

bedsides, ambulances, clinics, doctors’ offices and patients’ homes [27]. Although

POCT is widespread in hospitals and is normally associated with a clinical setting, this

research was concerned with patients who use POCT to manage their conditions at

home and hence will concentrate on this aspect of it.

2.6.2 Patient Self-Testing and Home-Based POCT

Point of Care testing in the home is a rapidly growing area in the healthcare arena. It

gives patients an opportunity to manage their own conditions and can reduce their

Chapter 2: Overview of Telemedicine and Medical Informatics

17

length of stay in hospital, minimising costs. There is also a cost reduction associated

with the release of patients to their home for continuance of their healthcare. The

benefits of patient self-testing include:

• No need for patient travel to the hospital

• Waiting time for results is reduced to the region of a few minutes

• Overall time to manage therapy is reduced

• Overall materials and personnel cost is reduced

• Patient freedom is increased

• Patient involvement and understanding of therapy is increased

With a rapidly ageing worldwide population, and the older share of the population set to

double by 2030 [1], there is a need to increase patient self-testing at home in the health

care system. There are a variety of ailments of the aged for which doctors can utilise

clinical laboratory tests, and providing POCT to homebound patients could have a

significant impact on their condition [28].The variety of test apparatus for patients who

manage their conditions at home is as diverse as the ailments themselves, ranging from

simple urine dipsticks and blood pressure arm cuffs to more complex ECG devices.

Many diabetic patients also use blood-testing units, such as glucometers to check daily

glucose levels. Blood coagulation (INR) meters are used by people taking anticoagulant

medication such as warfarin. The management of diabetes in the USA costs $100 billion

annually and has many secondary disorders associated with it. However, management

of the condition with POCT would prevent many of these [28]. It is not only chronically

ill patients and the ageing who use POCT, women during pregnancy and patients

recently released from hospital may also have to monitor biological signs.

2.7 Point of Care and Home Testing Issues

POCT self-testing in the home raises issues that would not normally arise in a clinical

setting. In hospital, tests taken by clinicians are validated by complex computerised

validation systems before a diagnosis is made. Patients at home must often use the

results of tests they take to determine medication dosage or monitor their condition, but

these results do not undergo a validation procedure. Thus there is a need to implement a

Chapter 2: Overview of Telemedicine and Medical Informatics

18

system of result validation, either locally or by the hospital validation system itself, for

people testing at home with POCT devices. In a 2001 study of hospital laboratories in

America, lack of connectivity was the biggest issue for them and 72% had no

connectivity between the laboratory information system and glucose meters outside the

hospital [28]. The four major issues for patients who self-test at home with POCT

equipment, which this research addresses are:

• The quality and reliability of the result are questionable as professional hospital staff

do not oversee the sample acquisition and testing procedures. Testing quality

achieved by patients operating blood glucose self-monitoring instruments is lesser

when compared to a technician using the same instrument [29].

• The hospital may be unaware of possible complications in a patients’ condition as

they are not aware of the day-to-day results. If complications arise between visits,

they may go unnoticed.

• There is no independent validation of the test results. Results from POC tests taken

in the home are not clinically validated to ensure that they are plausible for that

patient at the time of testing. Thus decisions made as a consequence of POCT may

be erroneous, potentially leading to patient complications or death.

• Prescribed drugs and diet may interact and affect test results.

Hospital validation servers made aware of these issues can change validation parameters

or the validation algorithm, thus tuning its accuracy and making comments tailored to

the patients’ current situation. This ensures a higher overall result quality. If point of

care test results were validated in a similar fashion to hospital laboratory test results, as

is proposed by this research, higher accuracy results and better patient care and advice

could be achieved.

2.8 Point of Care Testing Equipment

An investigation into the different types of POCT devices available to patients for self-

testing was carried out. The equipment investigated included simple urine dip-sticks,

handheld blood analysers and more sophisticated self-monitoring stations. Many types

of self-testing kits are available over the counter in pharmacies or indeed a supermarket.

Details of the instruments investigated are available in the Appendix. Some of the more

Chapter 2: Overview of Telemedicine and Medical Informatics

19

popular POCT equipment and a description of the medical problems associated with

them now follows.

2.8.1 Handheld Blood Analysers

2.8.1.1 Glucose Meters (Glucometers)

One of the most commonly monitored disorders using self-test equipment is diabetes.

Diabetes affects nearly 200 million people worldwide and this figure is set to rise to 350

million by 2030 [30]. Glucose is a simple sugar that serves as the main source of energy

for the body. The body’s use of glucose hinges on the availability of insulin, a hormone

produced by the pancreas. There are two main types of diabetes, Type 1 and Type 2.

People with Type 1 diabetes are insulin dependant and are normally diagnosed by the

age of 30. Type 2 diabetics account for about 90% of all diabetics. This form of diabetes

normally occurs later in life and is generally due to factors such as lack of exercise,

being overweight, a family history or high blood pressure [31]. Poor control of diabetes

can lead to serious complications such as blindness, stroke and renal diseases [28]. In

addition to dietary controls, ongoing diabetic treatment revolves around daily glucose

monitoring and control. Type 1 diabetics must self-check their glucose levels and inject

themselves with insulin several times a day. Type 2 diabetics usually self-check their

glucose once or twice per day and control their diabetes with diet and exercise. They

may also take oral medications to stimulate insulin production in the pancreas [31].

Glucose monitoring is performed using a glucose meter or glucometer as it is popularly

known. A glucometer is normally a small handheld meter with a digital display. There

are many makes and manufacturers of these devices [32], [33], [34]. Nearly all

glucometers allow the patient to store past results with time and date and some allow

them to store results on their computer. The method in which the glucometer interfaces

with the computer is device specific but in [12], Cronin outlines a standard method for

interfacing a POCT device with a PDA. To perform a glucose reading, a small drop of

blood, 0.3μl – 7.0μl obtained by pricking the skin with a lancet, is placed on a test strip

which is inserted into the meter. The meter analyses the blood drop on the strip and the

glucose value in mmol/l (mg/dl in the US) is displayed within a matter of seconds. The

normal blood glucose range for a patient who has been fasting is 5.6 to 6.9 mmol/l [31].

Chapter 2: Overview of Telemedicine and Medical Informatics

20

2.8.1.2 Prothrombin Time (INR) meters

Anticoagulants are medications used to prevent clotting in blood and blood vessels.

Warfarin is an anticoagulant medication that is administered orally. Warfarin is given to

patients who have a tendency to form blood clots (thrombosis), patients with cardiac

problems or patients who have artificial heart valves. Warfarin has a very narrow

therapeutic range meaning levels in the blood that are effective are very close to levels

that can be problematic (Figure 4). Dosing of warfarin is further complicated by the fact

that it is known to interact with many other medications and other chemicals which may

be present in appreciable quantities in food (including caffeine). These interactions

range from enhancing warfarin's anticoagulation effect to reducing the effect of warfarin

[35]. An overdose of warfarin is potentially very dangerous and can lead to severe

bleeding and even cerebral hemorrhage. Thus, regular blood monitoring of patients

receiving warfarin is imperative for the safe and effective use of it [36]. This is normally

carried out in a warfarin clinic in the hospital and the patient has to travel to the hospital

at least once per week for testing and review of their dosage. However, self-testing for

anticoagulation is on the increase and there are more accurate POCT devices available

today [37], [38]. Studies have shown that patients who self test for anticoagulant

medication can achieve outcomes as good as or better than at a warfarin clinic [9].

Figure 4: Warfarin risks [37]

The gold standard method for monitoring

warfarin therapy is prothrombin time,

expressed as an international normalised

ratio (INR), collected via venipuncture [36].

Prothrombin time is the time it takes plasma to clot after addition of ‘tissue factor’

(obtained from animals) [39]. Tissue factor is a substance present in tissues necessary

for the coagulation of blood. INR was devised by the World Health Organisation to

standardise the results of prothrombin time as differences can occur between different

batches and manufacturers of tissue factor. INR is the ratio of a patient's prothrombin

time to a normal (control) sample and is calculated by the formula:

ISI

normal

test

PT
PTINR 








=

Chapter 2: Overview of Telemedicine and Medical Informatics

21

The ISI is the International Sensitivity Index and indicates how the particular batch of

tissue factor compares to an internationally standardized sample. The reference range

for prothrombin time is 12 - 15 seconds and for INR is 0.8 - 1.2. It should be noted at

this point that a mobile phone application, such as the ones to be discussed in Chapters

4 and 5, would be more than capable of performing a calculation such as this one if

necessary.

2.9 Summary and Conclusion

This chapter provided a review of the current standards and practices in hospitals with

regard to data communication systems, laboratory sample testing and test result

validation. Patients who travel to hospital to have samples analysed in the clinical

laboratory can be assured that the results they receive are the most accurate for the

specific test. This is not the case for patients who monitor their condition at home as

certified clinical staff do not oversee the testing process and the results produced are not

subjected to any post-analytical validation. This post-analytical validation is part of any

laboratory test process and is very important for ensuring that the result is high quality

and plausible for the patient, given their condition.

However, as seen in section 2.6.2, there is no doubt that there are many advantages of

patient self-testing. And, with the increase in the technology available for patient-

hospital communications, POCT equipment and telemedicine, more and more patients

will be managing their illness’ at home in the near future. This chapter highlighted the

need to provide a link between these patients and the hospital that is responsible for

their treatment and safety. This will ensure that the hospital will have a record of the

patients’ medical condition and that the results will be subjected to a post-analytical

validation process.

Chapter 3: Technology Overview

22

3 Technology Overview

Before discussing the design and implementation of the system proposed in this thesis,

it is important to give an overview of the technical tools researched and used in

designing the system. There are a number of different software tools and technologies

used in the system including a database management system, client-server programming

tools and communications device considerations.

The system of remote validation was built using client-server architecture with a

database on the server side. This chapter will discuss the tools that were used to build

the system and aims to provide the user with an overview to the relevant technologies.

After a brief introduction to mobile phones and their computational possibilities, the

Java platform and Java 2 Micro Edition will be discussed. Next, the server side tools

will be described including Java 2 Enterprise Edition, Java Servlets, web services and

the MySQL Relational Database Management System.

3.1 Mobile Phone Capabilities

Applying the available systems and services of the communications industry into the

healthcare arena could greatly benefit patient care. This is why mobile phones were

chosen as the most practical device to use for the applications to be described in this

thesis.

3.1.1 Mobile Handsets

Mobile phones are everywhere; the worldwide number of mobile subscribers passed 1.5

billion in 2004 and is set to reach the 2 billion mark by mid-2006 [40]. Most mobile

phones available today are more than the simple voice-centric devices that were

originally developed. They are now complex data communication terminals. Many are

equipped with additional wireless technologies such as IrDA, Wi-Fi and Bluetooth.

Memory sizes are increasing and are normally in the tens to hundreds of megabytes and

processor speeds are typically a few hundred MHz [41]. In fact many are more powerful

than the desktop computers of the 1990’s and are continually evolving to an “always

Chapter 3: Technology Overview

23

on” form of network computer, capable of availing of Internet services continuously.

These advancing features mean mobile phones can be used to provide a user with a rich

client application, capable of performing computation and data storage locally and of

interacting with remote servers to avail of additional services. Aside from the

technological advances of mobile handsets and their supporting networks, their

abundance is rapidly growing. Mobile handsets have become one of the most popular

computer based consumer devices in the world today (see Table 2) [42]. Although a

modern computing device, mobile phones are still relatively easy to use and the

familiarity that people have with them means learning to use an application on the

phone is a simple task.

3.1.2 Mobile Networks

The Groupe Spéciale Mobile (GSM) was formed in the early 1980’s in order to develop

the specification for a mobile communications network capable of supporting the many

millions of subscribers likely to turn to mobile communications in the years ahead. This

flexible and reliable mobile communications network would facilitate the increasingly

international nature of business [43]. In 1992, after its official launch, it was renamed

the Global System for Mobile communications. The GSM network is a cellular

network, consisting of many base stations, each covering a geographical area. These

cells partition the available frequency range and reduce the range of each base station in

order to reuse the scarce frequencies as often as possible [44]. In Europe the system uses

frequencies in the 900MHz and 1800MHz bands and the channel bandwidth is 200kHz.

An innovative feature of GSM is roaming, which provides subscribers with the ability

to make calls and send/receive data whilst travelling outside the coverage of their home

network. This means that a patient who might be using a condition management

application, such as those described in this thesis, could travel abroad and not worry

about their contact with the hospital.

GSM only allows data connection rates of up to 14.4 kbps. Whilst this is adequate for

voice calls, it is rather low for data transfer. In 2000 General Packet Radio Service

(GPRS) was introduced to accommodate the need for increased data transfer rates in the

GSM network. Sometimes referred to as 2.5G, GPRS was developed to bridge the gap

between the 2G and future 3G systems. Ideally data rates of up to 171.2 kbps are

Chapter 3: Technology Overview

24

achievable but more realistically single user throughput is likely to be 112 kbps [45].

With GSM, a channel is dedicated to a user for the duration of a call. But for data

applications using GPRS, the available bandwidth is maximised by sharing channels

and switching packets of data to the required destination [46].

While 3G handsets can combine the functionality of a phone with that of a PDA, they

also have broadband connections to the Internet and are able to achieve much faster

connection speeds than GSM [47]. The standard in Europe for the development of 3G is

known as Universal Mobile Telecommunications System (UMTS), which can support

both voice and data with bit rates up to 2 Mbps [46]. With data rates like this, 3G has

the potential to revolutionise the mobile computing industry. As well as large amounts

of raw data, both video and audio transfer is possible with 3G and this could be of

enormous benefit to patients based in the home and to the general field of telemedicine.

Device 2003 sales in millions
Mobile phones > 500
Desktops and servers 128
Laptops 36
Portable compressed music players 24
PDAs 10.4
Tablet PCs 0.6

Table 2: Computing device sales for 2003 [42]

3.2 Mobile Phone Technologies Considered

Some mobile technologies were investigated in order to find a suitable method of

transmitting results reliably to the hospital. The system discussed in this thesis requires

that the communication of patient information should happen in a secure and timely

manner. The Java 2 Micro Edition platform was chosen as it was the best solution for

providing a secure and generic application capable of running on any Java enabled

mobile phone. It will be discussed in the next section in more detail, the rest of this

section will discuss the other technologies that were considered as possible solutions.

3.2.1 Short Messaging Service

The Short Messaging Service was first considered as a possible means of data transfer

between the patient’s device and the hospital server. SMS was originally introduced to

Chapter 3: Technology Overview

25

GSM networks to notify users when they had voicemail messages. Now SMS is used

widely for simple applications such as downloading ringtones and information services.

SMS messages are generally thought of as text messages but can be a byte stream of

data up to 160 bytes in length. However SMS messages can be concatenated to allow

more data transfer as part of the same transaction. Messages sent to and from mobile

phones and computers are maintained by an SMS Centre (SMSC) [48]. The SMSC

stores the message and then forwards it when it can be delivered. However there is no

guarantee that the message will be delivered instantly and as the system being proposed

by this research is of a time-critical nature, SMS is not a viable solution. In addition to

this, SMS does not allow for any computation on the phone and is being superseded by

Wireless Application Protocol (WAP) and 3G technologies.

3.2.2 Wireless Application Protocol

The Wireless Application Protocol (WAP) provides a standardised method for linking

wireless devices such as mobile phones to Internet services [49]. It is an open standard

that lets wireless devices easily interact with services and allows users to access the

Internet [50]. The latest version of WAP, WAP 2.0 adopts existing Internet standards.

WAP incorporates a relatively simple micro-browser into the mobile phone. Content is

developed in XHTML, which is similar to standard HTML meaning people familiar

with fixed internet standards can easily develop content for wireless devices. The

content can be stored locally or be served by XHTML compatible web sites. It uses the

GPRS network, which allows for the highest possible data transfer rates in the standard

2G GSM network. So, for example, it could be used by patients to access a hospital

server, submit test results and have relevant information returned to them, both textually

and graphically. The server could be responsible for all of the computation and storage

of data. Although this is a better solution than using SMS it is still not a satisfactory

solution for the requirements of this research. XHTML is purely a mark-up language

and does not provide direct access to the hardware platform. Thus, no computation or

off-line storage of test results would be possible.

3.3 Java Technologies

Both the client and server applications designed and developed in this thesis were

written using Sun Microsystems’ Java 2 Platform. The Java platform is based on the

Chapter 3: Technology Overview

26

power of networks and the idea that the same software should run on many different

kinds of computers, consumer gadgets, and other devices [51]. A key feature of Java is

that it is platform independent, meaning a Java program can run on any type of

computer that has a Java Runtime Environment (JRE). JRE’s are available for almost

every type of computer including Windows based computers, Macintosh computers,

Unix and Linux machines, mainframes and mobile phones. There are three editions of

the Java programming language, each one designed to cover a different area of business

logic. This allows for the Java platform to be used for developing everything from

simple smart card and thin client applications to complex multi-tiered enterprise

applications. The relevant editions can be chosen by developers to suit the needs of the

application. The three editions of the Java 2 Platform are the Java 2 Platform Standard

Edition (J2SE), Enterprise Edition (J2EE) and Micro Edition (J2ME).

Figure 5 shows the different editions of Java and an example of the type of device that it

may run on. J2SE, the most common version of the Java platform, contains the essential

libraries for developing client-side and general-purpose applications. J2EE is the

superset of J2SE and is the Java platform that is targeted at enterprises to enable

development, deployment, and management of multi-tier server-centric applications

[52].

Figure 5: Java 2 Platform [53](modified)

Chapter 3: Technology Overview

27

J2ME is a highly optimised edition of the Java 2 Platform and is a subset of J2SE. It is

targeted at small, standalone or connectable devices such as mobile phones to enable

development and deployment of applications on them.

Within each edition of the Java 2 platform, there are different Java Virtual Machine

(JVM) implementations, optimised for the type of systems at which they are targeted.

The K Virtual Machine (KVM) is a JVM optimised for resource constrained devices,

such as mobile phones [54]. As outlined in [54], the following characteristics are shared

among the three Java editions.

• Portability: As Java byte-code is interpreted by the JVM, applications written in

Java will run on similar types of systems. They adhere to the Java mantra, Write

Once, Run Anywhere.

• Security: This is a major issue in today’s web-centric environment. Before any

application is executed by the JVM, a byte-code pre-verifier tests its code integrity.

Systems are also protected by the Java sandbox security model, in which

applications execute. The sandbox is a protected environment that prevents access to

protected resources. Java also supports standard encryption techniques.

• GUI: All editions of Java have APIs for developing rich user interfaces. This

proved important for this research project as the client applications that were

designed for mobile phones were to be patient focussed and easy to use.

• Networking: Java programs are ‘network agnostic’ and can exchange data with

servers over any network protocol.

For this project, the mobile phone client programs were written using J2ME. These

programs contained the logic for taking the patient’s result data and transmitting it to

the server. They also stored results locally so they could be viewed off-line. These

applications communicated with the health provider server in two ways. Either via Java

Servlets or Java web services, both of which are a part of the J2EE specification. The

server side programs provide access to other services and applications and with the

database to store and validate the patient’s results.

Chapter 3: Technology Overview

28

3.4 Java 2 Micro Edition

3.4.1 Introduction

Java 2 Micro Edition (J2ME) is a set of technologies and specifications developed for

small devices with limited memory and computation possibilities such as mobile

phones. J2ME is a subset of the Java 2 Standard Edition (J2SE) and hence makes it easy

for people who are familiar with Java technologies to develop applications for wireless

devices. J2ME shares many of the same characteristics of its sister editions, including,

platform independence, and network awareness. It also has a rich set of libraries for

developing GUIs. As discussed in the last section, Java is a portable, platform

independent language. Developing the applications with J2ME ensures that they would

run on any mobile device that supports Java, and there are literally hundreds of these

from all of the major manufacturers [55]. The J2ME architecture contains the

Connected Device Configuration (CDC), the Connected Limited Device Configuration

(CLDC) and the Mobile Information Device Profile (MIDP) standards. The high level

architecture of a typical J2ME device is shown in Figure 6.

Figure 6: Software layers of a J2ME device [56]

The CDC is aimed at high-end consumer devices with a large range of user input

capabilities, memory budgets in the range of 2 to 16 Mbytes, 32 bit processors and

persistent network connections such as TCP/IP [57]. The CLDC and MIDP were

Chapter 3: Technology Overview

29

specifically designed for low-end consumer devices such as mobile phones and are the

minimum specifications that all J2ME enabled mobile devices are expected to support

[53]. As these are the type of devices targeted by this research the CLDC an MIDP will

be discussed in greater detail. Figure 7 shows how the various components of a J2ME

device fit together. These individual components will be discussed further in the

following sections.

Figure 7: Overview of J2ME components [58] (modified)

3.4.2 Connected Limited Device Configuration (CLDC)

According to Riggs et al [53], ‘a J2ME Configuration defines a minimum platform for a

horizontal category or grouping of devices, each with similar requirements on total

memory budget and processing power. The CLDC is a set of APIs that allow developers

to design applications for devices with limited resources such as small screens, and

limited memory and processing power. It assumes that the virtual machine, the libraries

and the applications will fit within a 160 – 512 kilobyte memory budget. The J2ME

CLDC contains the basic packages for common operations, which are a subset of the

J2SE packages [59]. The current version of the configuration is the CLDC 1.1 (JSR-

139), which has been made more J2SE compliant generally, including added support for

Chapter 3: Technology Overview

30

floating point numbers, improved Calendar and Date classes and improved error

handling capabilities. Due to these additions the minimum memory budget was raised

from 160 to 192 kilobytes [56].

3.4.3 The K Virtual Machine (KVM)

At the heart of all Java enabled systems is the Java Virtual Machine, which executes the

Java byte code, this is what makes Java platform independent. J2ME CLDC devices

have a more compact Virtual Machine, tailored for the memory restrictions of the

device called the K Virtual Machine (KVM), where the K stands for ‘kilo’ as its

memory budget is measured in tens of kilobytes [53]. CLDC and MIDP applications run

on top of the KVM. The KVM is designed to be as compliant with the standard JVM as

possible. However, in order to accommodate the strict memory restrictions of mobile

devices, it has many features eliminated and a more limited set of error handling classes.

In case of a runtime error that is not supported by the CLDC Error classes, it will throw

the nearest CLDC-supported superclass. The KVM also supports low-level security to

ensure an application cannot harm the device it is running on and will reject invalid

class files via its class file verifier [56].

3.4.4 Mobile Information Device Profile (MIDP)

A profile is defined as a set of API’s that supplement a configuration and provide

capabilities for a specific market type or device [60]. The MIDP supports devices that

implement the J2ME CLDC. The MIDP APIs allow developers to deal with mobile

device specific issues including user interfaces, local storage and making HTTP

connections. The current version of the profile is MIDP 2.0 (JSR-118) and the

specification [61] is available from Sun Microsystems. It outlines all of the features and

requirements of the MIDP and the following information is based on this document.

Some of the minimum hardware and software characteristics specified for MIDP

compliant devices include:

• At least one user input mechanism such as a one-handed keypad or touch screen.

Chapter 3: Technology Overview

31

• At least 256 kilobytes of non-volatile memory for a MIDP implementation, 8

kilobytes of non-volatile memory for application specific persistent data and 128

kilobytes of volatile memory for Java runtime.

• A display size of at least 96x54 pixels.

• Two-way wireless networking possibly intermittent with limited bandwidth.

• Simple sound and tone capabilities.

• A minimal kernel to manage the device’s hardware.

• Ability to read and write to non-volatile memory to support the Record

management system.

• Read and write access to the device’s wireless networking protocols to support

the Networking APIs

The MIDP APIs also define the application lifecycle and how an application is

controlled. A MIDP application is called a MIDlet and is one that uses the APIs defined

by the CLDC and the MIDP, this type of application will run on any J2ME enabled

device.

3.4.5 Additional API’s and Packages

In addition to the MIDP profile, which is included in all J2ME implementations,

vendors can write and create their own device specific packages. These may be for

accessing features on the phone such as a built in camera, or the vendors’ menu

structure. Additional packages provide the developer with more options and greater

functionality, allowing them to build better applications. Sun also provides optional

J2ME packages for various features including Bluetooth connectivity (JSR 82) and

Mobile 3D graphics (JSR 184). Java Specification Request 172 (JSR 172), the J2ME

Web Services API (WSA), extends the J2ME platform to support web services.

However, before talking about this in more detail, web services and server side logic

will need to be discussed further.

3.5 XML

XML which stands for eXtensible Markup Language is a structured system for

organising documents. An XML file is a tagged data file. The tags in the document

Chapter 3: Technology Overview

32

define the structures and boundaries of the embedded data elements. The structure of an

XML document is similar to that of a HTML web document but XML enables

developers to customise tags. One of the primary purposes of XML is to facilitate the

sharing of data across different systems, particularly systems connected networks. In

general, an XML document will contain elements, attributes and entities.

• An element is something that describes a piece of data and is comprised of

markup tags and the elements content for example:
<patient_name>Joe Public</patient_name>

• Attributes are used within an element to provide additional information about

the element and are contained within the starting tag of the element. So, for

example, type is an attribute that describes the result type of a patients test

result:
<test_result type=”blood glucose”>

• An entity is a virtual storage of a piece of data that you can reference within the

XML document. So department is an entity in the following example:
<!ENTITY department “Clinical Chemistry”>

When an application receives an XML document it must extract the element and

attribute data and perform further processing if necessary. Reading and extracting the

data from an XML file is referred to parsing the data and is performed by an XML

parser.

XML is very important to the work in this thesis from two points of view. Firstly, as this

work employs client-server architecture, a structured well-defined method for passing

information needs to be used. XML is used extensively on the web and with web

services. Section 3.6.3 describes further how XML is used with web services and Java.

Secondly, as outlined in Chapter 2, Health Level 7 (HL7) messages for hospital

communication are written using XML. As this research requires a client to connect

with a hospital based server, the documents must be structured in a manner that is

recognisable to the hospital information system. Thus all result and patient information

Chapter 3: Technology Overview

33

transferred between the hospital and the patient is embedded in XML documents to

ensure the data can be interpreted reliably at both ends.

3.6 Server Side Tools

The technologies discussed so far in this chapter have all been concerned with client

side computing. However, connecting patients with a hospital server is one of the

primary goals of this research and in order to develop a full proof of concept system, a

server would have to be implemented. A server is responsible for handling requests

from client applications and returning the relevant response information. It can

communicate with databases for storage and retrieval of data and can collaborate with

programs on other computers and servers anywhere in the world. This section describes

the middle-tier and server architectures researched.

3.6.1 Common Object Request Broker Architecture (CORBA) [62]

CORBA is a middleware platform whose specification is maintained by the Object

Management Group (OMG). In short, CORBA enables communications between

distributed objects. The key feature of CORBA is that the client object does not need to

know where the server object is located, what language it is implemented in or what

platform it is running on. A client only needs to know the logical structure of an object

it wishes to use as detailed in its interface. It invokes the object across a network to

experience its behaviour but it has no knowledge of the implementation of the object.

The OMG Interface Definition Language (OMG IDL) is used to define the types of

objects available to clients by specifying their interfaces. An interface provides a

framework for objects and consists of a set of the operations and their parameters. IDL

is the means by which object implementations tell clients what operations are available

and how to invoke them. Each programming language, including Java, has a mapping to

allow a program to access CORBA objects. However, although CORBA has many

desirable features and is well supported by J2SE and J2EE, it did not prove to be a good

solution for this research. The main reason being that CORBA depends on a TCP/IP

connection to provide interoperability between objects, via its Internet Inter-ORB

Protocol (IIOP) and there is no requirement for support of Mobile IP [63]. As this

Chapter 3: Technology Overview

34

research requires communication over wireless networks, CORBA was deemed

unsuitable for communication between the client and server.

3.6.2 Java Servlets

In order to access the service of result validation and storage to the patient, there must

be a web-based gateway that the client application can contact to upload and process the

test results. As mentioned earlier, J2ME applications are capable of making network

connections, and in particular HTTP (HyperText Transfer Protocol) and Secure HTTP

connections, to servers. In order to create a fully working implementation of the system,

a web-tier server had to be developed to handle the client requests and return the right

response.

Java servlets are special Java applications that run on a web server, often referred to as

the servlet container. The web container used for the implementation of this work was

the Apache Tomcat web server, discussed later. Java servlets are part of the web-tier of

the Java 2 Enterprise Edition (J2EE) and provide client applications with powerful logic

and the ability to interact with databases. Clients connect to the server using standard

protocols, which are available on most client platforms such as the HTTP GET and

POST methods. Thus the server logic and applications need only be written once and be

placed on the server for access by many clients, allowing developers to create efficient

thin-clients [59]. Servlets are supported through the Servlet API, an extension to the

Java programming language. Within this API the javax.servlet.Servlet interface is

defined, which must be implemented when creating a servlet. Servlets using the HTTP

protocol implement the javax.servlet.HttpServlet. This is the servlet type used in the

system designed in this thesis as J2ME supports HTTP connectivity. This will be

described in more detail in Chapter 4.

As the client applications developed for this research are to run on mobile phones, they

need to be so-called ‘thin-clients’ and the processing they need to do is kept to a

minimum meaning that solid and reliable server programs had to be developed.

Chapter 3: Technology Overview

35

3.6.3 Java Web Services

Web services are an emerging area of distributed computing. A web service is a web

accessible application that exposes a public interface useable by other applications over

the web [59]. This makes it possible for one application to access another application on

a computer anywhere in the world, regardless of operating system or architecture. More

relevant to this work, it means that a thin client running on a mobile phone can find a

service on the network and use it as though it is a local service. Web services make use

of the following standard protocols [64]:

• Simple Object Access Protocol (SOAP): An XML-based protocol that

provides an envelope for exchanging object data on the Internet. It provides a

fully extensible mode of communication between software systems.

• Web Services Description Language (WSDL): Another XML-based protocol,

WSDL is used to describe a remote service and facilitate application-to-

application communication. A WSDL file describes what a service does, how to

invoke its operations, where it can be found on the network and its interface.

• Remote Procedure Call (RPC): An Internet protocol that allows data to be

exchanged between systems. With SOAP, it lets one application call methods on

another application without needing to know anything about the underlying

network.

Web services are platform and language independent and they ensure seamless

interaction between requesting client and responding web service. Once a web service is

written and ready to be deployed, the developer must define a service description and

describe the applications methods in the form of a WSDL file. The URL of this WSDL

file is made available to client developers. The client developers use the WSDL file

with a stub generator program, which provides them with the code necessary to make

remote calls to the service. The client developer incorporates the generated stub code

into their application and can make calls to the web services methods. This stub code

handles all of the network and RPC connections so, to the client, it seems as if the

service is local, or within the application itself.

Chapter 3: Technology Overview

36

3.6.4 J2ME Web Services APIs (JSR 172)

Section 3.4.5 described how J2ME had some additional profiles and APIs. One such set

of APIs is the J2ME Web Services APIs (WSA), which enable J2ME devices to be web

service clients. These were developed within the Java community process as Java

Specification Request 172 (JSR 172). These APIs give wireless clients two optional

packages: one for remote service invocation (Java API for XML-based RPC or JAX-

RPC) and one for XML parsing (Java API for XML Processing or JAXP)

[64].

Figure 8: J2ME web services architecture [65] (modified)

The web service architecture has three elements, which are shown in Figure 8. First, a

network aware application that runs on a wireless J2ME WSA enabled device. The

application includes a JSR 172 stub to communicate with the network. Second, the

wireless network and communication protocols including HTTP and SOAP. Finally, the

web server containing the web service that the client wishes to invoke, this may also

provide access to back-end servers and applications.

3.6.5 Apache Tomcat Web Server

As mentioned in section 3.6.2, Java Servlets are applications that run on special web

servers called Servlet containers. Tomcat is one such Servlet container that has proven

to be reliable in both test and production environments [66]. It serves as Sun’s official

reference implementation and is fully compliant with the Servlet specifications

published by Sun. The Tomcat server is open-source and free to distribute. All Java

Servlets and web services discussed in this thesis were hosted on either the Apache

Chapter 3: Technology Overview

37

Tomcat server version 5.5.9 or the Apache Tomcat server version 5.0 for integration

with Java Web Services Developer Pack 1.6.

3.6.6 Relational Database Management System

A relational database management system (RDBMS) is a system where data is stored in

a collection of tables related to each other through common data values. Tables of

independent data can be linked to one another if they contain columns of data that

represent the same data value [67]. Databases use SQL (Structured Query Language) as

the tool to create, manage and query data. MySQL is a popular open source RDMS and

was chosen for the implementations in this thesis for the following reasons:

• MySQL is a medium-scale RDBMS, more than capable of handling the task at

hand.

• It is a very fast performing system with a slimmer feature set to aid performance,

yet has most of the features present in larger scale systems.

• MySQL is open source, so it is free and hence there are no issues with licensing.

• Commercial systems, such as Oracle, require far more system resources to run,

i.e. memory, CPU and disk space. This could mean that a separate machine

would have to be set aside to maintain the system.

3.7 Summary and Conclusion

An overview of mobile technologies and networks was given in this chapter. Mobile

phones have become a popular and familiar consumer device to over a billion people

worldwide. Consumers are now using their mobile phones for more than just voice calls

and the potential for application development in this area is great. The advances being

made in the ICT arena means mobile phones are becoming powerful, (broadband)

network aware computing devices, giving great potential to application developers.

Coupling this with the issues discussed in Chapter 2, providing patients who self-

manage their condition with remote assistance, means a mobile application can provide

a practical and reliable solution. The technology most certainly already exists for such a

solution, it is now a matter of applying it to the health arena and exploring the

Chapter 3: Technology Overview

38

possibilities. The next chapter introduces some possible solutions using the technologies

discussed in this chapter.

A number of software technologies were also introduced in this chapter, which were

applied in the design and implementation of the proof of concept system. The Java 2

platform and its three editions were introduced and discussed as they feature heavily in

these designs. J2ME provides a powerful and rich set of features for mobile phone

application development and the enterprise edition of Java allows powerful server

programs to be written. Other important areas discussed included the formatting of data

with XML, the MySQL DBMS for handling data on the server web servers, namely the

Apache Tomcat server.

Now that mobile phone technologies and technical tools relevant to this research have

been introduced and discussed, the reader should have a good background for

understanding the design and implementations of the proof of concept systems to be

discussed in the following chapters.

Chapter 4: System Design

39

4 System Design

The main aim of this research project is to provide a reliable method for patients to

transmit test results to the hospital so they can be validated and stored in their patient

record and to return advice or instructions based on the result values. So far the

background to patient testing, the issues associated with it and technologies available

have been discussed. It has been established that a solution utilising Java technologies

will provide the best system that will work across a wide range of mobile devices. This

chapter discusses the proposed system, which provides a possible solution for patient

test result validation and storage as stated above. The design of three different solutions

and the different technologies they employ, as well as the issues addressed and

considerations made will also be discussed.

4.1 Overall Requirements

4.1.1 Overview

Three different versions of the system were designed and these will be discussed

individually in later sections. Before examining specific sections of the design, a

discussion on the overall requirements and goals of the system will be given.

Figure 9: General overview of required system

Figure 9 depicts a generic overview of what the proposed system aims to cover. The

patient, using a POCT analyser, performs a test in the home on a specimen taken from

Chapter 4: System Design

40

the body. The analyser produces a result, which may be displayed on a screen. Next, the

analyser transmits the result data to a mobile phone. The transmission of result data

from an analyser to a mobile device using Bluetooth was explicitly researched by

Cronin [12] and has been omitted from this research for clarity. Once the result data has

been received by the mobile phone application, it is stored on the phone. If necessary,

the application can collect additional information from the user that is relevant to their

condition, by asking simple questions. Further processing and simple validation can be

performed on the phone before sending it to the hospital. At this point the information is

prepared for transmission to the server and is wrapped into XML format. The

application connects to the hospital’s web server, sends result information and waits for

a response. The web server now performs the necessary tasks to get the result validated

and stored in the Electronic Patient Record (EPR). The server generates the response to

be returned to the patient, which may include advice, instructions, medication dosage or

a request for the test to be retaken. This information is sent back to the user application,

which then displays the message to the user and updates its own record of the result.

4.2 Overview of Alternative Designs

Three different designs of the system are introduced here. Each version of the system

aims to provide the patient with a service similar to that outlined in the previous section

(Figure 9). However, each one is different in some way or another to the other two.

Version Validation Process Server Communication
1 Phone Java Servlet
2 Server Java Servlet
3 Server Remote procedure call (web service)

Table 3: Three versions of the remote validation system

Table 3 shows the differences between the three versions by highlighting the location of

the validation process and the method in which the client application communicates

with the hospital server. This will become clearer as each version is described

individually in the coming sections. A full discussion of all aspects of the design of each

version will be given in individual sections later.

Chapter 4: System Design

41

4.2.1 Version One

For certain test result types, the method for validation of the result is quite simple and

requires only certain information, such as past test result values, whether the patient has

been fasting, current medication and the sex, age and weight of the patient. This kind of

information can easily be obtained by an application via a simple questionnaire given to

the patient or from local storage of a patient profile. As stated in Chapter 2, modern

mobile phones are powerful mini-computers and capable of quite complex computation.

If a validation algorithm is simple enough to only require information such as that stated

above, then it is conceivable that an application running on a mobile phone could

contain such an algorithm.

Allowing the result to be validated on the phone gives the distinct advantage that the

patient does not have to wait nearly as long for the outcome of a result validation as it

does not have to make a network connection or rely on the validation service in the

hospital being available at any given time. It also helps to reduce the workload of the

hospital system. In a hospital, results to be validated are entered into a work list and

processed chronologically. A greater number of results waiting in such a work list,

means a longer wait to validate the result. This, coupled with the fact that wireless

networks are relatively slow in comparison to today’s fixed networks that people are

used to, means that the turnaround time from a patient sending a result to receiving the

hospital response could be relatively long.

Thus, the first system design contains a validation algorithm on the phone in order to

provide a faster system. When a user enters the result into the application, it is validated

on the phone. If validation of the test taken requires more information, they may be

asked some questions. For example, a patient with a glucose monitor may be asked to

supply information about diet. The application will return the outcome of the validation

to the user along with some advice or dosage information. However, another goal of this

research is to provide the hospital with the test results so they are kept informed of the

patients condition and have a record of them when the patient returns for a check up. So,

once the patient has received the outcome of the validation, the application connects to

the hospital’s web server via a Java servlet and sends the result data. The application

Chapter 4: System Design

42

running on the server stores the patient’s result and informs the user (and application)

that it has been received so the connection can be closed.

4.2.2 Version Two

The previous version is a good solution for validation algorithms not requiring

complicated computation or many external resources. However, for more complex

algorithms and rule bases, a more powerful computer will need to be used. Thus the

result data must be transmitted to the hospital for validation as well as storage.

Validating the result on the hospital server ensures the result is validated by the gold

standard system that applies to all hospital results. It also can allow for a laboratory

professional to view the details of the result if necessary and provide better and more

dynamic information to be returned to the patient.

The second version of the proposed system allows the result to be sent to the hospital

via a Java servlet. The servlets are accessed over a HTTP connection that the client

application makes, and the result data are transmitted to them. Once a result is received

in the hospital, the servlet parses the result data and stores it in a database. Running

separately on the hospital network is the validation service. This is always checking the

incoming results in the database and when it finds one that is not validated it performs

the relevant validation on it. Once these are validated they are stored in the patient

record and the updated information along with the generated instructions is sent back to

the client application.

4.2.3 Version Three

This version of the system is a distributed computing solution. Its only similarity to the

second version is that the actual validation of the result is performed on the hospital

server. The key difference is the method it uses to communicate result data back and

forward to the hospital. The previous two versions communicate with the hospital via a

servlet running on the web server. For this method, the server is running a web service,

which has methods made public for validating and storing a result. Using a remote

procedure call (RPC), the client calls the method on the server to validate the result. The

actual connection to the remote service is handled by the generated stub code so to the

Chapter 4: System Design

43

user it feels as though it is calling a local method. The main purpose of designing this

version was to investigate an alternative method for connecting the client with the

services offered by the hospital.

4.3 Result Data Format

As mentioned in Chapter 2, the information and data to be sent from the patient’s device

to the hospital and back, was based on Health Level Seven (HL7) messaging standards.

HL7 version 3 uses XML format messages to structure clinical data. HL7 messages are

made up of various segments, each one describing a specific data type. The structure of

the result data from the analyser, to be sent to the hospital, was based on the OBX

segment. This segment is the observation / result segment. An OBX segment of a HL7

message can contain many attributes including the reference ranges and the date of the

last similar result. However, as this information is to be sent over a wireless network, a

simplified version was designed, to keep the message length to a minimum but still

containing key attributes. The format of the result data was kept the same for all three

versions of the system. The result data was represented in the programs by a class called

ResultData.

Attribute Name Data Type Description
Result ID Long integer A unique identifier created using timestamp
User ID String An unique ID to identify the patient
Result Value Float The numerical value of the result
Units String The units of the result
Test Code String A code defining the type of test
Status Integer Whether it is validated, valid or invalid
Date Produced Long integer The timestamp of produced date
Date Validated Long integer The timestamp of validated date
Notes String Notes, Comments, instructions for patient

Table 4: Attributes of result data

The attributes are extracted from this class and wrapped into an XML document for

transmission to hospital. The web server can then add the additional attributes and

convert it to an actual HL7 result segment before passing it on to be processed further in

the Hospital Information System. The hospital server returns an XML message of the

same type but has updated the attributes relating to the validation. Table 4 shows the

Chapter 4: System Design

44

attributes that were chosen to represent a result for transmission. The attributes chosen

were ones that are relevant to the POCT analyser and provide enough information for

the hospital to be able to perform a search in the database to retrieve any other necessary

information. The User ID attribute is used to identify the patient to avoid sending the

patient’s actual patient ID over the wireless network.

4.4 Web Server Database

Result data received by the web server application needs to be stored in a database. This

allows it to be accessed by other services so it can be validated and stored in the

patient’s record. The database can be used for matching the patient’s user details that

they submit, to the actual patient details from their EPR. Also, as the client application

only transmits certain key attributes of the result data, the rest of the data relevant to the

patient and the test result can be obtained using information from this and other

databases so it can be prepared for use in the hospital information system. A very

simple database with only a few tables is sufficient for this purpose.

The entity-relationship (ER) diagram shown in Figure 10 shows the tables that are

needed for a database on the server. The incomingdata table is to store the result data

that is being sent from the client applications. It contains attributes for result data

similar to those described in the last section, the PatientID attribute can be retrieved

from the patient table. Users of the system will have to have their account details stored

and this can be done in the users table, which also contains a reference to the patient’s

details through the PatientId foreign key. Finally, the ranges table is used to store

information about test result reference ranges for the first version of the system, so the

client can check if it has the most recent data for validation.

Chapter 4: System Design

45

Figure 10: E-R Diagram for web server database

This simple database could be made far more complex for a real implementation, but is

adequate for the proof of concept implementations to be discussed in this thesis.

4.5 Design of Version One

As previously mentioned, this version is designed to validate the result on the phone.

The main components in this version are the J2ME client MIDlet, the web server

running the Java servlet that the client communicates with and a database to store the

incoming data. This database acts as a temporary store for the result data received, the

data are then moved into the hospital information system and on to the patient’s EPR.

An overview of the system is shown in Figure 11. On the left hand side of the figure is

the client application, which transmits the result to Servlet application where it is

processed and sent to the EPR in the hospital system on the right.

Chapter 4: System Design

46

Figure 11: Overview of version one

4.5.1 Client MIDlet

This is the client application for the patient to manage their test results, it is capable of

storing result information locally in a simple RMS data store. The main menu provides

the patient with options to add a new result, view stored results, delete results and to

check for updates for the program. When a result is added, it is validated on the phone

and stored locally. When the user selects the view results screen they are returned a list

of the current results stored in the phone. The details of each can be viewed and they

can transmit the result to the hospital server if this has not already been done.

The Class Diagram is shown in Figure 12. Table 5 gives a description of each of the

classes used by the client application. Version1MIDlet is the main MIDlet class which

controls the user interface and user input and output. The result data can be represented

in the ResultData class. When a new result is entered, the time is noted to the nearest

millisecond, this is a 13 digit long integer and is also used when creating a unique result

ID. Once a result is stored and validated, it has to be to uploaded to the hospital’s web

server. All network methods for doing this are accessible via the ServerConnect class.

The MIDlet communicates with the server using HTTP POST. The HTTP POST

request method means a client can send data of unlimited length to the web server as

well as retrieve information from it [53], which is necessary in this application.

Chapter 4: System Design

47

Figure 12: Version 1 MIDlet Class diagram

Class Name Description
Version1MIDlet This is the main MIDlet for controlling the application. It contains

the methods for displaying menus and information to the user,
accessing results, uploading information to the server.

ResultData This class is a simple representation of a result as discussed in
section 4.3.

ResultValidator This class contains the methods to validate a result. All of the
rules etc. that are needed to validate a result will be accessed here.
The validate() method is called by the MIDlet class to validate a
result.

SimpleRecord For controlling the RMS store, it defines the size of a record, and
contains methods for creating and retrieving records from the
phones memory.

ServerConnect All of the network methods needed to connect to the server, such
as uploading results, are in this class.

XMLWrapper A class with methods to convert result information into an XML
document string so it can be transmitted to the hospital web
server.

DateUtil Contains useful methods for formatting dates.

Table 5: Version 1 MIDlet Classes

Chapter 4: System Design

48

An RMS Record Store is used in this program to store the result data. The

SimpleRecord class contains the functions to add, remove and update results. Each

result record occupies 41 bytes of data. The first 13 are used to store the result ID. As

this number is also the time in milliseconds, it can be used to retrieve the date of the

result using the java Date class. The rest of the bytes in the record are used for the result

value, the notes and for a status integer (valid, invalid or not validated), which is also

used to tell whether the result has been uploaded to the server or not. Data such as the

normal reference ranges for a test result are also stored in another RMS store. This

information is used by the ResultValidator.validate() method when validating a result.

The MIDlet is designed with an option to connect to the server and download new rules

and ranges for the validation method, so ranges could be specifically tailored to an

individual patient.

4.5.2 Server

The web server in the hospital is responsible for receiving the patient result data and

transferring it into the hospital information system. In this version of the system the

client communicates with the hospital via a Java servlet. The java servlet class diagram

is shown in Figure 13. The servlet that the client invokes is the ResultServlet, which

implements the javax.servlet.HttpServlet method. As mentioned in the last section, the

client invokes the servlet using the HTTP POST method and so this servlet uses the

doPost() method. The byte stream of result data from the client is captured in a

ResultData object using the parseResult() method of the XMLParser class. This can

then be put into the incoming data table in the database using the

DatabaseConnector.insertResult() method. When this has completed the servlet

returns a status integer, which can be interpreted by the client to indicate either the

result was received OK or an error has been encountered.

Chapter 4: System Design

49

Figure 13: Class diagram for the web server

The result in the database can now be extracted by another service running on the

hospital server, further processed if necessary and then entered into the electronic

patient record. The reference ranges that the client application uses can be updated and

are retrieved when the user invokes UpdateServlet. This queries the database to see if

there are newer ranges or if special ranges for the individual patient are available, and

returns them if found.

Class Name Description
ResultServlet This is the servlet that the client invokes for uploading the result

to the hospital.
UpdateServlet The servlet invoked to retrieve updated reference ranges if

available.
ResultData A class to hold the result data.
DatabaseConnector This class contains all methods for accessing and entering data in

the database.
XMLParser This class contains the method to parse the XML data sent from

the client.
Table 6: Version 1 servlet Classes

4.6 Design of Version Two

This version transmits the patients result to the hospital web server for validation. An

overview of the system is shown in Figure 14. It is similar to the previous version in its

Chapter 4: System Design

50

structure, with a client MIDlet that communicates with the server by invoking Java

servlets.

Figure 14: Overview of version two

When the result is validated, the servlet returns the updated result data to the user along

with the instructions. The client updates its record of the result in the phones memory so

it can be viewed off-line.

4.6.1 Client Application

The client application class diagram is shown in Figure 15. Many of the options

available to the user will be to upload and validate the result, view stored results and

delete records. When a result is entered, it is stored, wrapped to an XML format

document and then transmitted to the hospital server. As the result is validated remotely,

there are no validation classes and hence no need to have the option for updating

validation rules. The remote validation means the user of the client application will have

a longer wait for response from the server, so some additional classes have been

included to show the network activity.

An overview of the MIDlet classes is shown in Table 7. This application contains the

ResultParser class for extracting the result information sent back from the server,

which includes the updated notes and instruction message for the patient. The

ServerWait class is used to inform the patient that the result is being uploaded and takes

control of the interface away from them to avoid the result being transmitted multiple

times by an impatient user.

Chapter 4: System Design

51

Figure 15: Class diagram for version 2 client

Class Name Description
Version2MIDlet This is the main MIDlet for controlling the application. It contains

the methods for displaying menus and information to the user,
accessing results, uploading information to the server.

ResultData A class to for accessing and storing result data as discussed in
section 4.3.

ServerWait This class is for displaying network activity to the user when
uploading the result.

SimpleRecord For controlling the RMS store, it defines the size of a record, and
contains methods for creating and retrieving records from the
phones memory.

ServerConnect All of the network methods needed to connect to the server, such
as uploading results, are in this class.

XMLWrapper A class with methods to convert result information into an XML
document string so it can be transmitted to the hospital web
server.

ResultParser The result data returned from the hospital server will be wrapped
as an XML document. This class contains a method for extracting
the information to a ResultData object.

DateUtil Contains useful methods for formatting dates.
Table 7: Version 2 MIDlet Classes

Chapter 4: System Design

52

4.6.2 Server

The server in version 2 is also accessed using Java servlets. There is only one main

servlet in this version as there is no update facility. When the result data is received and

parsed it is stored in a database. The program then waits for the result to be validated

and continually checks the status of the result in the database. In the mean time, a

separate service in the hospital sees that a new result has arrived for validation and

validates it, updating the patients record and the database that the servlet is waiting on.

When the servlet sees that the result has been updated it retrieves the new information

and wraps the data in an XML document. This information is then returned for

interpretation to the client MIDlet.

Figure 16: Class diagram for version 2 server application

If the result is not validated and updated in a timely manner, the server sends a time-out

error message back to the client. This error is also wrapped as an XML document. In

this case, the user will be asked to resend the data and the server will check to see if it

has been validated yet. Table 8 gives an overview of the classes shown in Figure 16.

Chapter 4: System Design

53

Class Name Description
Version2Servlet The servlet that the client invokes for uploading the result to

the hospital.
ResultData Class to access and store result data.
DatabaseConnector Contains all methods for database access.
XMLParser Used to parse the XML result data sent from the client.
XMLWraper Similar to the client class of the same name. Result and error

data extracted from the database for transmission is wrapped as
XML.

Table 8: Overview of version 2 Servlet classes

4.7 Design of Version Three

This version of the system adopts a different method for client/server communication,

namely Java web services. As discussed in Chapter 3, the Java web services APIs (JSR-

172) provide J2ME application programmers with packages for remote service

invocation (JAX-RPC) and XML parsing (JAXP). Version 3 is designed so that the

hospital web server provides a web service that a remote client can invoke using remote

procedure calling (RPC). The service is of course the point of care test result validation

and storage and the provision of advice and notes based on the result values. As with the

previous two versions, the design of the system was broken into two parts, the web

service and the J2ME client MIDlet. The basic steps to creating a web service are: Write

the web service interface class, write the implementation of this class, create and

publish the Web Services Description Language (WSDL) file which is used by client

developers for gaining access the service and finally, deploy the service on the web

server. The client application is developed using the WSDL file and the service is

invoked using RPC.

Figure 17: Overview of version 3 system

Chapter 4: System Design

54

4.7.1 Web Service

The interface class defines the methods on the web service that clients can invoke. For

this implementation of the system, the validation service is declared through the

Validate interface class. The client calls the service through the validate() method,

passing it the User ID, result ID, result value, test code and a Boolean indicating

whether the user has fasted or not. The web service returns a string, this is actually an

XML document containing the result data.

Figure 18: Web service interface and implementation

The Validate web service is implemented with the ValidateImpl class, these are shown

in Figure 18. For this design, the database related classes including the ResultData class

are in a separate package. The implementation of the validate() method creates a result

data object using the information passed to it and by extracting additional data from the

database. The result is then validated and stored in the database exactly as is done in the

previous two designs. Next the XML result data document is constructed and returned

to the client calling the service in the form of a string. This version uses a different

method to wrap the result data to XML, namely, the Document Object Model (DOM),

which is a Java API for working with XML documents. When the application is

compiled as a web service, stubs, ties and a WSDL file are generated. Stubs and ties are

low-level classes that the server uses to communicate with the client. Finally the web

service is deployed to the web server and is ready for clients to access it.

Chapter 4: System Design

55

4.7.2 Client Application

The J2ME client application provides the same functions as the previous versions, so a

user can transmit the result for storage, remote validation and also view past results and

advice from the local memory of the phone. The main difference in its structure is how

it communicates with the server. Using a stub generator tool in the J2ME wireless

toolkit, with the WSDL file of the web service as the input, the client side stub-code is

generated. This stub is a local java object, which handles communication between client

and server. The MIDlet makes local method calls to this stub and then the stub calls the

web service on the server.

The class diagram for the MIDlet is shown in Figure 19. The four classes in the

com.mobilevalidator.validationservice are the stubs that are automatically generated

by using the WSDL file. These classes are implementations of interfaces that are

available in the JAX-RPC package of the J2ME web services APIs. All of the

networking and data transfer logic required to contact the web server is encapsulated in

this package, and to the user of the system it seems as though a local service has been

called. To use the web service, the method validate() in the Validate_PortType_Stub

class is called. This has the same input and return types as the method on the web server

as described in the last section.

The application represents result data in the same way as the previous designs with the

ResultData class. The MIDlet parses the XML result received from the server using the

parse() function which is part of the JAXP package in the web services APIs.

ResultParserHandler contains the getResultData() function which returns a

ResultData object using the parsed information so the result information can be easily

accessed for further processing and storage. The EntryForm class is for obtaining user

input.

Chapter 4: System Design

56

Figure 19: Class diagram for version 3 client application

4.8 Summary and Conclusion

Three alternative versions and their design have been introduced in this chapter. Each

version uses a different method to provide a patient with a service to validate and store

the results of their tests in their EPR. The first version provides the patient with a

system to validate the test result on the phone and then connect to the hospital server to

upload this result. This means the user will not be subjected to delays that may occur on

the back end server or with the hospital validation system if there is a big backlog of

results for validation. Allowing the result to be validated in the hospital system

however, as in the second version, ensures the result is validated to the same precision

as any test taken within the hospital would. It also allows for much more complex

validation algorithms and it can access information from a far greater data pool, such as

Chapter 4: System Design

57

the laboratory database and any data from the EPR. The third version also gives the

patient access to the hospital server to validate results, but communication with the web

server is managed through a web service. The client makes a remote procedure call

straight to a validation method on the server and is then returned the outcome of the

validation.

The decision of which version provides the best solution for the system depends on

factors such as how complex the validation algorithm is, turnaround speed, i.e. time

taken from entering data to receiving the response from the server, and which one

creates the least network traffic. To investigate these factors an implementation of each

version was carried out to provide a proof of concept for each version. The three

implementations were then tested with these factors in mind and results for each version

compared. These implementations are discussed in detail in the next chapter.

Chapter 5: Implementation and Test

58

5 Implementation and Test

5.1 Introduction

With the design of the system established, a proof of concept implementation was

developed. This involved three separate implementations, one for each version of the

system that was discussed in the last chapter. The three implementations were tested

and compared to one another and the advantages and disadvantages of each will be

discussed in this chapter. The three implementations are based on a patient who has

diabetes and enters measurements from a glucose meter. However, a system for any

type of condition could be developed based on those described in this chapter.

In describing the implementations of the client MIDlets, there will often be references

made to the commandAction() method, mainly when discussing user input and the

current user display. All of the client MIDlets described in this thesis implement the

javax.microedition.lcdui.CommandListener interface which defines the

commandAction() method. This method is implemented so that the MIDlet can respond

to command events from the user, and is checking (listening) for user input all the time.

Each version of the system was built on the previous one, and in addition to the main

version modification being made, improvements and modifications were added to each

subsequent version to help reach a better overall system. For example, version two

implements a better user interface for display when there is network activity. This is

also inherited by the third version but it adds a better entry form for the patient, which

requires them to provide user identification. All of the modifications made along the

way can be applied to the previous versions, but in order to highlight the development

of the systems in this discussion, they were left as originally implemented.

Chapter 5: Implementation and Test

59

5.2 Server Database

The database designed for the web server was implemented first, using the MySQL

relational database management system (RDMS). The main purpose of this database is

to store incoming result data so it can be accessed by other services for further

processing. It is also designed to store

information about users of the remote

validation system with a link to their

patient details so any other relevant patient

data can be easily accessed. Figure 20

shows the entity relationship (ER) diagram

for the web server database as described in

Chapter 4.The ranges, users and patient

tables were filled with data representing

sample patients so there would be

information available that the applications could use. The Java servlets and web service

running on the server could access this database using the Java Database Connectivity

(JDBC) API. This provides libraries and methods for Java programs to access and

process database data using SQL queries.

5.3 Version One

This is the version of the system where the result is validated on the phone itself. It

consists of a MIDlet client which runs on the mobile phone, Java Servlets running on an

Apache Tomcat server (version 5.5.9) and the MySQL (version 5.0) database discussed

in Chapter 3. The implementation of this version is discussed using sequence diagrams,

based on the options available to the patient from the main menu.

5.3.1 Example Scenarios

There are four choices for the user from the main menu, Add and Validate a result,

View and Upload Results, Delete Records and Update program. The sequences of

events that a user may encounter using the system will be discussed.

Figure 20: Web server database

Chapter 5: Implementation and Test

60

5.3.1.1 Add and Validate a Result.

The sequence diagram for this can be seen in Figure 21. At the main menu, the first

option the user has is to ‘Add / Validate Result’. When the commandAction() method

detects that the add result option is chosen the genAddScr() method is called. This

method generates a new display, which contains a numeric text-box for the user to enter

the result and a check to see if the user has been fasting. Upon selecting ‘Add’ the

commandAction() method creates a new ResultData object using the result value

entered, the current date and status. Using the Date objects getTime() method it sets a

result ID which is a unique 13 digit number. Next the addResult() method is called.

This method validates the result using the ResultValidator.validate() method, which

checks to see if the result is within the normal reference range that it has stored in the

record store. It then creates a byte array of the result information and stores it in the

RMS data store. Next, the genResDataScr() method is called and the information about

the new result is displayed to the user, they now have an option to upload the result or

return to the list of results stored in the phone. The process of uploading the result, if

chosen, is described in the next scenario. An example of screen flow of this scenario is

shown in Figure 22.

Figure 21: Sequence Diagram for Adding Result

Chapter 5: Implementation and Test

61

Figure 22: Screen Flow for Adding Result

5.3.1.2 View and Upload Results

Figure 23: View and upload results sequence diagram

The second option for a user at the main menu is to ‘View Results,’ the sequence

diagram for this is shown in Figure 23. When this option is selected the

commandAction() function calls the genResultViewScr() method. All of the results

are called from memory. These results are displayed in order of most recently added and

Chapter 5: Implementation and Test

62

this resultViewScr is set as the current display. When the user selects one of these

results its attributes are displayed to the user via the genResultDataScr() method. This

method also sets the attributes of a new ResultData object using the result information

retrieved from memory.

The user now has the option to upload the result to the server. If the choice to upload

then the genUploadScr() method is called. This prompts the user again as to whether to

upload the result to the server, in order to avoid connecting if ‘upload’ was selected by

accident. If ‘No’ is selected the genResultViewScr() method is called and the user is

returned to the result list. If the user confirms they want it uploaded, by selecting ‘Yes’,

the upload(ResultData) method is called. This method starts a new thread, and calls the

uploadResult() method from the ServerConnect class. It is good programming practice

to perform all network activity in a separate thread as using the main system thread can

result in the application freezing if the network does not respond [68]. So, to avoid

deadlock, all networking code in the client applications is handled in separate threads. It

also allows for the user interface to be active whilst there is network activity, which

heightens the user’s experience with the application.

<?xml version='1.0' encoding='utf-8'?>
<test_result>
 <result_data>
 <result_id>1133531808281</result_id>
 <user_id>MD00977</user_id>
 <test_code>GLUC</test_code>
 <value>86</value>
 <date_produced>1133531808281</date_produced>
 <units>mg/dL</units>
 <date_validated>1133531808453</date_validated>
 <status>2</status>
 <notes>Within Range</notes>
 </result_data>
</test_result>

Listing 3: XML Result Data

A HTTP connection to the hospital server is set up using the HTTP POST request

method. The result is wrapped into the XML message format shown in Listing 3 using

the XMLWrapper.wrapResultData() method and transmitted to the server over the

HTTP link via a DataOutputStream.

Chapter 5: Implementation and Test

63

The sequence diagram for the Java Servlet running on the server is shown in Figure 24.

The server reads the data stream from the client MIDlet. The information it is receiving

is the patient’s result data in the XML format shown in Listing 3. First, the Servlet must

parse the XML data. This result data is then entered into the database and a response

code is sent back to the client MIDlet. The response will indicate what has taken place

and whether the data was entered in the database successfully or not. A message

reflecting the outcome of the hospital communication is shown to the user as in the

screen flow diagram of Figure 25.

Figure 24: Result Servlet sequence diagram for version one

Figure 25: Screen flow diagram for viewing stored results and sending to hospital

Chapter 5: Implementation and Test

64

5.3.1.3 Delete Records

The third function for the user is to delete results from the phone memory. This process

was implemented in the same way for each version implementation and the sequence

diagram is shown in Figure 27. Again starting from the main menu screen, the user now

selects ‘Delete All Records’ which changes the display to a new screen asking the user

to confirm the delete. If ‘Yes’ is chosen, the delRecords() method deletes the record

store and displays an alert to that effect before returning the program to the main screen.

Figure 26: Delete records screen flow

Figure 27: Delete records sequence diagram

Chapter 5: Implementation and Test

65

5.3.1.4 Update Program

To demonstrate an example of this, a system for downloading reference ranges is

included in this implementation. In the server database, the table ranges contains the

latest reference ranges for particular tests, identified by the TestCode attribute. The

client MIDlet can connect to

a Servlet on the web server,

which will query the database

and return the latest ranges to

the client. The client keeps a

record of the ranges for the

validation method in the

phones memory. Figure 29 and Figure 30 show the client and server applications

sequence diagrams respectively. When the user chooses to ‘Update Program’, the

MIDlet application connects to the UpdateServlet on the server, which returns the

ranges. Next, the MIDlet stores these ranges in memory using the

RecordStore.addRecord() function before generating the main menu again.

Figure 29: Sequence diagram for MIDlet updating reference ranges

Figure 28: Screen flow for update

Chapter 5: Implementation and Test

66

Figure 30: Sequence diagram for update Servlet

5.4 Version Two

The second version of the system requires longer network connections as the patient’s

test result is sent to the hospital for validation on the server and thus a longer wait is

needed. Like the first version the user has the option to add and store a result in their

phone, however it will also be uploaded immediately to the hospital for validation and

storage in their EPR. As the validation happens on the hospital server it is possible to

have a much more complex algorithm to validate the result and it can draw information

from many more sources. Like the last section, the implementation will be described

with sequence diagrams by going through the different choices from the main menu.

Only the first two scenarios will be discussed in detail as the delete function is exactly

the same as in version one.

5.4.1 Example Scenarios

The ‘View Results’ and ‘Delete Records’ functions are implemented in the same way as

version one and hence do not need to be discussed in detail again. However, adding a

new result and uploading to the server will now be discussed in detail.

5.4.1.1 Add and Validate Result

When the patient selects to add a new result, an entry form is generated similar to that in

version one. The patient enters the result and presses ‘Send’ which invokes the

addResult() method. Figure 31 is the sequence diagram for the client MIDlet. First the

Chapter 5: Implementation and Test

67

result is stored in the phones memory, next it is wrapped in XML format as shown in

Listing 3 and finally it is uploaded to the server. Again, as in the previous version,

network activity is handled in a separate thread. A graphic indicating that the result is

being sent is displayed to the user in the main system thread using the methods in the

ServerWait class. When the Servlet, shown in Figure 32, receives the result data, it

stores it in the incomingdata table in the database. Now it waits until the result has been

validated, with the retrieveWhenValid() method. If it is not validated within a certain

time it returns a timeout error to the client.

Figure 31: Sequence diagram for adding a new result

Chapter 5: Implementation and Test

68

Figure 32: Java Servlet sequence diagram for version 2

The validation service runs simultaneously in the background checking for new results

arriving. When it detects a new result it validates it. For this implementation, the

validation algorithm is simple and compares the current result value to the patient’s

previous result value and confirms that it is within a specific range of values. When it

has validated the result it updates the details in the database and moves onto the next

result to validate. The sequence diagram for this is shown in Figure 34.

Figure 33: Screen flow for Add/Upload Result

Chapter 5: Implementation and Test

69

Figure 34: Validation service sequence diagram

When the result has been updated, the retrieveWhenValid() method, which is waiting

for the result to be validated, returns the result details to the Servlet. The updated details

are re-wrapped as an XML document and this is sent back to the calling client. The

client application parses the document using the kXML parser. This is a third party

package for XML document processing on J2ME devices. Once the information is

extracted from the XML document, it updates it’s record of the result and displays the

outcome to the patient. The client application screen flow is shown in Figure 33.

5.5 Version Three

To a patient using this system, version three will appear to be the very same as version

two. This version also validates and stores the patient’s test results on the hospital server

and then returns the outcome and advice based on that validation. However, it employs

different technologies to send the result data to the server, namely web services and

remote procedure calling (RPC), which form a distributed computing solution. The web

service was implemented and deployed on the server as discussed in the previous

chapter. The Validate interface defines how the client and server communicate and the

methods on the web service that clients can invoke. In this implementation the web

service contains one method, validate(). The web service interface was implemented in

Chapter 5: Implementation and Test

70

the ValidateImpl class. It was compiled, built and deployed to the server using the tools

available in Sun’s Netbeans integrated development environment (IDE). This process

also creates the web service descriptor (WSDL) file. When the service was up and

running, the WSDL file was inputted to the J2ME wireless development toolkit and the

stub code was generated for use with the client MIDlet.

5.5.1 Example Scenarios

As with version 2 the ‘View Results’ and ‘Delete Records’ functions are implemented

in the same way as version one. The process for communicating with the hospital server

using RPC to validate the result and the implementations will be discussed further.

5.5.1.1 Add and Validate Result

Figure 35: Sequence diagram for version 3 client application

This client MIDlet contains many functions similar to those in the previously discussed

applications. The screen to add a result is generated in a different way to the previous

Chapter 5: Implementation and Test

71

two versions. In this version a separate class called EntryForm was developed for taking

user input. When called from the main menu, via the commandAction() method, the

entry form is displayed. It also is different, as it requires the user to input a username

and password for authentication on the system. The sequence diagram for this

application is shown in Figure 35. When the patient has entered all of the data, the

‘Send’ button is pressed, which invokes the saveResult() and sendResult() methods.

The sendResult() method formats the result data and then invokes callService(). A

new thread is started as calling the service will involve network activity and an instance

of the WSDL generated stub class, com.mobilevalidator.validationservice.

Validate_PortType_Stub, is created. This object contains the validate() method which

has the same architecture of the web service method. The application invokes this local

method passing it the user ID, result ID, result value and a Boolean indicating if the

patient has fasted. The communication is handled over a SOAP HTTP connection as

discussed in Chapter 3. But how the method and its arguments are encoded and sent,

and how the response is received and decoded are all transparent to the application. The

actual logic to make the call to the service on the network is encapsulated in the

Validate_PortType_Stub class and the other stub classes in the auto-generated package.

The String value returned from the validate() method is an XML document containing

result data similar to that of Listing 3. This is parsed and the record of the result in the

phone memory is updated. Finally, The outcome of the validation and the notes are

displayed to the user.

Figure 36: Version 3 screen flow

The implementation of the validation web service and the validate() method is shown

in Figure 37. When the method is invoked, it stores the result in the database. An

identical validation service to that described in version two, Figure 34, is running

Chapter 5: Implementation and Test

72

simultaneously on the server. When it has validated the result the retrieveWhenValid()

method sees it and returns it as a ResultData object. Finally, an XML document of the

result data is built. This is converted to a string and returned to the calling method (the

J2ME client in this case).

Figure 37: Validation service implementation

5.6 Testing the Applications

All three implementations were tested using the database and server tools previously

described. An Apache tomcat server was set up and run on a computer running

Microsoft Windows 2000 and the MySQL database server was implemented and run on

the same machine. All of the server programs discussed were deployed on the server so

that they were accessible by client applications over a HTTP connection.

A timing function was introduced to all three versions to record the time the particular

application spent connected to the network. This was done to determine which version

was the quickest and most responsive. A long network connection would make the

application undesirable for a patient to use, as they would experience a lengthy wait for

a validation or result upload. The timer runs from the moment the user presses the

‘Send’ key until the XML document has been received from the server, parsed and the

result updated in the phone memory.

Chapter 5: Implementation and Test

73

5.6.1 Phone Emulator Tests

The client MIDlets were tested on the Sun’s J2ME Wireless Toolkit and some vendor

specific phone emulators from companies such as Sony Ericsson, Nokia and Siemens.

The vendor emulators are designed to run java applications exactly as the actual

hardware would. With the exception of the third version using the additional Web

Services API package (JSR-172), the three systems were designed using only classes

from the CLDC 1.1 and MIDP 2.0 libraries to ensure platform independence and

compatibility with a large range of devices. These libraries are the minimum

requirement for any phone that is J2ME compliant.

Each version was tested to check that all of the functions implemented in it were

working as designed. All of the programs were seen to run as desired on the different

phone types, confirming that they were platform independent. As the mobile phone

emulators run on a desktop computer and connect to the server over a fixed wire

network the connection timer that was implemented was returning very low values. The

network calls were made 100 times by the timing function and the average times

recorded are shown in the table below.

Version Average Connection Time (ms)
1 322
2 816
3 854

Table 9: Network connection times with emulators

These values were unrealistically low for a real life implementation that communicates

over a mobile network. However they do indicate that the first version was quicker.

This is because it does not have to wait for validation of the result. The time difference

between version 2 and 3 is insignificantly small indicating that the validation and

processing time on the server is the same for each one.

Testing on the emulators proved to be very useful for checking functionality and finding

faults and bugs in the development of the implementations. However, to get an idea of

how the system would really work, the applications needed to be tested on real mobile

devices working on an actual mobile network.

Chapter 5: Implementation and Test

74

5.6.2 Phone Tests

To test the applications in a more realistic situation, the applications were loaded onto a

Siemens C65 mobile phone. This phone was used to test the first and second version

implementations but could not be used to test version three, as it does not support the

J2ME Web Services API. The applications were seen to work as expected with no

difference to the emulator tests. When connecting to the server however they took

longer, as expected. The average wait times experienced are shown below.

Version Average Connection Time (ms)
1 3234
2 3988

Table 10: Network connection times on a real system

So using the application in a real system has added about 3 seconds to the network

connection time of the emulated system.

5.7 Summary and Conclusion

The implementations of the three system designs outlined in Chapter 4 were

successfully carried out in both a mobile phone emulator environment and on a real

device. This chapter has provided a detailed description of the implementations of both

the client and server applications for all three versions of the system. The sequence

diagrams show the flow of each function available to the patient and how the methods

and classes related to each other. The screen flow diagrams in this chapter are taken

from the tests that were done using the J2ME wireless toolkit phone emulator.

The implementations proved that a mobile phone solution to the issue of connecting

patients to hospital for validation of results is a viable solution. The average time taken

for a user to receive advice back from the hospital in version 2 was less than four

seconds. This is a very short time to wait and if it were doubled, for example, the

system would still appear to work quickly. This means that much more logic and data

processing could be implemented on the server side if necessary, as in a real hospital

server. The connection times from both the emulator and real system indicate that most

of the 4 seconds or so in the real system is actually spent transmitting and receiving the

Chapter 5: Implementation and Test

75

data. This means that a four to six seconds delay on the server, for the purpose of

ensuring a better service, would be tolerable. After performing theses tests it has been

shown that all three versions are viable solutions and the speed of the service would

mainly depend on the complexity of the validation algorithm.

Chapter 6: Conclusions and Future Work

76

6 Conclusions and Suggested Future Work

6.1 Conclusions of Research

This thesis has successfully reported on the current status in the telemedicine and

medical informatics arenas, with regard to patient self-testing, the advantages afforded

and the issues and problems that can result. Initially, thorough research was carried out

in these areas to gain solid background knowledge of the areas of research. This

included researching the current information and communication systems used in

hospitals, clinical laboratory sample testing and validation of the results produced.

Validation of results is a very important part of the laboratory QA process and is

performed routinely in all automated clinical laboratories. An implementation of the

INCA system, discussed in Chapter 3, was carried out in the early stages of the research

to gain insight into how the test request and result reporting process works in a hospital

laboratory environment. From this implementation, invaluable knowledge of distributed

computing and laboratory information systems was obtained. The main problems

associated with patients who self-test at home were identified. Patients who use POCT

at home to manage their condition are isolated from the hospital that is responsible for

their treatment in terms of their day-to-day care, and their results are not subjected to

any validation process. Providing patients with a system of result validation and

transmitting their results to the hospital for storage and monitoring would greatly

improve the quality of patient care in the home health care environment. The work

presented in this thesis can act as a model for implementing such a system.

In addition to discussing the medical areas of this research project, current mobile

communications and software systems were also reported on. This is a rapidly growing

area of ICT and using this technology for developing a solution to the problems at hand

made sense. In addition, the ubiquity of mobile phones today means the service would

be accessible by many people and no additional communications devices would need to

be purchased. Use of a mobile phone to send result data to the hospital means the

patient is not tied down and can avail of the service away from the home, whilst at work

or on holiday. Open source technologies were used in this research including the Java

platform, Apache servers and MySQL database management systems. The micro

Chapter 6: Conclusions and Future Work

77

edition of Java (J2ME) provided a powerful and feature rich platform to program the

mobile applications. Most phones available today support Java technology.

After the background and review of the technologies was discussed, the three alternative

designs of a system for providing patients with remote healthcare assistance were

introduced. A full discussion of each of these designs and the methods and tools to be

used with them was given in Chapter 4. These systems provide a useful framework for

development of a full system. Each version provides a feature that makes it unique from

the other two, such as version one validating the result on the phone. This meant that

different features could be concentrated on when trying to evaluate the optimum system,

rather that designing one very complex solution. All three designs consist of a client

mobile phone application for the patient to enter their test result values and transmit

them to a web server in the hospital. Applications running on the web server process the

results and store them in a database so they are available for access by the validation

service and other services if necessary before being sent to the EPR.

A proof of concept for each version was implemented. All of the applications were

written using the Java platform. Initial tests during the development were carried out

using a number of mobile device emulators from different mobile phone vendors. This

helped to verify that the system would work on a range of different devices and device

types. It was seen that the applications worked well on all types of phone tested but they

looked better and were much clearer when emulated on phones with larger displays.

Once the implementations were working as designed on the emulators they were

installed on an actual device, which was capable of running Java applications and

making GPRS connections. The Apache Tomcat server that contained the server

applications was opened so it could be accessed from any client outside the college

firewall.

Testing the applications on a real device proved that the system could work well in a

real production environment. The time to transmit a result, process it on the server and

receive and process the response on the phone takes only four seconds or less as the

amount of data to transmit each way is in the region of only a few bytes. This time

could be increased to more than double before the system will appear to operate too

slowly. Hence, more server application logic or a busier hospital server should not

Chapter 6: Conclusions and Future Work

78

interfere with the overall operation of the current system. The first version of the system

design is capable of validating a result on the phone itself and can connect to the server

to retrieve updated validation information. Using this information combined with the

mathematical and data storage libraries available in J2ME meant relatively complex

result validation was possible on the mobile phone. The first version had the quickest

turnaround time when uploading the result to the server as it doesn’t have to wait on a

validation. The second and third versions allowed the result to be validated by the actual

hospital validation system, ensuring the results were validated with the gold standard

process. Both versions worked equally well in terms of turnaround time. However as

web services is a growing area of distributed computing and is being supported by more

and more clients, version three would make the most sense for any further

implementations. The user interface on all three versions is simple to use, with only a

few key menu choices. Thus, the applications could be used by any patient, who is

already capable of operating a POCT device, after only a very brief introduction.

This thesis encompasses a comprehensive review of the state-of-the-art in the

telemedicine, medical informatics and ICT fields and based on this review a system for

patient-hospital communication has been designed and a proof of concept implemented.

There is no doubt that the system developed in this thesis provides a good blueprint for

anyone who wants to fully implement a similar system. The tests carried out prove that

such a system has great potential for improving the quality of patient care. In addition,

the research carried out for this thesis adds to the body of knowledge of how mobile

communications can be used to improve patient healthcare without dramatic increases

in costs.

6.2 Suggested Improvements and Future Work

The system designed for this thesis met the required specifications and worked well

when implemented. It provides a very good base for further developing the system into

a fully featured remote validation service for use in the real world. Implementation of a

fully working system would necessitate a much longer time period to the time limit of

the research. However, from the work developed, important issues have been identified

which should be addressed and many modifications could be instigated to improve it.

Chapter 6: Conclusions and Future Work

79

6.2.1 Device Connectivity

In order to eliminate erroneous result data being entered into the client application, there

should be a system implemented to transmit the information from the POCT device to

the mobile phone. This could be done over an IrDA link or using a Bluetooth

connection [12]. J2ME contains additional packages for Bluetooth connectivity so it

would be possible to introduce interfacing with a Bluetooth enabled POCT device to the

current applications. Implementing such a feature would greatly reduce the chance of

human error occurring and thus make the existing system more robust and reliable.

6.2.2 Security and Encryption

The system designed in this thesis keeps patient information private by using usernames

so it does not transmit any actual patient identification data over the network. The server

can then log the patient in and retrieve actual patient information, if necessary, using the

user details. This is the first step in ensuring the privacy and anonymity of the patient.

However, patient privacy and confidentiality is one of the most important issues in a

hospital system and introducing a system that puts patient data in a vulnerable position

is not acceptable. Information that is transmitted over a wireless link is subject to

interception by unauthorised parties. A number of steps may be introduced in order to

ensure this system protects patient information.

The first step is to configure Tomcat to be a secure server. Next, ensure all network

communication is carried out over a secure connection. J2ME is capable of making

Secure HTTP (HTTPS) connections using the Secure Sockets Layer (SSL) [69]. The

information should be encrypted before being sent so that it is transmitted as a

seemingly meaningless stream of data and then decrypted by the receiver. Finally the

integrity of the data should be verified to ensure it has not been altered in transit.

Implementing these methods will ensure a far more secure and reliable system that

patients will be quicker to trust.

6.2.3 Display Size

Although the applications developed have worked and functioned as desired when

testing, one point that was noticed when testing the system on the Siemens device was

the cluttered appearance of some information on the screen. The Siemens device had a

Chapter 6: Conclusions and Future Work

80

screen size of 130 by 130 pixels, which is relatively small compared to many of the

phones available today. For the applications to present the data in a neater and more

presentable form, a larger screen is recommended. The methods for displaying result

data could be reviewed and modified to arrange the display data in a more compact way,

but using the application on a phone with a medium to large display size would ensure

the information is presented in a clear and easy to read manner.

6.2.4 Alternative Client Types

The server programs implemented are not specifically designed for use with mobile

phone clients. This means that a wide range of client types could be developed to avail

of the service, including a stand-alone PC application, a HTML web browser system or

a PDA with internet access. To broaden the scope of this system, different client types

can now be developed to interface with the existing server applications, thus providing

the patient with the same services. This could help the system reach a wider range of

people who may not be comfortable with a mobile phone solution.

Appendix A: Nomenclature

81

Appendix A: Nomenclature

2G The second generation digital GSM mobile network

3G Third Generation mobile communications standard capable of data

rates up to 2 Mbps.

API Application Programming Interface. A library of java classes and
the available methods within the classes.

CLDC Connected Limited Device Configuration. A set of API’s for
developing Java programs on mobile devices with limited memory.

CORBA Common Object Request Broker Architecture. Enables
communication between distributed objects.

EPR Electronic Patient Record. A secure, well-formed and electronic
method for storing patient information in a hospital system.

GPRS General Packet Radio Service. Sometimes referred to as 2.5G,
provides increased data transfer rates in 2G networks.

GSM Global System for Mobile Communications.

HIS Hospital Information System. For storing and handling hospital data
and information.

HL7 Health Level Seven. An American National Standards Institute
accredited standard for hospital data communication.

HTTP HyperText Transfer Protocol. This is a protocol that allows the
exchange of data between clients and servers. Primarily used for the
exchange of HTML documents on the internet it can be used to
transfer a variety of data types.

HTML HyperText Markup Language. A standard way in which a document
should be structured so it can be viewed universally on the web. A
set of tags define how a document’s content should be interpreted.

INCA Integrated Networked Clinical Analyser. A standard for linking
clinical analysers to Laboratory Information Systems.

INR International Normalised Ratio.

J2EE Java 2 Platform Enterprise Edition. For server programs and web
services.

J2ME Java 2 Platform Micro Edition. Designed for resource constrained

Appendix A: Nomenclature

82

mobile devices.

J2SE Java 2 Platform Standard Edition. The standard, desktop edition of
the Java platform.

JAX-RPC Java API for XML-based Remote Procedure Calling.

JAXP Java API for XML Processing.

JRE Java Runtime Environment. Contains all of the basic API’s needed
to execute Java programs on a computer.

JVM Java Virtual Machine. For executing the Java byte code.

KVM Kilo Virtual Machine. A JVM optimised or resource constrained
devices such as mobile phones.

LIS Laboratory Information System. Responsible for handling clinical
laboratory data and processes.

MIDP Mobile Information Device Profile. A set of API’s which allow
J2ME developers deal with mobile device specific issues such as
networking and record management.

POCT Point of Care Testing. Clinical testing at or near to the place of
patient care.

RDBMS Relational Database Management System. A system where data is
stored in a collection of tables related to each other through
common data values.

SMS Short Messaging Service. Simple text-based mobile communication
standard.

SQL Structured Query Language. A language for accessing and
manipulating data in databases.

UMTS Universal Mobile Telecommunications System. European standard
for 3G development.

WAP Wireless Application Protocol. Standard for linking wireless
devices to Internet services.

WSDL Web Services Definition Language. An XML-based protocol that is
used to describe a remote web service.

XML Extensible Mark-up Language. A customisable system for
structuring and organising documents.

Appendix B: POCT Equipment

83

Appendix B: POCT Equipment

There are many, many manufacturers of Point of Care Test (POCT) Equipment for both

home use by patients and for use at hospital bedside by trained staff. These Devices

range in complexity, from small handheld devices to sophisticated laboratory style

analysers. As well as the many manufacturers, the different types and categories of

device is also very large. The test method used by one device is often different to that of

another vendors’ device of the same type. The functions available to a user or patient

are also varied, some being very simple and merely producing a result to one test, and

others being able to analyse a sample, produce many results, store them, profile the past

results, connect to a LIS or computer and recommend medication dosages.

It was important for this research that the most popular functions used by these devices

was found. A list was compiled, profiling the different aspects of the POCT Equipment.

Some devices of American origin are categorised by the CLIA on their Complexity, if

they are CLIA waived that means that they are easy enough to be used by a patient in

the home. Some are ‘Moderately Complex’ which means they would be used by a

professional like doctor in his surgery or in a clinic.

The Different Categories

Here are some of the main ones under the meter type category:

• Glucose Meters or Glucometers
• Blood Coagulation and Clotting units, Pothrombin Time, INR etc.
• Cholesterol
• Lactose Meters
• Holter Monitors, Event Recorders and ECG units
• Blood Pressure Monitors
• Sats Monitors (SpO2)
• Spirometers
• Blood Gas
• Urinalysis

Some of the devices of this list are shown over the next few pages.

Device Name Device Type Input Required Value returned Other Details
Bayer Ascensia®
DEX® 2 Blood
Glucose
Monitoring System

Glucometer Blood Drop, Glucose Level (Numeric) Saves information for up to 100 tests with
dates, times and 4 daily averages.
Download the meter's information to PC to
manage data.

CardioChek
Analyzer

Blood Analyser
and Glucometer

Blood Drop on
Test strip

Total cholesterol, HDL,
triglycerides, glucose, ketone

Internal storage/review past measurements

CardioChek PA
Analyzer

Blood Analyser
and Glucometer

Blood Drop on
Test strip

Total Cholesterol, HDL (good
cholesterol), Triglycerides, LDL
(calculated by analyzer),
Glucose, Blood Ketone, Creatinine
(only for medical professionals)

Internal storage/review past measurements

PrestigeIQ
Glucose Kit
(meter,10
strips,supplies)

Glucometer Blood Drop on
Test strip

Glucose Level (Numeric) Date & Time, 14 & 30 Day Averaging

HealthFrontier
ecg@Home

ECG Monitor.
Bandwidth: 0.5
- 30 Hz linear
phase

Thumbs placed
on electrodes,
one external
lead to leg.

will acquire 10 seconds of Lead (I)
and Lead (II), deviation of the ST
segment of the wave, duration of
the QRS complex, abnormalities
of the T-wave.

The recorded data is sent to a data warehouse
via Internet, wireless device, email, or via the
built-in trans-telephonic coupler to tele-health
center, where it can be immediately tracked,
scanned and analyzed or sent to caregiver.

Device Name Device Type Input Required Value returned Other Details
HealthFrontier
ecgAnywhere

ECG Monitor.
Bandwidth:
0.05 - 75Hz
(-3dB)

12 standard lead
with
simultaneous
recording

simultaneous acquisition of 12
lead ECG tracing in 10 seconds.

record and store an ECG tracing and transmit it
over the Internet via a PC, handheld PDA
etc.to a remote receiving centre where it is
stored and retrieved by the patient's care-giver.
Bandwidth 0.05 - 75Hz (-3dB)

ICT (International
Technidyne
Corporation)
ProTime
prothrombin time
tester

Prothrombin
Time (PT)
(Coagulation)

Blood Drop Results are reported in both INR
and PT seconds

Store 30 results in memory. The Cuvette uses
three channels which test the PT and two on-
board quality control tests, at the same time.
The instrument and cuvette quality controls
function together to ensure correct sample
size, collection technique, test procedure,
device functionality and reagent integrity

BD Logic™ Blood
Glucose Monitor

Glucometer Blood Drop Glucose Level (Numeric) Use a High/Low Blood Sugar Reference Card.
warning if Blood Glucose Higher Than 600
mg/dL or lower than 20 mg/dL. Option to record
Insulin volumes insulin type and dose for
reference later. Can also obtain averages of
test results.

CARDY Home
ECG Device

ECG Monitor 6 electrode
leads placed on
body

ECG data is sent to the software
on a PC and here it can be viewed
and stored etc.The software can
dtermine various parameters
associated with ECG
measurements.

Software for PC needed for carrying out
traditional, laboratory ECG tasks:
measurement, analysis, data storing,
comparing.
as well as programming CARDY® HOME, and
downloading data from its memory.

Device Name Device Type Input Required Value returned Other Details
Welch Allyn's Spot
Vital Signs

non-invasive
blood pressure,
pulse rate,
temperature,
mean arterial
pressure and
SpO2

Various: finger
probe, arm cuff

All Numeric values of the
measured signs.

all results in 30 seconds. external printer is
available for record keeping purposes

Roche Diagnostics
CoaguChek S

Coagulation
meter

10 ul blood drop INR (international normalized
ratio)

advanced-generation reflectance photometer
for on-the-spot measurement of prothrombin
time. Results can then be relayed to Health
Care Professional, who will check that they fit
within personal target range and optimise
warfarin dose. All necessary calibration
information is provided by a code chip - no
manual calibration is required. Internal quality
control (QC).

Dráger Medical
OxyTrend

Pulsed
Oxymeter
(SpO2)

Finger Probe Pulse Rate, SpO2.

Device Name Device Type Input Required Value returned Other Details
ITC Hgb Pro Hemoglobin

Test unit
Blod Drop on
Test Strip

Hemoglobin measures optical reflectance. Blood is applied
to the test strip where it comes in contact with a
red blood cell lysing agent which induces red
blood cells to burst and release hemoglobin. It
measures the change in reflected light before
and after blood application to determine total
hemoglobin.Result reported within 10 seconds
of sample application.

Cholestech
L·D·X® System

Blood Analyser
and Glucometer

Blood Drop Measures TC, HDL and
triglycerides, calculates the
TC/HDL ratio and estimates of
LDL and VLDL.

Measures TC, HDL and triglycerides,
calculates the TC/HDL ratio and estimates of
LDL and VLDL. Factory calibrated

Micro DL
Spirometer

Spirometer Patient Blows
Air through it

Date/Time, FEV1, FVC, PEF,
FEV%, F50, F25, MEF, FET
(All measurements printed as
result, %predicted, predicted and
normal range)

Stores Up to 500 complete data sets including
the Flow/Volume & Volume/Time curve.
Modem facility. Software: powerful trend
packages available featuring the ability to
overlay Flow/Volume curves from previous
tests and spirometry data collection

Table 11: POCT Devices

Appendix C: INCA

88

Appendix C: INCA

This appendix is to describe the version of the INCA system that was implemented as

part of the initial research. It was implemented using the MSc thesis of F. Knox [16],

who originally developed the system.

Background to INCA

INCA is a system that was developed to provide a standard specification for a CORBA

instrument interface in hospitals. This means analytical instruments can be connected to

the hospital LIS so that results can be transferred automatically to clinicians and

requests for specific tests on a sample by a particular instrument can be made.

Doctors can request specific tests from remote locations. These tests will be carried out

on specimen samples that have been taken from a patient using the instruments in the

lab, either automatically or with assistance of a laboratory technician. When the test

result or results are ready, they are available for the doctor to view. In addition to the

above, a doctor can subscribe to a specific set of results given input conditions, such as

all test results from a certain patient or all test results of a certain type. There is also a

validation client (or various ones), which take results and ensure that the values are

valid subject to certain rules, which may involve using information from the patients

record. This section of the system was not actually implemented in the original version

of INCA but it was discussed and is an important part of this work, so a simple

validation client was written in for this implementation.

Database

In the original specification, flat files are used to store all of the data passing through the

system. This implementation utilises a database to store all information needed to run

the INCA system. Some of this information is only temporarily stored and removed

when no longer needed e.g. orders for results are removed when they have been

obtained, and some is stored long term, such as patient details. A database was created

Appendix C: INCA

89

using Microsoft Access for the system. The programming language used is Java, which

has imbedded SQL statements to manipulate the database.

A requirements analysis was performed first, which involved looking at the problem

and writing out the requirements and tasks as plain English sentences so as to identify

the entities and attributes so that tables could be designed for the database. Some of the

tables were designed using the information about the main objects in the INCA

document, so they could hold data relating to all of the attributes of the object. Some of

the entities identified were patients, samples, results, tests, specimen types, analysers

and requests. The database designed is shown below.

Figure 38: E-R diagram for INCA database

The INCA document had detailed descriptions of objects in the system, the Results and

Requests tables were designed by just making them represent the corresponding objects.

The Worklist tables were designed using information from the INCA document also.

Information about specimen types and tests were obtained from a sample database for

Appendix C: INCA

90

the lab of St. James hospital, and the Tests, Test Ranges and Specimen Types tables

were designed using it.

The Implemented INCA System

In the original implementation of INCA by Knox, C++ was the programming language

used. As this system needs to be platform independent and is to be implemented on

mobile devices, Java is a far better choice of implementation language. This means that

all of the coding had to be redone using Java. As the original was built on distributed

object technology using CORBA, the change to Java was not too difficult as it has good

packages for CORBA programming.

To help describe the system a typical workflow will be used. When a patient is admitted

to hospital they will have their details recorded and will be assigned a Patient

Identification number. A doctor may order some specimen samples (such as blood or

urine) to be taken from the patient so that certain tests relating to the patients condition

can be performed on the sample. When the sample is taken it is labelled, recorded in the

database and sent to the lab. Each specimen type is suitable for certain tests. The

treating doctor or clinician can call up the patients’ details and see what sample types

have been taken, and choose one of these for tests.

The following is a rough outline of the sequence of events that occur once the samples

have been taken.

1. The doctor enters the sample Id he is interested in having tests performed on. By

looking up the database on the server, the system will show a list of the corresponding

tests for the sample entered and the doctor can select the tests he wishes to have

performed on it. This information is bundled into a request object and is entered into the

database on the server via a CORBA connection. So now a request has been made and a

request sequence number is generated and returned to the user. The request is entered

into a work-list, which is a list of the requests for the analysers to process and is

represented by a table in the database. The request is made using the methods available

in the INCA IDL file.

Appendix C: INCA

91

Figure 39: Add request sequence diagram

2. In the lab there are analysers, which are normally automated but may be operated by

lab technicians. The analyser moves through the work-list and deals with the requests

relevant to it in the order they were placed in the list. It verifies the sample ID in the

request with the physical sample by reading the bar coded label. Next it performs the

tests that were requested. For each result produced a new result object is constructed

and placed in the database on the server via the CORBA interface. The result is added to

the database using methods available in the Advanced Analyser Services (AAS)

interface in the AAS IDL. The result is also added to a results work-list.

Appendix C: INCA

92

Figure 40: Internal INCA sequence diagram

3. Another client using the AAS methods is the validation client. Similar to the way the

Analyser moved through the requests in the requests work-list to perform tests, it moves

through the results work-list and validates the results queued. The validation of results

is very important and is in simple terms a measure of the ‘believability’ of the result

value and is assessed against internal consistency and against clinical information. Thre

are various advanced validation checks used in the clinical environment [23]. In this

implementation the validation service consists of a very simple check of the result value

to see if it is within a certain range. If it is it is set as valid, if not it is deemed invalid.

The status attribute for the result is updated to reflect whether it is valid or not and the

database on the server is updated.

Appendix C: INCA

93

Figure 41: Validation sequence diagram on INCA system

4. The doctor who made the original request for tests in 1 above is able to check the

status of requests s/he has made at any time using the request sequence number. If the

sample has been analysed and results are available they will be displayed along with

their status (valid, invalid or not yet validated). This is done using the AAS module.

Appendix C: INCA

94

Figure 42: Sequence diagram for retrieving requested results

Appendix D: Blood Test Reference Ranges

95

Appendix D: Blood Test Reference Ranges
The following table is a list of reference ranges for various blood tests [70]. The

Glucose reference range was used in the implementations in this thesis.

Test Reference Range (conventional units)

Acidity (pH) 7.35 - 7.45

Alcohol 0 mg/dL (more than 0.1 mg/dL normally indicates intoxication) (ethanol)

Ammonia 15 - 50 µg of nitrogen/dL

Amylase 53 - 123 units/L

Ascorbic Acid 0.4 - 1.5 mg/dL

Bicarbonate 18 - 23 mEq/L (carbon dioxide content)

Bilirubin Direct: up to 0.4 mg/dL
Total: up to 1.0 mg/dL

Blood Volume 8.5 - 9.1% of total body weight

Calcium 8.5 - 10.5 mg/dL (normally slightly higher in children)

Carbon Dioxide
Pressure

35 - 45 mm Hg

Carbon Monoxide Less than 5% of total hemoglobin

CD4 Cell Count 500 - 1500 cells/µL

Ceruloplasmin 15 - 60 mg/dL

Chloride 98 - 106 mEq/L

Complete Blood Cell
Count (CBC)

Tests include: hemoglobin, hematocrit, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, mean corpuscular volume,
platelet count, white Blood cell count.

Copper Total: 70 - 150 µg/dL

Creatine Kinase (CK
or CPK)

Male: 38 - 174 units/L
Female: 96 - 140 units/L

Creatine Kinase
Isoenzymes

5% MB or less

Creatinine 0.6 - 1.2 mg/dL

Electrolytes Test includes: calcium, chloride, magnesium, potassium, sodium.

Erythrocyte
Sedimentation Rate
(ESR or Sed-Rate)

Male: 1 - 13 mm/hr
Female: 1 - 20 mm/hr

Glucose Tested after fasting: 70 - 110 mg/dL

Appendix D: Blood Test Reference Ranges

96

Hematocrit Male: 45 - 62%
Female: 37 - 48%

Hemoglobin Male: 13 - 18 gm/dL
Female: 12 - 16 gm/dL

Iron 60 - 160 µg/dL (normally higher in males)

Iron-binding Capacity 250 - 460 µg/dL

Lactate (lactic acid) Venous: 4.5 - 19.8 mg/dL
Arterial: 4.5 - 14.4 mg/dL

Lactic
Dehydrogenase

50 - 150 units/L

Lead 40 µg/dL or less (normally much lower in children)

Lipase 10 - 150 units/L

Zinc B-Zn 70 - 102 µmol/L

Lipids:

 Cholesterol Less than 225 mg/dL (for age 40-49 yr; increases with age)

10 - 29 years 53 - 104 mg/dL

30 - 39 years 55 - 115 mg/dL

40 - 49 years 66 - 139 mg/dL

50 - 59 years 75 - 163 mg/dL

60 - 69 years 78 - 158 mg/dL

 Triglycerides

 > 70 years 83 - 141 mg/dL

Liver Function
Tests

Tests include bilirubin (total), phosphatase (alkaline), protein (total and
albumin), transaminases (alanine and aspartate), prothrombin (PTT)

Magnesium 1.5 - 2.0 mEq/L

Mean
Corpuscular
Hemoglobin
(MCH)

27 - 32 pg/cell

Mean
Corpuscular
Hemoglobin
Concentration
(MCHC)

32 - 36% hemoglobin/cell

Mean
Corpuscular
Volume (MCV)

76 - 100 cu µm

Osmolality 280 - 296 mOsm/kg water

Oxygen
Pressure

83 - 100 mm Hg

Appendix D: Blood Test Reference Ranges

97

Oxygen
Saturation
(arterial)

96 - 100%

Phosphatase,
Prostatic

0 - 3 units/dL (Bodansky units) (acid)

Phosphatase 50 - 160 units/L (normally higher in infants and adolescents) (alkaline)

Phosphorus 3.0 - 4.5 mg/dL (inorganic)

Platelet Count 150,000 - 350,000/mL

Potassium 3.5 - 5.0 mEq/L

Prostate-
Specific Antigen
(PSA)

0 - 4 ng/mL (likely higher with age)

Proteins:

 Total 6.0 - 8.4 gm/dL

 Albumin 3.5 - 5.0 gm/dL

 Globulin 2.3 - 3.5 gm/dL

Prothrombin
(PTT)

25 - 41 sec

Pyruvic Acid 0.3 - 0.9 mg/dL

Red Blood Cell
Count (RBC)

4.2 - 6.9 million/µL/cu mm

Sodium 135 - 145 mEq/L

Thyroid-
Stimulating
Hormone (TSH)

0.5 - 6.0 µ units/mL

Transaminase:

 Alanine (ALT) 1 - 21 units/L

 Aspartate
(AST)

7 - 27 units/L

Urea Nitrogen
(BUN)

7 - 18 mg/dL

BUN/Creatinine
Ratio

5 - 35

Uric Acid Male 2.1 to 8.5 mg/dL (likely higher with age)

Appendix D: Blood Test Reference Ranges

98

 Female 2.0 to 7.0 mg/dL (likely higher with age)

Vitamin A 30 - 65 µg/dL

White Blood Cell
Count (WBC)

4,300 - 10,800 cells/µL/cu mm

Table 12: Blood test reference ranges

Appendix E: Publications

99

Appendix E: Publications

Owen Lynch, John McGrory and Eugene Coyle, Design of Mobile Phone Applications
for Point of Care Test Result Validation, IASTED International Conference on
Telehealth, Banff, Canada, 19 – 21 July 2005.

Appendix E: Publications

100

Appendix E: Publications

101

Appendix E: Publications

102

Appendix E: Publications

103

Appendix E: Publications

104

John McGrory, Owen Lynch and Eugene Coyle, Design of a Wireless System for
Patient-Hospital Communication and Result Validation in Point of Care Testing,
International Conference of Computational Intelligence and Multimedia Applications
ICCIMA’05, Las Vegas, USA, 16 – 18 August 2005.

Appendix E: Publications

105

Appendix E: Publications

106

Appendix E: Publications

107

Appendix E: Publications

108

Appendix E: Publications

109

References

110

References

[1] K. Kinsella and D. R. Phillips, "Global Ageing: The Challenge of Success,"

Population Bulletin, vol. 60 (1), 2005.
[2] O. Lynch, J. McGrory, and E. Coyle, "Design of Mobile Phone Applications for

Point of Care Test Result Validation," presented at IASTED International
Conference on Telehealth, Banff, Canada, 19 - 21 July 2005.

[3] A. MacFarlane, A. W. Murphy, and P. Clerkin, "Telemedicine services in the
Republic of Ireland: An evolving policy context," Health Policy, vol. Elsevier
(www.sciencedirect.com), 2005.

[4] J. M. Fitzmaurice, "Telehealth Research and Evaluation: Implications for
Decision Makers," presented at Pacific Medical Technology Symposium, 17-20
Aug 1998.

[5] S. Senapati and A. P. Advincula, "Telemedicine and robotics: Paving the way to
the globalization of surgery," International Journal of Gynecology & Obstetrics,
vol. 91 (3), 2005.

[6] E. Coiera, Guide To Health Informatics, 2nd ed: Arnold Publishers, 2003.
[7] B. Brown, A Brief History of Telemedicine, Telemedicine Information

Exchange, http://tie.telemed.org/articles.asp, 1995, Accessed September 2005
[8] W. R. Hersh, M. Helfand, J. Wallace, D. Kraemer, P. Patterson, S. Shapiro, and

M. Greenlick, "Clinical outcomes resulting from telemedicine interventions: a
systematic review," BMC Medical Informatics and Decision Making, vol. 1 (5),
2001.

[9] J. Ansell, A. Jacobson, J. Levy, H. Voller, and J. M. Hasenkam, "Guidelines for
implementation of patient self-testing and patient self-management of oral
anticoagulation. International consensus guidelines prepared by International
Self-Monitoring Association for Oral Anticoagulation," International Journal of
Cardiology, vol. 99 pp. 37 - 45, 2005.

[10] "Mobile phones may supply link to better health," in The Irish Times. Dublin,
7th October 2005.

[11] M. Kramer, T. Norgall, and T. Penzel, Short Strategic Study: Strategies for
harmonisation and integration of device-level and enterprise-wide
methodologies for communication as applied to HL7, LOINC and ENV 13734:
CEN/TC 251, 2001.

[12] A. Cronin, "A Wireless Data Logger," MPhil, Faculty of Engineering, Dublin
Institute of Technology, 2005

[13] J. H. Van Bemmel and M. A. Musen, Handbook of Medical Informatics, 1st ed:
Springer-Verlag, 2000.

[14] ASTM International, http://www.astm.org/, Accessed November 2005
[15] ENV 13728: Health informatics - Instrument interfaces to laboratory

information systems: CEN/TC 251, 1999.
[16] F. Knox, "The Design and Implementation of an Integrated Networked Clinical

Analyser," M.Sc., Staffordshire University,
[17] P. Wilkinson, "2010 vision," NHS Magazine, 2004.
[18] S. Rogerson, "Electronic Patient Records, ETHIcol," IMIS Journal, vol. 10 (5),

2000.
[19] What is HL7?, Health Level Seven (HL7) - official website, http://www.hl7.org/,

Accessed October 2005

http://www.sciencedirect.com
http://tie.telemed.org/articles.asp
http://www.astm.org/
http://www.hl7.org/

References

111

[20] E.-W. Huang, D.-W. Wang, and D.-M. Liou, "Development of a Deterministic
XML Schema by Resolving Structure Ambiguity of HL7 Messages," Computer
Methods and Programs in Biomedicine, vol. 80 (1), pp. 1 - 15, 2005.

[21] P. M. Valdiguié, E. Rogari, and H. Philippe, "VALAB: Expert System for
Validation of Biochemical Data," Chlinical Chemistry, vol. 38 (1), pp. 83 - 87,
1992.

[22] W. P. Oosterhuis, H. J. L. M. Ulenkate, and H. M. J. Goldschmidt, "Evaluation
of LabRespond, a New Automated Validation System for Clinical Laboratory
Test Results," Clinical Chemistry, vol. 46 (11), pp. 1811 - 1817, 2000.

[23] G. Boran, P. Given, and R. O’Moore, "Patient Result Validation Services,"
Computer Methods and Programs in Biomedicine, vol. 50 pp. 161 -168, 1996.

[24] J. X. Corberand, "Computer Validation in Hematology," Immuno-analyse &
Biologie spécialisée, vol. 18 pp. 133 - 137, 2003.

[25] J. C. Libeer, "Validation of Clinical Laboratory Results: Discussion of Essential
Validation Elements," Drug Information Journal, vol. 31 pp. 243 - 250, 1997.

[26] C. A. Holland and F. L. Kiechle, "Point-of-care molecular diagnostic systems —
past, present and future," Current Opinion in Microbiology, vol. 8 (5), 2005.

[27] B. M. Goldsmith, Optimizing Point-of-care Testing, Advance for Administrators
of the Laboratory, http://laboratory-
manager.advanceweb.com/common/Editorial/Editorial.aspx?CC=38611, 2005,
Accessed September 2005

[28] C. A. Lehmann, "The Future of Home Testing - Implications for Traditional
Laboratories," Clinica Chimica Acta, vol. 323 pp. 31 - 36, 2002.

[29] S. Skeie, G. Thue, K. Nerhus, and S. Sandberg, "Instruments for Self-
Monitoring of Blood Glucose: Comparisons of Testing Quality Achieved by
Patients and a Technician," Clinical Chemistry, vol. 48 (994 - 1003), 2002.

[30] R. M. Bergenstal and J. R. Gavin III, "The role of self-monitoring of blood
glucose in the care of people with diabetes: report of a global consensus
conference," The American Journal of Medicine, vol. 118 (1), pp. 1 - 6, 2005.

[31] Diabetes, Lab Tests Online,
http://www.labtestsonline.org/understanding/conditions/diabetes.html, Accessed
October 2005

[32] Ascensia (TM), Bayer Diagnostics, http://www.ascensia.co.uk/, 2005, Accessed
October 2005

[33] Accu-Check, Roche diagnostics, http://www.accu-chek.co.uk/, 2005, Accessed
October 2005

[34] One Touch Glucose Meters, LifeScan, http://www.lifescan.com/, 2005,
Accessed October 2005

[35] Warfarin, Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Warfarin, 2005, Accessed October 2005

[36] F. Newall, P. Monagle, and L. Johnston, "Home INR monitoring of oral
anticoagulant therapy in children using the CoaguChek S point-of-care monitor
and a robust education program," Thrombosis Research, Article in press
(Available online15 September 2005) 2005.

[37] HemoSense®, maker of the INRatio® Monitor, MemoSense,
http://www.hemosense.com/, 2005, Accessed October 2005

[38] CoaguCheck System, Roche diagnostics, http://www.coaguchek.co.uk/, 2005,
Accessed October 2005

http://www.labtestsonline.org/understanding/conditions/diabetes.html
http://www.ascensia.co.uk/
http://www.accu-chek.co.uk/
http://www.lifescan.com/
http://en.wikipedia.org/wiki/Warfarin
http://www.hemosense.com/
http://www.coaguchek.co.uk/

References

112

[39] Prothrombin Time, Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/International_normalized_ratio, 2005, Accessed
October 2005

[40] S. Josifovska, "Where Next for the Handset?," IEE Review, vol. 50 (12), pp. 36
– 39., 2004.

[41] ARM Processors, http://www.arm.com/products/CPUs/index.html, Accessed
August 2005

[42] D. Dagon, T. Martin, and T. Starner, "Mobile phones as computing devices: the
viruses are coming!," IEEE Pervasive Computing, vol. 3 (4), pp. 11 - 15, 2004.

[43] History of GSM, GSM World – the website of the GSM Association,
http://www.gsmworld.com/about/history/index.shtml, Accessed August 2005

[44] G. Heine, GSM Networks: Protocols, Terminology and Implementation, First ed:
Artech House Publishers, 1999.

[45] What is GPRS?, GSM World – the website of the GSM Association,
http://www.gsmworld.com/technology/gprs/intro.shtml, Accessed August 2005

[46] I. Poole, "From Analogue to 3G," IEE Communications Engineer, vol. 1 (3), pp.
26 – 29, 2003.

[47] 3G and UMTS, a new and impatient reality, Bankinter Innovation Foundation,
Future Trends Forum,
http://www.ftforum.org/doc/3G_UMTS_A_new_and_impatient_reality.pdf,
Accessed August 2005

[48] G. Peersman, S. Cvetkovic, P. Griffiths, and H. Spear, "The Global System for
Mobile Communications Short Message Service," IEEE Personal
Communications, vol. 7 (3), pp. 15 – 23, 2000.

[49] What is WAP?, GSM World – the website of the GSM Association,
http://www.gsmworld.com/technology/wap/intro.shtml, Accessed August 2005

[50] K. Read and F. Maurer, "Developing Mobile Wireless Applications," IEEE
Internet Computing, vol. 7 (1), pp. 81-86, 2003.

[51] M. Campione and K. Walrath, About the Java Technology, Sun Microsystems,
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html,
Accessed September 2005

[52] Java Glossary, Sun Microsystems, http://java.sun.com/docs/glossary.html,
Accessed September 2005

[53] R. Riggs, A. Taivalsaari, and M. VandenBrink, Programming Wireless Devices
with the Java 2 Platform, Micro Edition, 1st ed: Addison-Wesley, 2001.

[54] Building Compelling Services for the Wireless Market Using Java Technology,
Sun Developer Network,
http://developers.sun.com/techtopics/mobility/getstart/articles/whyjava/, 2001,
Accessed June 2005

[55] J2ME Devices, Sun Microsystems,
http://developers.sun.com/techtopics/mobility/device/device, Accessed
September 2005

[56] Connected Limited Device Configuration Specification Version 1.1 for Java 2
Micro Edition (JSR-139), Sun Microsystems,
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html, 2003,
Accessed June 2005

[57] Y. Feng and J. Zhu, Wireless Java Programming with J2ME, 1st ed: Sams, 2001.
[58] E. Ortiz, A Survey of J2ME Today, Sun Developer Network,

http://developers.sun.com/techtopics/mobility/getstart/articles/survey/, October
2004, Accessed November 2005

http://en.wikipedia.org/wiki/International_normalized_ratio
http://www.arm.com/products/CPUs/index.html
http://www.gsmworld.com/about/history/index.shtml
http://www.gsmworld.com/technology/gprs/intro.shtml
http://www.ftforum.org/doc/3G_UMTS_A_new_and_impatient_reality.pdf
http://www.gsmworld.com/technology/wap/intro.shtml
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html
http://java.sun.com/docs/glossary.html
http://developers.sun.com/techtopics/mobility/getstart/articles/whyjava/
http://developers.sun.com/techtopics/mobility/device/device
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://developers.sun.com/techtopics/mobility/getstart/articles/survey/

References

113

[59] H. M. Deitel, P. J. Deitel, and S. Santry, Advanced Java 2 Platform: How To
Program, 1st ed: Prentice-Hall, 2002.

[60] B. Day, Developing Wireless Applications using the Java 2 Platform, Micro
Edition, Sun Developer Network,
http://developers.sun.com/techtopics/mobility/getstart/articles/wirelessdev/,
2001, Accessed April 2005

[61] Mobile Information Device Profile for Java 2 Micro Edition Version 2 (JSR-
118), Sun Microsystems,
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html, 2002,
Accessed June 2005

[62] CORBA Specification, Version 3.03, Object Management Group,
http://www.omg.org/technology/documents/formal/corba_iiop.htm, 2003,
Accessed May 2005

[63] M. Haahr, R. Cunningham, and V. Cahill, "Supporting CORBA Applications in
a Mobile Environment," presented at MobiCom '99: 5th International
Conference on Mobile Computing and Networking, Seattle, 1999.

[64] Java 2 Platform, Micro Edition (J2ME) Web Services: Sun Microsystems, A
Technical White Paper, 2004.

[65] C. E. Ortiz, Introduction to J2ME Web Services, Sun Developer Network,
http://developers.sun.com/techtopics/mobility/apis/articles/wsa/index.html,
2004, Accessed May 2005

[66] V. Chopra, A. Bakore, J. Eaves, B. Galbraith, S. Li, and W. C., Professional
Apache Tomcat 5 (Programmer to Programmer), 1st ed: Wiley Publishing, Inc.,
2004.

[67] K. Kline and D. Kline, SQL in a Nutshell, 1st ed: O'Reilly and Associates, 2001.
[68] J. Knudsen, Networking, User Experience, and Threads, Sun Developer

Network, http://developers.sun.com/techtopics/mobility/midp/articles/threading/,
January 2002, Accessed April 2005

[69] Q. H. Mahmoud, Secure Java MIDP Programming Using HTTPS with MIDP,
Sun Developer Network,
http://developers.sun.com/techtopics/mobility/midp/articles/https/, 2002,
Accessed November 2005

[70] Blood Test Results Nomal Range Reference Chart, Blood Book,
http://www.bloodbook.com/ranges.html, Accessed November 2005

http://developers.sun.com/techtopics/mobility/getstart/articles/wirelessdev/
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://developers.sun.com/techtopics/mobility/apis/articles/wsa/index.html
http://developers.sun.com/techtopics/mobility/midp/articles/threading/
http://developers.sun.com/techtopics/mobility/midp/articles/https/
http://www.bloodbook.com/ranges.html

	Point of Care Healthcare Quality Control for Patients Using Mobile Devices
	Recommended Citation

	FINALMaster.doc

