
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Electrical and Electronic Engineering 

2010-01-01 

Encryption using Deterministic Chaos Encryption using Deterministic Chaos 

Jonathan Blackledge 
Technological University Dublin, jonathan.blackledge@tudublin.ie 

Nikolai Ptitsyn 
Moscow State Technical University, nptitsyn@gmail.com 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 

 Part of the Applied Statistics Commons, Probability Commons, Statistical Models Commons, and the 

Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Blackledge, J., Ptitsyn, N.: Encryption using Deterministic Chaos. ISAST Transactions on Electronics and 
Signal Processing, vol. 4, issue 1, pp. 6-17. 2010. doi:10.21427/D7VS65 

This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart2
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart2?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Encryption using Deterministic Chaos
Jonathan Blackledge

School of Electrical Engineering Systems
Dublin Institute of Technology

Dublin 8, Ireland
url: http://eleceng.dit.ie/blackledge

Email: http://eleceng.dit.ie/blackledge

Nikolai Ptitsyn
Department of Information Processing

and Management Systems
Moscow State Technical University

email:nptitsyn@gmail.com

Abstract—The concepts of randomness, unpredictability, com-
plexity and entropy form the basis of modern cryptography
and a cryptosystem can be interpreted as the design of a
key-dependent bijective transformation that is unpredictable
to an observer for a given computational resource. For any
cryptosystem, including a Pseudo-Random Number Generator
(PRNG), encryption algorithm or a key exchange scheme, for
example, a cryptanalyst has access to the time series of a dynamic
system and knows the PRNG function (the algorithm that is
assumed to be based on some iterative process) which is taken to
be in the public domain by virtue of the Kerchhoff-Shannon
principal, i.e. the enemy knows the system. However, the time
series is not a compact subset of a trajectory (intermediate
states are hidden) and the iteration function is taken to include
a ‘secret parameter’ - the ‘key’. We can think of the sample
as being ‘random’, ‘unpredictable’ and ‘complex’. What do
these properties mean mathematically and how do they relate to
chaos? This paper focuses on answers to this question, links these
properties to chaotic dynamics and consider the issues associated
with designing pseudo-random number generators based on
chaotic systems. The theoretical backound associated with using
chaos for encryption is introduced with regard to randomness
and complexity. A complexity and information theortic approach
is considered based on a study of the complexity and entropy
measures associated with chaotic systems. A study of pseudo-
randomness is then given which provides the foundations for
the numerical methods that need to be realed for the practical
implementation of data encryption. We study cryptographic
systems using finite-state approximations to chaos or ‘pseudo-
chaos’ and develop an approach based on the concept of multi-
algorithmic cryptography that exploits the properties of pseudo-
chaotic algorithms.

I. INTRODUCTION

The concepts of randomness, unpredictability, complexity
and entropy form the basis of modern cryptography and
a cryptosystem can be interpreted as the design of a key-
dependent bijective transformation that is unpredictable to an
observer for a given computational resource. In part I of this
paper we link these concepts to chaotic dynamics and consider
the issues associated with designing pseudo-random number
generators based on chaotic systems.

For any cryptosystem, including a Pseudo-Random Number
Generator (PRNG), encryption algorithm or a key exchange
scheme, for example, a cryptanalyst has access to the time
series of a dynamic system and knows the PRNG function
(the algorithm assumed to be based on some iterative process)
which is taken to be in the public domain by virtue of the

Kerchhoff-Shannon principle, i.e. the enemy knows the system.
However, the time series is not a compact subset of a trajectory
(intermediate states are hidden) and the iteration function is
taken to include a ‘secret parameter’ - the ‘key’. We can
think of the sample as being ‘random’, ‘unpredictable’ and
‘complex’. What do these properties mean mathematically and
how do they relate to chaos? This paper focuses on answers
to this question. In addition to probabilistic properties, we
consider algorithmic complexity, i.e. the length of the shortest
algorithm capable of producing a cryptographically secure
sequence.

Intuitively, the internal complexity of a system provides
its external unpredictability and a sequence is called algo-
rithmically random if its algorithmic complexity equals the
length of the sequence. An algorithmically random sequence
is computationally incompressible and contains no recogniz-
able patterns (redundancies). Clearly, a purely random system
is also algorithmically random. However, the concepts of
pseudo and algorithmic randomness are different; a pseudo-
random string is generated with a compact seed, but the
external observer is not able (practically) to reconstruct the
generator and predict the sequence. In other words, the string
is highly compressible for authorized communicators but com-
putationally incompressible for the potential adversary and,
in a general sense, an algorithmically random string can be
predicted by a probabilistic machine.

Randomness or unpredictability can be ‘measured’ using
such properties as algorithmic complexity and/or entropy, i.e.
the degree of uncertainty about the system. Quantitatively, the
Shannon entropy is in direct proportion to the algorithmic
complexity in ergodic systems, where statistical properties
of a single sequence coincides with that of all sequences
generated by a PRNG. A randomness measure for chaos is the
Kolmogorov-Sinai entropy that is, roughly speaking, a multi-
resolution integration of Lyapunov exponents.

II. COMPLEXITY THEORETIC APPROACH

In this paper we use a common terminology based on
complexity theory [1] and, for completeness, we provide a
brief introduction to the subject.



A. Turing Machine

A Turing machine is a hypothetical device that can theoreti-
cally implement any computer algorithm. It provides a unified
framework to measure the complexity (i.e. program length and
working time) of computational problems such as generating,
transforming and matching cryptographic sequences. We de-
note a Turing machine as

T = 〈S,A,Γ, F, q0〉 ,

where S is the finite state set of the control, A is the finite
tape alphabet (A = {0, 1}), Γ is a finite rule state of the
form γ : S × A → S × A × {L,N,R}, F ⊆ S is a set
of halting accepting states and q0 ∈ S is the initial state. The
state {L,N,R} includes ‘tape commands’ such as: ‘move left’
(L), ‘stay in place’ (N ) and ‘move right’ (P ). The machine
configuration T is the triplet 〈s, α, i〉 where s ∈ S is the
current state, α ∈ A∗ is the ‘tape string’ and 1 ≤ i ≤ |α| is
the head position counting from the left to the end of the tape.
The machine is initialized in the following way: (i) a string
α ⊂ A∗ is loaded onto the tape; (ii) the head is seeded to
the leftmost position; (iii) the initial state q is assigned to the
state variable s. At every step, (i) the machine reads a symbol
from the current cell, depending on the symbol read and the
current state, (ii) it makes a transition to a new state; (iii) it
overwrites the current cell with a new symbol; (iv) it moves
the head one step left or right, or stays in place. The machine
halts when a state f ∈ F is reached.

A Turing machine is said to accept a string α if a sequence
of rules γ1, . . . , γm ⊂ Γ∗ exists that puts the machine from
an initial state s0 to any halting accepting state f ∈ F . The
machine rejects a string, if it halts in s /∈ F or if it never halts.
A language L over a finite alphabet A is a subset (A)?, i.e. a
subset of all finite strings over A. A machine is said to accept
a language L if it accepts all the strings α ∈ L and rejects
β /∈ L. A deterministic Turing machine has single-valued rules
γ : S×A → S×A×{L,N,R}, i.e. there are no rules with the
same parts S × A. By contrast, a non-deterministic machine
may have multi-valued rules. If there exists a polynomial p (l)
limiting the machines working time m (the number of steps)
that depends of the input string length l (m < p (l)), the
machine is said to run in polynomial time. The complexity
class P is the set of languages accepted by a deterministic
polynomial-time machines. The complexity class NP is the
set of languages accepted by non-deterministic polynomial-
time machines.

A probabilistic Turing machine is a deterministic Turing
machine that can flip a fair coin to determine its next move. A
probabilistic machine is said to accept a language L if it enters
an accepting state for α ∈ L with probability p1 > 2/3 and
halts α /∈ L with probability p0 > 2/3. The complexity class
BPP consists of all languages recognized by probabilistic
polynomial-time machines.

B. Algorithmic Complexity

The concept of algorithmic complexity was suggested in-
dependently by three mathematicians A. N. Kolmogorov, P.

Solomonov and G. J. Chaitin:
Definition 1: The algorithmic complexity KM (α) of a fi-

nite string α ∈ {0, 1}n with respect to a Turing Machine M
is the length l(π) of the smallest computer program π, which
generates it, i.e.

KM (α) = min
π:M(π)=α

l(π).

Kolmogorov showed, that there exists a universal Turing ma-
chine U , that performs computations equivalent to π (designed
for an arbitrary machine M ) and that the changes in π required
to adopt it for U depend on M but not on α. Consequently,
the algorithmic complexity KM with respect to any machine
M is related to KU (S) by

KU (S) ≤ KA(S) + CA, (1)

where CM is a constant, which is independent from α. Here
after, we omit the subscript U assuming that K(α) = KU (α).
Unfortunately, algorithmic complexity cannot be commuted
i.e. there is no universal solution for simplifying programs and
for proving that the length is minimal. Thus, we cannot apply
this definition directly to compare the complexity of crypto-
graphic sequences or algorithms. Nevertheless the theoretical
applications are very important. In particular, Kolmogorov
complexity provides a unified approach to the problem of data
compressibility.

C. Compressibility and Algorithmic Randomness

A string αn of length n is said to be c-incompressible if
K(αn) ≥ n− c. Incompressible strings (where c = 0 or else
is relatively small) are called algorithmically random.

D. Symbolic Complexity

For an infinite string α∞ or a generator, it is interesting to
consider the symbolic complexity given by the limit

c(α∞) = lim
n→∞

K(αn)
n

. (2)

From (1) it follows that the symbolic complexity c(α∞) is
invariant with respect to the choice of Turing machine. If a
string has a finite Kolmogorov complexity (e. g. a pseudo-
random string), its symbolic complexity tends to 0. A truly
random string has c = 1 because its length equals the length of
the shortest program. Clearly, c > 0 if and only if the generator
has infinite complexity. In chaotic systems, this happens if
the complexity of the initial conditions is infinitely large or a
certain amount of randomness is introduced into the system
from the environment.

III. INFORMATION THEORETIC APPROACH

In ideal cryptosystems, the distribution of the ciphertext
cannot be differentiated from uniform noise and thus provides
no useful information for an adversary.



A. True Randomness

We define a Probability Distribution Function (PDF) as a
function from strings L = {αj} to nonnegative real numbers,
i.e. Pr : L → [0, 1] such that

∑
α∈L

Pr (α) = 1.

Definition 2: A string α is called truly (purely) random (or
unpredictable) if, for any substrings, βn, γn ∈ α, 0 > n >
length(α)

Pr(βn) = Pr(γn)

.
A truly random string cannot be predicted, i.e. for any sym-

bol si ∈ α, the conditional probability Pr(si|si−1, si−2, . . .) =
Pr(si). In other words, an arbitrary large amount of knowledge
about the previous states does not increase the probability of
the successful prediction of the next state. An infinite and
truly random string has a delta autocorrelation function and
an infinite and uniform power spectrum (white noise).

B. Shannon Entropy

The Shannon entropy measures the amount of information
required to determine precisely the system state among all
possible states [2]. In cryptography, the entropy is related to
the unpredictability of an encryption system for an adversary.
The entropy of a string αn of length n is defined as

Hn = −
∑
α∈An

Pr (αn) log|A| Pr (αn), (3)

where Pr : An → [0, 1] is the PDF of αn on the set
of nth symbol strings. The maximum of Hn is achieved
when Pr (αn) is a uniform distribution and the string is
truly random. The conditional entropy hn denotes the average
amount of information supplied with each (n + 1)th symbol
provided the previous n symbols are known:

hn = hn+1|n =
{
Hn+1 −Hn, n ≥ 1
H1, n = 1

In other words, hn quantifies the average uncertainty when
predicting the next symbol. As soon as knowledge about a
previous state cannot increase the uncertainty, the function Hn

is non decreasing and hn+1 ≤ hn. For a stationary information
source there exists a limit

hSh = lim
n→∞

hn = lim
n→∞

Hn

n
, (4)

called the entropy of information source (cryptographic sys-
tem). Further, if α is a kth order Markov sequence, then
hn = hSh for all n ≥ k. A Markov sequence corresponds
to a deterministic process, in which the next state depends on
the previous k states, i.e. for si ∈ α

Pr(si|si−1, si−2, . . .) = Pr(si|si−1, si−2, . . . , si−k)

Examples of Markov processes can be found in most crypto-
graphic systems such as PRNG’s and block ciphers.

C. Entropy-Complexity Relationship

Intuitively, complexity and the entropy are related in terms
of ‘cause and effect’: the more complex the internal orga-
nization of a system, the more unpredictable its behavior is
and the higher the entropy becomes. The complexity is the
size of the ‘internal program’ that generates a state sequence
(string), whereas the entropy is computed from the probability
distribution of this sequence. Formally, the following result can
be applied for stationary ergodic sources [3]:

lim
n→∞

〈Kn〉
Hn

=
1

ln 2
, (5)

where
〈Kn〉 =

∑
αn∈{0,1}n

Pr(αn)K(αn)

Hence, the average complexity 〈Kn〉 is asymptotically propor-
tional (with the coefficient ln 2) to the entropy as n increases.

IV. ENTROPY AND COMPLEXITY

A. Partitioning and Symbolic Dynamics

Consider a chaotic system S = 〈X, f〉 with an f -invariant
measure µ. Any set of m disjoint regions that covers the state
space X is a partition denoted by

β = {X1, X2, ..., Xm} :

i=m⋃
i=1

Xi = X, Xi ∩Xj = ∅, ∀i 6= j.

A unique symbol si ∈ A is assigned to every region Xi. The
process of partitioning the state space and assigning symbols
to every region from the partition resulting in macroscopic
dynamics is called symbolic dynamics [4]. A function σ
defines partitions and their symbolic names as follows:

σ (x) = {si ∈ A|x ∈ Xi}.

A trajectory φ(x0) passing across the subsets Xi produces a
symbolic trajectory α(x0).

B. Kolmogorov-Sinai Entropy

The Lyapunov exponents measure how fast we lose the
capability to predict the behavior of a chaotic system in
time. The disadvantage is that this measure does not con-
sider the resolution under which the system is observed,
unlike the Kolmogorov-Sinai entropy [3]. Let the partition
β = {X1, X2, ..., Xm} be the observer’s resolution. Looking
at the system state x, the observer can only determine the
fact that x ∈ Xi and reconstruct the symbolic trajectory
αn = {sm1 , sm2 , . . . , smn} corresponding to the regions
visited. The entropy of a trajectory αn with respect to partition
β is given by

Hβ
n = −

∑
αn

Pr (αn) log|A| Pr (αn),



where Pr (αn) is the probability of occurrence of the substring
αn. The conditional entropy of the (n+1)th symbol provided
the previous n symbols are known is defined as

hβn = hβn+1|n =
{
Hβ
n+1 −Hβ

n , n ≥ 1
Hβ

1 , n = 1

The entropy for a partition β is given by

hβ = lim
n→∞

hβn = lim
n→∞

1
n
Hβ
n .

The Kolmogorov-Sinai entropy of a chaotic system is the
supremum over all possible partitions

hKS = sup
β
hβ . (6)

The KS entropy equals zero for regular systems, is finite and
positive for deterministic chaos and infinite for a truely random
process. It is related to the Lyapunov exponents by hKS =∑
1≤d≤D

λd and proportional to the time horizon T on which

the system is predictable.

C. Complexity of a Trajectory

The complexity of a trajectory at a point x0 with respect to
a finite open coverage β is defined as

Cβ(x0) = lim sup
n→∞

1
n

min
αn∈[ψ(x)]n

K(αn),

where [ψ(x)]n =
{
αn|f j(x0) ∈ Xj

}
and K(αn) is the

algorithmic complexity of α. The complexity of the trajectory
of a point x0 is

C(x0) = sup
β
Cβ(x0).

Definition 3: (algorithmically random trajectory, [5], [6])
The trajectory of a point x0 is called algorithmically random
if its complexity is positive, i.e. c(x0) > 0.

The Brudno-White theorem defines the relationship between
the KS entropy and complexity:

Theorem 1: (complexity of the trajectory, [5], [6]) The
symbolic trajectories of almost all x ∈ X (with respect to
the invariant measure µ) are algorithmically random and their
complexity is given by

c(x) =
hKS
ln 2

, (7)

Though it is practically impossible to quantify the algorithmic
complexity of a string, most strings over a finite alphabet
produced by a chaotic system and are algorithmically random.

V. PSEUDO-RANDOMNESS

A. Probabilistic Ensembles

Let Pri(α) be a probability distribution function of strings
{0, 1}l(i), where l(i) is a positive polynomial. We write Π =
{Pri}i∈I for an ensemble of distributions indexed by I ⊂ N.
The ensemble of the uniform distributions Π0 = {Pr0,i}i∈N
for all i ∈ N and α, β ∈ {0, 1}i satisfies Pr0,i(α) = Pr0,i(β).
To measure the ‘degree of randomness’ of a string, its

probability ensemble should be compared with that of the
uniform distributions. Having limited resources, computers can
process only a subset of distributions. Thus, we introduce the
concept of polynomial indistinguishability. Roughly speaking,
two probabilistic ensembles are polynomially indistinguishable
if they assign ‘about the same’ mass to the same subsets of
strings, efficiently recognized by a Turing machine:

Definition 4: (polynomial indistinguishability, [7], [8], [9])
Let Π1 = {Pr1,i}i∈I and Π2 = {Pr2,i}i∈I be two proba-
bility ensembles each indexed by I . Let T be a probabilistic
polynomial-time Turing machine called a test. The test gets
two inputs: an index i and a string α. Let PrT1 (i) be the
probability that, on input index i and a string α chosen
according to the distribution Pr1,i, the test T outputs 1.
Similarly, PrT2 (i) denotes the probability that, on input index
i and a string α chosen according to the distribution Pr2,i, the
test T outputs 1. We say that Π1 and Π2 are indistinguishable
with polynomial p(i) if for all probabilistic polynomial-time
tests T and sufficiently large i ∈ N∣∣PrT1 (i)− PrT2 (i)

∣∣ < 1
p(i)

.

Definition 5: (pseudo-random probability ensemble, [7],
[8], [9]) The probability ensemble Π = {Pri}i∈I is said
to be pseudo-random if, for any positive polynomial p(i),
the ensemble Π is indistinguishable from p(i) with uniform
ensemble Π0 = {Pr0,i}i∈I .

Definition 6: (unpredictable probability ensemble, [7], [8],
[9]) Let Π = {Pr1,i}i∈I be a probabilistic ensemble indexed
by I . Let T be a probabilistic ensemble polynomial-time
Turing machine that on input (index i and a string α), outputs
a single bit, called the guess. Let bit (α, r) denote the rth bit
of the sequence α and pref (α, r) denote the prefix of r bits of
the string α, i.e. pref (α, r) = bit(α, 1) bit(α, 2) . . . bit(α, r).
We say that the machine T predicts the next bit of Π, if for
some polynomial p(i) and infinitely many i’s,

Pr (M (i, pref(α, r)) = bit(α, r + 1)) ≥ 1
2

+
1
p(i)

,

where the probability space is that of the string α chosen
according to Pr1,i and the integer r is chosen at random with
uniform distribution in {0, 1, . . . , l (α)− 1}. We say that Π is
unpredictable if there exists no probabilistic polynomial time
machine T which predicts the next bit of Π.

Theorem 2: [8], [9], [10] The probability ensemble Π is
pseudo-random if and only if Π is unpredictable.

B. One-Way Functions

One-way functions are functions that are easy to evaluate
(β = f(α)), but hard (on average) to invert (α = f−1(β)) and
lie at the heart of modern cryptography, in particular, their
use in public-key schemes. The computational gap between
forward and inverse evaluation quantifies the efficiency of the
one-way transformation. A formal definition of a one-way
function is given in terms of complexity theory:

Definition 7: (one-way function [10], [8], [9]) A function
f : {0, 1}∗ → {0, 1}∗ is called one way if it satisfies the



following: (i) there is a deterministic polynomial-time Turing
machine that on input α returns f(α); (ii) for any probabilistic
polynomial-time Turing machine M , any positive polynomial
p(n) and sufficiently large n

Pr(M(f(α), 1n) ∈ f−1(α)) <
1

p(n)
,

where the probability is taken over all possible choices of
α ∈ {0, 1}n and the internal tosses of M conform to a uniform
probability distribution. The role of 1n is to allow machine M
to run in a time polynomial over the length of the pre-image
it is supposed to find.

A stronger notion of unpredictability is that of a hard-core
predicate. A polynomial-time computable predicate b is called
a hard-core of a function f if all algorithms, given f(α), can
guess b(α) only with a probable success which is negligibly
better than a half.

Definition 8: (hard-core predicate, [10], [8], [9]) Let f :
{0, 1}∗ → {0, 1}∗ and f : {0, 1}∗ → {0, 1}. The predicate
b is said to be hard-core of the function f , if: (i) there is a
deterministic polynomial-time Turing machine that on input
α returns b(α); (ii) there is no probabilistic polynomial-time
Turing machine M such that for any positive polynomial p(n)
and sufficiently large n

Pr(M(f(α), 1n) = b(α))) <
1
2

+
1

p(n)
,

where the probability is taken over all possible choices of
α ∈ {0, 1}n and the internal tosses of M conform to a uniform
probability distribution.

Theorem 3: (existence of a one-way function with a hard-
core predicate, [7], [8]) If there exists a one-way function, then
there exists a one-way function with a hard-core predicate.

C. Pseudo-Random Number Generators (PRNGs)

In general, a PRNG is an efficient (deterministic) algorithm
that on input of a short seed (initial condition), outputs
a typically much longer sequence that is computationally
indistinguishable from a uniformly chosen string.

Definition 9: (pseudo-random generator, [10], [8]) Let l :
N → N satisfy l(n) > n for all n ∈ N. A pseudo-random
generator, with a stretch function l(n), is a deterministic
polynomial time algorithm G satisfying the following:

1) For every α ∈ {0, 1}∗ it holds that |G (α)| = l (|α|)
2) The probabilistic ensembles Π = G (Prn0 ) and Πp(n)

0 are
computationally undistinguishable.

Theorem 4: (construction of a pseudo-random generator,
[7], [8]) Let f be a one-way 1 : 1 function and b be a hard-core
predicate of f . Then

G(α) = b(α)b(f(α)) . . . b(f l(|α|)−1(α))

is a pseudo-random generator with a stretch function l.
Consequently, a pseudo-random generator can be con-

structed from any one-way length-preserving function (rather
then merely one-way permutations). On the other hand, the

existence of a one-way function is a necessary condition to
the existence of the pseudo-random generator, that is

Theorem 5: (existence of pseudo-random generators, [8])
Pseudo-random generators exist if and only if one-way func-
tions exists.

f

f

f

f

f

f
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x0
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x3 ...
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y1 y2 y3

x1 x2 x3

Fig. 1. A synergy between a chaotic system (top: ≈ is a rounding function,
x̂n is the output) and a PRNG (bottom: b is a hard-core predicate, yn is the
output).

Assuming the existence of one-way 1:1 functions, there can
exist probability distributions that are non-uniform and are not
even statistically close to being uniform but are nevertheless
computationally indistinguishable from a uniform distribution
[9]. The definition of a pseudo-random generator given above
cannot be applied directly since there is no practical way to
prove or check rigourously indistinguishability.

VI. DISCUSSION

Practical cryptography is based on passing known statisti-
cal tests [17], which ensure the pseudo-random property of
a generator. Moreover, it is considered that pseudo-random
sequences can be used instead of truly random sequences in
most cryptographic applications. Although there is a synergy
between pseudo-random generators and chaotic systems there
is a also fundamental and important difference which is that
the iterated function of a chaotic system is not required to
be one-way. Chaos theory pays no attention to the algorith-
mic complexity of f and f−1, which is one of the main
problems associated with the applications of chaos theory to
cryptography. However, based on the study provided, we now
present the design methods and example algorithms required
to implement chaos to encrypt data.

VII. APPLICATIONS OF CHAOS FOR DIGITAL
CRYPTOGRAPHY

From a theoretical point of view, chaotic systems produce
infinite random strings that are asymptotically uncorrelated.
This property relates to genuine chaotic systems with an infi-
nite number of states. For applications to digital cryptography,



a finite-state systems approach is required which puts certain
constraints on the design of the algorithm(s). In this paper,
we study these constraints and present the principal criteria
required to design meta-encryption engines using pseudo-
chaotic algorithms.

Fig. 2. Properties of chaotic and pseudo-chaotic systems.

The notion of pseudo-chaos introduced in [18], for example,
involves a numerical approximation of chaos. The fundamental
differences between chaos and pseudo-chaos include the fol-
lowing: (i) The state variable has a finite length (i.e. stores the
state with finite precision) and the system has a finite number
of states; (ii) the iterated function is evaluated with approx-
imation methods where the result is rounded (or truncated)
to a finite precision; (ii) the system may be observed during
a finite period of time. The basic problem is that rounding
is applied during iteration and the error accumulation causes
the original and the approximated processes to diverge. Thus,
in general, pseudo-chaos is a poor approximation of chaos
because the approximated model does not converge to the
original model, and, formally, may exhibit non-chaotic proper-
ties including trajectories that eventually become periodic (i.e.
contain patterns) and cycles that appear as soon as two states
are rounded to the same approximate value. Consequently,
the Lyapunov exponent and the Kolmogorov-Sinai information
entropy discussed in Part I may approach 0. For this reason,
it is not possible to directly transform continuous chaotic gen-
erators to numerically based generators that require numerical
approximations to be made as as summarized in Figure 2.
Thus, to use chaos theory for applications in cryptography,
a study must be undertaken of pseudo-chaotic systems. This
study forms the remit of this paper which is concerned with the
question of what are the minimal, typical and maximal periods
of the orbits (i.e. string lengths) generated by a pseudo chaotic
system? Such questions are important in most cryptographic
systems. In general, a pseudo-chaotic system produces orbits
with different lengths (sometimes called random-length orbits)
as illustrated in Figure 3a. Of course, such patterns constitute
serious vulnerability as a system may have weak plaintexts
and weak keys resulting in recognizable ciphertexts.

(a) (b) (c)

Fig. 3. Examples of orbits of a pseudo-chaotic system. (a) Dangerously
short orbits (unsuitable for cryptography); (b) A single orbit (the best choice
for cryptography); (c) Multiple orbits with the same length (also suitable for
encryption).

If a system has a stable attractor for all initial conditions
and parameters, and all orbits have (almost) the same length
(Figure 3c), there are more chances to develop a secure encryp-
tion scheme. Nevertheless, multiple orbits reduce the search
space required for cryptanalysis. An ideal cryptosystem has a
single orbit passing through the whole state space (Figure 3b).
Another important step in the evaluation of a pseudo-chaotic
system is to estimate the Lyapunov exponent of a typical orbit
for a time not exceeding its period. However, the analysis of
periodic orbits depends critically on the order in which the
orbits are considered [19]. Two ordering criteria are considered
in the literature, both corresponding to a Lebesgue measure:
ordering according to the system size and ordering according
to a minimal period or within a period on a lexicographical
basis.
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Fig. 4. A Laypunov exponent of a chaotic (a) and pseudo-chaotic (b) system

A comparison between the average Lyapunov curve of a
chaotic system and an analogous pseudo-chaotic system is
given in Figure 4. If the pseudo-chaotic system has a finite



precision σ, then the exponential divergence given by

enλ =
|fn (x0 + ε)− fn (x0)|

ε
, n→∞, ε→ 0, (8)

will eventually be limited by ε = σ. Usually the fraction (8)
grows exponentially during the first few iterations and then
increases linearly until it finally levels off at a certain finite
value.

VIII. FLOATING-POINT APPROXIMATIONS

Floating-point and fixed point arithmetic are the most
straightforward solutions for approximating a continuous sys-
tem on a finite state machine [20]. Both approaches imply that
the state of a continuous system is stored in a program variable
with a finite resolution. A state variable x can be written as
a binary fraction bmbm−1 . . . b1 . a1a2 . . . as, where ai, bj are
bits, bmbm−1 . . . b1 denotes the integer part and a1a2 . . . as is
the fractional part of x. Under a finite resolution, instead of
xn+1 = f (x), we write

xn+1 = roundk (f (xn)) ,

where k ≤ s and roundk (x) is a rounding function defined
as

roundk (x) =

bmbm−1 . . . b1 . a1a2 . . . ak−1 (ak + ak+1) .

Fig. 5. Trajectories of a continuous-state chaotic system (9) and its 64-
bit floating-point approximation. The first curve is obtained by means of the
analytical solution (10). The rounding off error is amplified at each iteration
and the trajectories diverge exponentially.

The iterative rounding is accumulative and results in sur-
prisingly different behavior of pseudo-chaos compared with
the continuum counterpart. Figure 5 shows how fast the orig-
inal and approximated trajectories diverge. For cryptographic
applications, the rounding off function exposes another danger.
Rounding or truncating the state (e.g. to zero values) can lead
to the process dropping out of the chaotic attractor and the
system state typically remaining at a certain constant value or
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Fig. 6. The average and the minimal cycle length of the logistic system
(9) verses floating-point precision obtained from 10 samples of the logistic
system.

infinity. Thus, it is necessary to exclude some forbidden initial
conditions and parameters which yield short orbits or patterns
of behavior after a small number of iterations. Figure 6 is a
plot of the average cycle length verses floating-point precision
and shows that high precision does not guarantee a sufficiently
long trajectory.

Another problem associated with the application of pseudo-
chaos to encryption is the sensitivity to floating-point pro-
cessor implementations. Diversified mathematical algorithms
or internal precisions in intermediate calculations can lead
to a situation where the same encryption application code
can generate different cryptographic sequences leading to
an incompatibility between software environments. A chaos-
based string with two different seeds produces two different
sequence with probability 1. This is true for chaotic systems
with an infinite state space, where the probability Pr

(
f(xn) =

f(x′n)
)
→ 0 with xn 6= x′n (despite of the fact that f−1 is

multi-valued). In finite-state approximations, the probability
of mapping two points into one is much higher. Furthermore,
this can occur at each iteration so that a significant number of
trajectories may have identical end routes.

In spite of these shortcomings, a number of investigators
have explored the applications of continuous chaos (as dis-
cussed in Part I) to digital cryptography and in the following
sections, an overview of encryption schemes based on a
floating-point approximation to chaos is given.

IX. PARTITIONING THE STATE SPACE

Floating-point cryptographic systems require a mapping
from the plaintext alphabet {0, 1}m (e.g. 8 bit symbols) to
the state space X (e.g. 64 bit floating-point numbers) and,
sometimes, from the state space to the ciphertext alphabet. A
partition can be defined by a partitioning function σ : X →
{0, 1}m as with symbolic dynamics. For example, a simple
function for two subsets can be designed by taking the last
significant bit:

σ(bmbm−1 . . . b1 . a1a2 . . . as) = as.

If a floating-point system is a pseudo-random generator, the
function σ must be irreversible as with a hard-core predicate.



This can be archived with an equiprobable mapping where
partitions are selected in such a way that each symbol occurs
with the same probability. However, it is not obligatory to
cover all the state space or assign symbols to all partitions.
On the contrary, we can change the statistical properties of
the resulting symbolic trajectory by assigning symbols in
a particular way. For example, Figure 9 shows a discrete
probability distribution of state points in the attractor of the
logistic system. By choosing regions with almost the same
probability mass, we obtain better statistics in the output, i.e.
avoid any statistical bias associated with a cipher. The number
of subsets can be increased, for example, up to 4, 8, 16 etc. In
this case the generator will produce more pseudo-random bits
per iteration (m = 2, 3, 4). However, increasing m reduces the
cryptographic strength of the generator since it becomes easier
to invert σ.

X. EXAMPLE CHAOTIC MAP

We consider some example chaotic maps which illustrate
the principles of using pseudo-chaos for encrypting data.

A. Logistic Map

In 1976, Mitchell Feigenbaum studied the complex behavior
of the so-called logistic map given by

xn+1 = 4rxn (1− xn) , (9)

where x ∈ (0, 1) and r ∈ (0, 1). For any long sequence of
N numbers generated from the seed x0 we can calculate the
Lyapunov exponent given by

λ (x0) =
1
N

N∑
n=1

log |r (1− 2xn)|.

For example, the numerical estimation for r = 0.9 and N =
4000 is λ (0.5) ≈ 0.7095.

Fig. 7. Bifurcation of the logistic map. The most ‘unpredictable’ behavior
occurs when r → 1.

With certain values of the parameter r, the generator delivers
a sequence, which appears pseudo-random. The Freigenbaum
diagram (Figure 7) shows the values of xn on the attractor for
each value of the parameter r. As r increases, the number of

Fig. 8. Attractor points corresponding to different values of the parameter
r in the Matthews map.

points in the attractor increases from 1 to 2, 4, 8 and hence
to infinity. In this area (r → 1) it may be considered difficult
to estimate the final state of the system (without performing
n iterations) given an initial conditions x0, or vice-versa - to
recover x0 (which can be a key or a plaintext) from xn. This
complexity is regarded as a fundamental advantage in using
continuous chaos for cryptography. However, for the boundary
value of the control parameter r = 1 the analytical solution
[21], [22] is:

xn = sin2 (2n arcsin
√
x0) . (10)

When n = 1 we have the initial equation (9). Hence, the state
xn can be computed directly from x0 without performing n
iterations.
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Fig. 9. The Probability Density Function of a state sequence produced by
the logistic system with an incomplete partition.

Bianco et al. [23] used the logistic map (9) to generate a
sequence of floating point numbers which are then converted
into a binary sequence. The binary sequence is XOR-ed with
the plaintext, as in a one-time pad cipher where the parameter



r together with the initial condition x0 form a secret key.
The conversion from floating point numbers to binary values
is done by choosing two disjoint interval ranges representing
0 and 1. The ranges are selected in such a way, that the
probabilities of occurrence of 0 and 1 are equal (as illustrated
in Figure 9). Note, that an equiprobable mapping does not
ensure a uniform distribution. Though the numbers of zeros
and ones are equal, the order is not necessarily random.

It has been pointed out by Wheeler [24] and Jackson
[25] that computer implementations of chaotic systems yield
surprisingly different behavior, i.e. it produces very short
cycles and trivial patterns (a numeric example in this paper
being given in Figure 6).

B. Matthews Map

Matthews [26] generalizes the logistic map with crypto-
graphic constraints and develops a new map to generate a
sequence of pseudo-random numbers based on the iteration

xn+1 = (r + 1)
(

1
r

+ 1
)r

xn (1− xn)r , r ∈ (1, 4) .

The Matthews system exhibits chaotic behavior for parameter
values within an extended range (Figure 8) thereby stretching
the key space. However, no robust cryptographic system has
been created using this map because of the general floating-
point issues discussed previously.

C. Other Examples of Chaotic Maps

Gallagher et el. [27] developed a chaotic stream cipher
based on the transformation

f (x) =
(
a+

1
x

) x
a

, x ∈ (0, 10) , a ∈ [0.29, 0.40] .

Both the initial condition x0 and the parameter a represent
the key. After n0 = 200 iterations, the system encrypts the
plaintext byte p1 into the ciphertext float c1 = fn0+n1 (x0),
i.e. the chaotic map is applied p1 ∈ [0, 255] times. Subsequent
plaintexts are encrypted using the same trajectory. Clearly,
the disadvantages of such an encryption scheme are: (i)
the data expansion (the floating-point representation of ci
is considerably larger that the source byte pi); (ii) unstable
cycles incident to floating-point chaos generators. Kotulski
[28] proposes a two dimensional map matching the reflection
law of a geometric square and defines conditions under which
the system is chaotic and mixing. In addition to a range
of specific maps suggested by a wealth of authors, there
are, in principle, an unlimited number of iteration functions
available or that can be invented to generate cryptographic
sequences where the nonlinear transformation can be more or
less complex, e.g.

rx

[
1− tan

(
1
2
x

)]
or rx [1− log (1 + x)]

Although each system has a particular state distribution in
the phase space, qualitatively, its behavior is similar to a
basic chaotic system such a logistic map. To increase unpre-
dictability (i.e. the number of states, nonlinearity, complexity)

high-order multi-dimensional chaotic system can be used [29].
However, to date, no known systems have been implemented
as a working encryption algorithm. This is principally due to
the relatively complex numerical integration schemes that are
required and the non-uniform distribution of state variables.
However, by considering a number of randomly selected
pseudo-chaotic algorithms (all of which meet the appropriate
design criteria) that operate on randomly selected plaintext
blocks, it is possible to produce a multi-algorithmic approach
to data encryption which is the principal concept presented in
this paper.

D. Pseudo-Chaos and Conventional Cryptosystems

Existing pseudo-random generators can be viewed as
pseudo-chaotic systems. For example, consider the Blum-
Blum-Shub system [30] given by the iterated function xn+1 =
x2
n mod M where M = pq, where p, q are two distinct prime

numbers each congruent to 3 modulo 4. The output bit bn is
obtained from a predicate σ(xn), which is the last significant
bit of xn. Besides the sensitivity to the initial condition and
the topological transitivity, a pseudo-random generator has to
be computationally unpredictable. The last property is ensured
by a one-way iterated function and a hard-core predicate. A
one-way transformation is based on a certain mathematical
problem, which is considered unsolved. For example, the
Blum-Blum-Shub function works under the assumption that
integer factorization is intractable. Chaos theory is not focused
on the algorithmic complexity of the iterated function, whereas
in cryptography the complexity is the key issue, i.e. security.

E. Symmetric Block Ciphers
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Fig. 10. A typical block cipher is a combination of several pseudo-chaotic
systems

All classical iterative block ciphers, at least with regard to
our notation, are pseudo-chaotic or combinations of several
pseudo-chaotic systems. As an example, consider the Rijndael
algorithm which form the basis for the Advanced Encryption
Standard [31]. The system state x is a two-dimensional array
of bits. The plaintext is assigned to the initial conditions x0

and, after a fixed number of iterations (n = 10 . . . 14), the
ciphertext is obtained from the final state xn. The encryption
transformation is a combination of several pseudo-chaotic
maps: (i) the substitution phase is a composition of multiplica-
tive inverse and affine transformations; (ii) the mixing phase
includes cycle shifts and column multiplication over a finite



field; (iii) the round key is obtained from another pseudo-
chaotic system. If we consider the substitution and mixing
phases as a single iterated function, the encryption scheme
will represent two linked pseudo-chaotic systems (Figure 10).

F. Multi-Algorithmic Generators

Protopopescu [32] proposes an encryption scheme based on
multiple iterated functions: m different chaotic maps are ini-
tialized using a secret key. If the maps depend on parameters,
these too are determined by the key. The maps are iterated
using floating point arithmetic and m bytes are extracted from
their floating point representations, one byte from each map.
These m numbers are then combined using an XOR operation.
The process is repeated to create a one time pad which is
finally XOR-ed with the plaintext. In this paper, we extend the
Protopopescu scheme to include a multi-algorithmic approach
based on the following: (i) chaotic systems can be connected to
each other (i.e. the state of each system influences the states of
all other systems) to increase the average orbit length and form
a single chaotic system with a large state space and more stable
orbits; (ii) the set of chaotic systems (iterated functions) can be
different for each encryption session. This can be implemented
by supplying an iterated function set with the key; (iii) the
output bit can be generated in each qth iteration to increase
the independence of bits; (iv) chaotic systems can be permuted
in a complex manner, in particular, the order in which they are
utilized or ‘turned on’ by a key. We can define this extended
cryptographic system as

x1
n+1 = f1(x2

n, k
1), b1j = σ1(x1

qj)
x2
n+1 = f2(x2

n, k
2), b2j = σ2(x2

qj)
· · · · · ·
xmn+1 = fm(xmn , k

m), bmj = σm(xmqj)

bj = b1j ⊕ b2j ⊕ . . .⊕ bmj ,

where f1, f2, . . . , fm are iterated functions of the ses-
sion set, 〈x1

0, k
1, x2

0, k
2, . . . , xm0 , k

m〉 are initial conditions,
b1j , b

2
j , . . . b

m
j are the internal state bits in the (n = qj)th

moment of time, bj is the generator output and where the
mixing component providing property (i) is given by

x1
n = mix1(x1

n, x
2
n, . . . , x

m
n )

x2
n = mix2(x1

n, x
2
n, . . . , x

m
n )

· · ·
xmn = mixm(x1

n, x
2
n, . . . , x

m
n )

XI. CONCLUSION

A demonstration encryption system based on multiple
chaotic systems with extended properties (i)-(iv) is available
from http://eleceng.dit.ie/arg/downloads/crypstic The system
solves the problems related to the floating-point arithmetic in
a ‘extensive’ way to provide (m − 1) redundant systems. It
is noted that this system represents a ‘paradigm shift’ with
regard to single algorithm based ciphers that are in the public
domain. The importance of this paradigm shift with regard to
cryptography in general may be appreciated in light of the
following text taken from Patrick Mahon’s secret history of

Hut 8 - the naval section at Bletchly Park from 1941-1945 [33]:
The continuity of breaking Enigma ciphers was undoubtedly
an essential factor in our success and it does appear to be true
to say that if a key has been broken regularly for a long time
in the past, it is likely to continue to be broken in the future,
provided that no major change in the method of encypherment
takes place.
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[22] J. A. González and R. Pino. Chaotic and stochastic functions. Physica,
276A:425–440, 2000.

[23] M. E. Bianco and D. Reed. An encryption system based on chaos theory.
US Patent No. 5048086, 1991.

[24] D. D. Wheeler. Problems with chaotic cryptosystems. Cryptologia,
(12):243–250, 1989.



[25] E. A. Jackson. Perspectives in nonlinear dynamics. Cambridge
University Press, 1991.

[26] R. Matthews. On the derivation of a chaotic encryption algorithm.
Cryptologia, (13):29–42, 1989.

[27] J. B. Gallagher and J. Goldstein. Sensitive dependence cryptography,
1996. http://www.navigo.com/sdc/.
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