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Estimating Risk of Failure of Engineering Structures 
using Predictive Likelihood 

  

 

A. Bordallo-Ruiz, 
E.J. OBrien, 
C.C. Caprani 

 
Abstract 
 
It has been common engineering practice to define characteristic values for loading and 
capacity of structures in order to assess the structural capacity of existing structures. 
 
 
This approach, yet practical and intuitive, lead to the comparison of deterministic values 
(characteristic values) that had to represent all the variability of the problem and is considered 
to be conservative, as usually loading is overestimated and capacity underestimated, yielding 
to calculations with high safety margins for the extreme events.  
 
 
Probabilistic methods have tried to overcome this limitation by computing the overall 
probability of failure (pf) for the lifetime of the structure, taking into account the real 
probabilistic distribution of both loading and resistance.  
 
 
In this paper, Predictive Likelihood (PL) is presented as a powerful method to determine the 
lifetime distribution for loading and resistance. From these lifetime distributions the probability 
of failure is computed. 
 
 
An example of the application of the proposed method is finally presented. The result 
obtained using PL is then compared with the numerical approximation for the exact lifetime 
probability of failure.  
 
 
Keywords: Bridge, Predictive Likelihood, Risk, Simulation, Statistics.  
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INTRODUCTION 
 
In its most basic approximation, Structural Reliability (SR) aims to provide an estimate of the 
probability of failure (pf) of a given structural element. Given the stochastic distribution of all 
the variables, the pf is considered to be the ‘sum’ of the failure probabilities over all the cases 
of resistance and load for which the load effect (S) (stress, bending moment, shear, etc.) 
exceeds the structural capacity (R) to resist the applied effect Eq. (1). In other words, any 
structural element is considered to have failed if its resistance R is less than the stress 
resultant S acting on it. The probability of failure will then be defined as the number of failures 
over the total number of outcomes. As shown by Melchers [1] 
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  Eq. (1) 

 
 
where fR(·) represents the probability density function (PDF) of the capacity and fS(·) the PDF 
of the loading. 
 
 
For the special, but common case when loading and resistance are independent, Eq. (1) can 
be expressed as 
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 Eq. (2) 

 
 
with FR(·) standing for the cumulative distribution function (CDF) of the capacity. 
 
 
Unfortunately, this approach is extremely sensitive to the modelling of R and/or S. Outside of 
Reliability Theory, considerable progress has been made in recent years in the accurate 
calculation of characteristic traffic load effects on bridges, refer for instance to Bailey [2], 
Nowak [3], O’Connor [4], Grave [5], Caprani [6] or Jacob [7] for further reading. These 
characteristic load effect levels are found from an extrapolation of sample values obtained 
from measurement on site, to the required return period. Recent research work on the 
probabilistic analysis of highway bridge traffic loading by Caprani [6] has shown that these 
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extreme values can be derived from Generalized Extreme Value (GEV) probability 
distributions.  
 
 
Although this work does not facilitate calculations of probability of failure, as it provides one 
characteristic value, this characteristic value is derived from the lifetime distribution of the 
loading. 
 
 

PREDICTIVE LIKELIHOOD 
 
It has been common practice in engineering to define the characteristic value of a magnitude  
as this value of the considered stochastic variable with a fixed probability of exceedance. For 
example, the Eurocode for bridge loading [8] defines the characteristic value of the loading as 
that which is expected to have a 10% probability of exceedance in 100 years. This is usually 
expressed as a 1000-year return period. 
 
 
Caprani [9] has shown that from given loading data not only a characteristic value can be 
derived, but the complete lifetime extreme load effect distribution.  
 
 
If the PDF of load effect for an individual crossing were known, then the PDF for the lifetime 
maximum load effect could be calculated and the probability of failure found from Eq. (2). 
However, the PDFs are generally not known. The concept developed in this paper is to use 
Predictive Likelihood (PL) to estimate this distribution of lifetime maximum loading and to use 
it to estimate the lifetime probability of failure.  
 
 
PL ranks all possible predictions by their joint likelihood given the observed data. The 
mathematical concept behind PL, as shown by Pawitan [10] relies on the maximization of the 
joint likelihood of a set of data and a fixed predictand obtaining a lifetime distribution of the 
considered effect (load effect in this case). 
 
 

)z|(L)·y|(Lsup)y|z(L zyP θθ==
θ

 Eq. (3) 

 
 
where LP(z|y)  is the maximized joint likelihood of data and predictand, Ly(θ|y) represents the 
likelihood of the data and Lz(θ|z) is the likelihood of the predictand. Finally θ represents the 
vector of parameters of the statistical distribution that represents the data and predictand.  
 
 
Eq. (3) is termed Fisherian predictive likelihood after Fisher [11]. 
 
 
By maximizing this joint likelihood for all posible predictands, the complete statistical 
distribution of the lifetime extreme load effect may be determined, as already stated. 
However, due to practical reasons, usually only a discrete set of predictands is considered. 
The characteristic value has been defined as the value from this PDF with a 10% probability 
of exceedanc. This approach provides considerably more information that an extrapolation 
which gives just one estimate of the characteristic value. On the other hand, it opens the 
possibility to the use of Reliability Theory to compute the probability of failure. 
 
 
Consequently, the characteristic lifetime of an engineering structure could be defined as the 
return period for which the ‘sum’ of the failure probabilities over all the cases of resistance for 
which the load exceeds the resistance does not exceed an assumed value. 
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PROBABILITY OF FAILURE 
 
The probability of failure is obtained as the sum of the failure of probabilities over all the cases 
of resistance for which the load effect exceeds the resistance. This sum can be 
mathematically expressed by means of the convolution integral of the product of the PDF of 
the loading and the CDF of the resistance as defined in Eq. (2). The solution to this integral, 
can be found accurately using numerical techniques. The inaccuracy of the obtained 
probability of failure derives only from the modelling of the stochastic variables, as already 
stated. 
 
 
This approach is very useful for the assessment of existing structures as both PDFs for 
loading and resistance can be determined at a certain time and consequently the risk of 
failure can be determined. 
 
 
Once obtained this probability engineering criterion has to be adopted in order to determine if 
this is probability is acceptable or not. Melchers [1] or COST 345 report [12] propose 
acceptable risks in society for different events. 
 
 

DISTRIBUTION OF THE MAXIMUM OF SAMPLE SETS 
 
Given the PDF of any load effect for an individual crossing, we aim to determine the PDF for 
the lifetime maximum load effect. The distribution of a maximum of n sample repetitions of 
independent identically distributed (iid) variables is defined by Castillo [13] as: 
 
 
FY(y) = P[(X1 ≤ y)∩(X2 ≤ y) ∩...∩(Xn ≤ y)] = {FX(x)}n  Eq. (4) 
 
 
with Y = max{X1, X2, ..., Xn}  
 
 
where FX(x) is the the common CDF of the variables Xi and Fn(y) the corresponding CDF of Y. 
 
 
The same idea can be applied to determine the distribution of the minimum of a set of iid 
variables 
 
 

APPLICATION 
 
For the purposes of this paper, we will consider a problem where both distributions of loading 
and resistance are normal. Let us assume a 30 m span (L) bridge loaded with a central load 
Q normally distributed N~(µQ, σQ) having mean Qµ = 506 kN and variance = 2844 (kN)2

Qσ
2. 

The bending capacity of this bridge follows a normal distribution N~(µR, σR) with a mean 
strength = 7500 kNm and variance = 360000 (kNm)Rµ

2
Rσ

 2. 
 
 
From basic structural theory it can be shown that the applied bending moment (the load effect 
S) at the centre of the beam is given by: 
 
 

4
lQS =  
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The mean and standard deviation for the loading effect, the bending moment in the central 
section of the bridge can be computed as 
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Q
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with S following a normal distribution N~(µS, σS). 
 
 
Let us now assume that this load effect represents the peak value from an individual traffic 
load crossing the bridge. We define the lifetime as 100 years, and consider 2000 crossings 
(trucks) per day, 250 working days per year. The number of considered events is thus 2000 x 
250 x 100 = 50·106. The problem consists on determining a value to be the probability of any 
of the 50·106 events exceeding the bridge capacity. 
 
 
The distribution of the maximum of these 50·106 repetitions is then, as given by Eq. (4). 
 
 
Fn(y) = {FX(x)}50·1e6

  

 
 
 
where for our example, all FX(x) are normal distributions and n=50·106. 
 
 
The probability distributions for individual load effect and capacity as well as for their extreme 
(maximum in lifetime) distributions are presented in Fig. 1. 
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Fig. 1 PDF for load effect f (·), capacity f (·), and lifetime maximum loading. S R
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While the amount of overlap of the distribution of fR(·) capacity and of the distribution of the 
maximum of fS(·) can be taken as a rough indicator of the probability of load exceeding 
capacity (i.e., probability of failure), the exact probability can be derived from Eq (2) 
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rs max
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where p*f represents the lifetime probability of failure and fsmax is the PDF of the maximum of 
the loading. 
 
 
For this example, Monte Carlo Simulation is used to generate 3 set of 200 samples load 
effects from the original distribution. Typically, there would be many more values as there 
would be several days of measurement or simulations of load effect. Predictive Likelihood 
estimates the distribution of lifetime maximum load effect, given the sample of measured or 
simulated values.  
 
 
The PL analysis of the 3 data sets is shown in figure 2. As can be seen, this results are not 
specially sensitive to the different samples. 
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Fig. 2 Predictive likelihood PDFs derived for the 3 samples of loading, together with the 
exact PDF distribution of the maximum of the loading. 
 
 
Figure 3 shows one of the predictive likelihood lifetime distributions obtained in the previous 
analysis together with the corresponding exact lifetime distribution for the loading derived 
from Eq (3). Parent PDF for loading as well as PDF for capacity are also displayed in the 
same figure.  
 
 
Finally, for this example, the pf* as defined by Eq (2) is computed for the exact solution and 
for the predictive likelihood approximation of the maximum of the loading and the results for 
each of the samples and the average of the 3 samples are presented in table 1. 
 

Technical session on Bridges & Structures 2  Page 139f 



Bridge and Infrastructure Research in Ireland: Symposium 2006 

 

0

0,001

0,002

0,003

0,004

0,005

0,006

2000 3000 4000 5000 6000 7000 8000 9000

kNm

pr
ob

ab
ili

ty
 d

en
si

ty

Loading Capacity Max Loading PL maximum
 

 
Fig. 3 Lifetime distributions for the exact solution and the PL approximation for loading 
effect. 
 
 
It is remarkable to note that although the PL approximation is not specially sensitive to the 
samples, the probability of failure is. However, the average of the 3 probabilities of failures 
represents a better approximation to the calculated exact probability of failure that any of the 
samples. 
 
 
Table 1 Probabilities of failure for exact solution and PL approximations. 
 
 Probability of 

failure pf* 
Exact 
Solution 3.29 · 10 -4

Sample 1 1.39 · 10 -4

Sample 2 5.20 · 10 -4

Sample 3 3.91 · 10 -4

Average of 
3 samples 3.50 · 10 -4
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CONCLUSIONS 
 
In this paper predictive likelihood has been shown as an appropriate tool to determine lifetime 
probabilities of failure of existing structures. A simple application is considered, where the 
exact result is known, and can be compared to the results obtained with the proposed 
methodology.The lifetime distribution for load effect is obtained, using predictive likelihood. 
Following this, numerical integration is applied to compute the lifetime probability of failure.  
 
 
The approximate predictive probability of failure has been found sensitive to the discretization 
of the lifetime distributions obtained using predictive likelihood as shown in table 1. Therefore 
it is recommended that a reasonably high number of points are used to fit the discrete lifetime 
distribution. 
 
 
While the distributions for the exact PDF of the maximum of the loading and the PL 
approximation are significantly different as shown in Figure 2, it must be remembered that it is 
the result of an extrapolation from 200 samples to 50·106 events. At the same time higher 
number of samples in each set will lead to less disperse PL approximations, and 
consequently, more accurate results. 
 
 
In the example, although only 200 outcomes were considered as the basis of the each of the 
lifetime distributions of loading effect approximated using PL, it has been show that predictive 
likelihood has a great potential to be used to accurately compute the lifetime probability of 
failure of existing structures. 
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