

Technological University Dublin ARROW@TU Dublin

Articles

Dublin Energy Lab

2006-01-01

Geographic Variation of Solar Water Heater Performance in Europe

Y. Yohanis University of Ulster

O. Popel Academy of Sciences Russia

S. Frid

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/dubenart

Part of the Mechanical Engineering Commons

Recommended Citation

Yohanis, Y., Popel, O., Frid, S.& Norton, B. (2006). Geographic Variation of Solar Water Heater Performance in Europe. *Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy* vol.220, pp.395-407. doi:10.1243/095765006X76018

This Article is brought to you for free and open access by the Dublin Energy Lab at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

Authors

Y. Yohanis, O. Popel, S. Frid, and Brian Norton

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/dubenart/27

Geographic variation of solar water heater performance in Europe

Y G Yohanis¹*, O Popel², S E Frid², and B Norton³

¹Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, Northern Ireland, UK ²Institute for High Temperatures (IVTAN), Russian Academy of Sciences, Moscow, Russia ³Dublin Institute of Technology, Dublin, Ireland

The manuscript was received on 5 March 2005 and was accepted after revision for publication on 11 October 2005.

DOI: 10.1243/095765006X76018

Abstract: Solar water heater (SWH) performance has been analysed using the 'number of days' method for 147 different sites in all European countries. The total number of days that the temperature of delivered solar heated water reaches or exceeds specified demand temperatures is correlated with solar radiation on a horizontal surface for summer, warm half-year, and whole year periods. Maps are presented and discussed showing the contours for the number of days that an illustrative SWH met different hot water demand temperatures. Correlations between number of days water is provided at a specified temperature and solar fractions for the same periods are determined.

Keywords: solar water heating, solar water heaters, geographic variations

1 INTRODUCTION

Although an established technology, solar water heating is still undergoing significant research and development [1]. This has been devoted increasingly to the reduction of initial installed capital cost. In the European Union, there is a substantial and growing solar water heating market [2], though its uneven development as can be seen from Table 1 reflects the relative effectiveness of market stimulation interventions. These may be aided by long-term performance characterization techniques understandable readily by consumers.

Solar water heater (SWH) design and longterm performance characterization methods have been categorized as [**3**, **4**]: (a) utilizability based; (b) empirical correlations; (c) simplified analysis; and (d) 1-day repetitive simulations. Common to all such techniques is determination of a solar savings fraction. Yohanis *et al.* [**5**] proposed a method for SWH long-term performance characterization in which the number of days in each month (or in any given period of a year) when the temperature of solar heated water in SWH storage tank reaches or exceeds a specified demand temperatures is calculated. In addition to the 'solar savings fraction' [**6**], this 'number of days' method provides easily understood alternative SWH performance information for a potential SWH user's particular location, thus simplifying consumer decision-making. In this paper, the 'number of days' method is applied for performance analysis of solar water heating systems across Europe and empirical correlations and geographic variations derived.

2 SOLAR WATER HEATING SYSTEM SPECIFICATION

A pumped circulation SWH consisting of a flat-plate solar collector, a thermally insulated hot water storage tank and connecting pipes is considered as shown in Fig. 1. The circulation pump is actuated by a differential temperature controller, which interrupts water circulation in the system when the water temperature at the outlet from the collector falls below a specified value. Appropriate dead bands for temperature differences between inlet and outlet of solar collector are assumed to prevent unnecessary switching on and off of the pump. Water mass

^{*}Corresponding author: Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland, UK.

396

 Table 1
 Installed solar water collector areas in Europe

Country	Installed collector area per 1000 population (m ²)				
Austria	288.89				
Greece	283.43				
Denmark	60.63				
Germany	45.13				
Switzerland	36.11				
Portugal	25.00				
Sweden	25.00				
Netherlands	13.48				
Spain	11.42				
France	9.90				
Finland	5.87				
Italy	5.45				
United Kingdom	3.49				
Belgium	2.35				
Ireland	0.87				

flowrate in the loop is assumed to be large enough $(50 \text{ kgm}^{-2} \text{ h}^{-1} \text{ or higher})$ to provide a solar collector flow factor (F") approaching 1. The dependence of the solar collector heat removal factor, $F_{\rm R}$, on flowrate at this or a higher flowrate is thus negligible [7]. The following points are assumed.

- 1. An auxiliary heater is installed in series rather than within the storage tank to provide supplementary heating if the temperature of water withdrawn from the storage tank is below that required.
- 2. Each day's consumption of hot water follows the same pattern and takes place in the evenings (for the base case, total daily hot water consumption is assumed to be equal to the storage tank volume). Daily distributed water consumption compared with only nighttime consumption results in higher solar fractions due to higher solar collector efficiencies arising from lower

Fig. 1 A pumped circulation solar water heating system

collector inlet temperatures fed from a store replenished with cold water during the day. Assuming evening water consumption therefore delineates a lower limit to the achievable provision of solar hot water that will be exceeded by most other daily hot water consumption profiles.

- 3. The storage tank and all connecting pipes are well insulated thermally.
- 4. Because the storage tank and connecting pipes are assumed to be well insulated, simultaneous proportional changing of total solar heated water consumption volume V_{dav} , store volume V_{st} , and collector area Asc SWH system operation are assumed to give equivalent thermal performance.
- 5. The water in the storage tank is well mixed thermally, that is, there is no temperature stratification of the water inside the tank. A stratified tank, as would be likely to ensue in reality, would provide a higher draw-off temperature. Assuming a well mixed tank thus determines a lower bound to actual performance.
- 6. The solar collector is assumed to be single glazed. non-selective, and installed facing due south at an inclination to the horizon equal to each local latitude. The system parameters used are given in Table 2.

The solar collector area was varied in the range of 1-4 m². Demand temperatures of 37, 45, and 55 °C are considered. TRNSYS [8] was used to generate the hourly meteorological data in the form of typical meteorological years (TMY) for each site considered using the online 'RETScreen' database [9] to provide average monthly climatic data for each site. The uncertainty of TMY generation has been discussed in reference [7, 8]. The number of days (N) in each month of the year when the water temperature in the storage tank reaches or exceeds the specified demand temperature was determined by hour-by-hour simulation carried out using TRNSYS [8]. SWH simulations were carried out for the 147 European sites listed in Table 3.

 Table 2
 System parameters for the base case

Parameter	Value
Solar collector area (A_{sc})	2 m ²
Daily hot water consumption (V_{dav})	$100 \ 1 \ day^{-2}$
Storage tank volume (V_{st})	100 1
Mass flowrate	$50.1 \text{ m}^{-2} \text{ h}^{-1}$
Collector slope angle (θ)	Local latitude
Collector thermal losses coefficient ($F_{\rm R}U_{\rm I}$)	$7 \text{ W m}^{-2} \text{ K}^{-1}$
Collector optical efficiency $F(\tau \alpha)$	0.8
Initial temperature $(t_0)^a$	10 °C
Mode of hot water consumption Storage tank	Nighttime consumption Well-mixed, well-insulated

^aInitial daily water temperature in storage tank for all days of the vear.

Location	Latitude (°N)	Longitude (°E)	Altitude (m)	Total annual solar radiation on horizontal surface (kW h m ⁻²)	Total solar radiation on horizontal surface from April to September (kW h m ⁻²)	Total solar radiation on horizontal surface from June to August (kW h m ⁻²)
Aberporth (UK)	52	-5	1	1045	814	450
Alghero (Italy)	41	8	0	1628	1155	647
Almeria (Spain)	37	-2	0	1738	1144	614
Amendola (Italy)	42	16	91	1540	1083	596
Ancona (Italy)	44	14	154	1383	1020	570
Adding/Talayera (Spain)	38	24 7	154	1582	1109	622
Bania Luka (Bosnia Hercegovina)	39 45	17	162	1004	937	522
Barcelona (Spain)	43	2	102	1371	927	511
Bari (Italy)	41	17	0	1586	1124	610
Beograd (Serbia)	45	20	59	1395	1003	553
Bergen (Norway)	60	5	7	829	682	380
Bitola (Macedonia)	41	21	583	1603	1125	626
Bologna (Italy)	45	11	102	1289	943	528
Bolzano (Italy)	46	11	1002	1231	885	483
Boulogne Sur Seine (France)	51	2	30	1203	911	495
Braganca (Portugal)	42	-7	582	1730	1247	708
Bromon (Cormany)	48	17	132	045	918 741	202
Brest (France)		-4	76	1139	842	403
Brindisi (Italy)	40	18	16	1602	1136	637
Brussels-Uccle (Belgium)	51	4	77	971	754	419
Bucuresti (Romania)	45	26	71	1421	1041	577
Budapest (Hungary)	47	19	103	1209	914	512
Burgos (Spain)	42	-4	861	1381	989	555
Cagliari/Elmas (Italy)	39	9	22	1591	1101	618
Ciudad Real (Spain)	39	-4	630	1616	1111	615
Cluj/Napoca (Romania)	47	24	354	1307	960	537
Combra (Portugal)	40	-8	46	1619	1090	597
Constanta (Romania)	44 56	29	1	1427	1000	200 702
Craiova (Romania)	50 44	24	108	1383	042 997	403 565
Crotone (Italy)	39	17	100	1639	1137	625
De Bilt (Netherlands)	52	5	3	991	774	434
Debrecen (Hungary)	47	22	122	1194	897	499
Den Helder/De Koog (Netherlands)	53	5	1	1086	856	479
Dijon (France)	47	5	236	1309	973	546
Eskdalemuir (UK)	55	-3	237	835	659	372
Evora (Portugal)	39	-8	202	1840	1292	723
Faro (Portugal)	37	-8	1	1805	1238	6// EC9
Funchal (Madeira)	44	-17	91	1304	995 1101	573
Galati (Romania)	46	28	2	1441	1046	582
Gdansk (Poland)	54	19	15	1076	857	483
Geisenheim (Germany)	50	8	84	1037	808	448
Gela (Italy)	37	14	0	1784	1202	653
Genova/Sestri (Italy)	44	9	68	1151	829	464
Graz University (Austria)	47	15	355	1127	820	451
Groningen/Eelde (Netherlands)	53	7	3	1015	801	454
Hamburg-Sasel/Fuhlsbuttel (Germany)	54	10	31	978	783	447
Helsinki/Iimaia (Finiand)	60 49	25	26	994	850	509 465
Isi (Romania)	40	28	730	1213	982	403 550
Jokioinen (Finland)	61	20	114	947	809	480
Karlstad (Sweden)	59	13	41	1048	880	521
Kassel (Germany)	51	9	155	981	764	419
Kaunas (Lithuania)	55	24	94	890	707	407
Kiev (Ukraine)	50	31	169	1060	825	483
Klagenfurt-Flughafen (Austria)	47	14	431	1254	915	500
Kolobrzeg (Poland)	54	16	49	1091	892	517
Kopaonik (Serbia)	43	21	1394	1349	907 769	517
La Coruna (Spain) Lerwick (IIK)	43 60		0	1100	700 659	410 377
Lille (France)	51	3	25	1088	818	453
· · · · · · · · · · · · · · · · · · ·	~ -					

Table 3	Total solar radiation of	on a horizontal	surface for	different times	of the	year and for	different 1	locations	in Euro	pe
---------	--------------------------	-----------------	-------------	-----------------	--------	--------------	-------------	-----------	---------	----

Continued

	Latitude	Longitude	Altitude	Total annual solar radiation on horizontal surface	Total solar radiation on horizontal surface from April to September	Total solar radiation on horizontal surface from June to August
Location	(°N)	(°E)	(m)	(kW h m ⁻²)	$(kW h m^{-2})$	(kW h m ⁻²)
Limoges (France)	46	1	298	1261	921	512
Lisboa (Politigal) Liubliana/Bezigrad (Slovenia)	59 46	-9	300	1091	829	462
Lomnicky Stit (Slovakia)	49	20	2073	1315	873	427
London (UK)	52	0	15	897	698	398
Lyon/Bron (France)	46	5	200	1252	945	533
Maastricht/Beek (Netherlands)	51	6	117	1006	779	431
Madrid (Spain)	40	-4	589	1593	1124	626
Malaga (Spain) Messina (Italy)	38	-4 16	1	1616	1144	614
Milano/Linate (Italy)	45	9	99	1241	935	526
Milesovka (Czech Republic)	51	14	450	1165	882	477
Minsk (Belarus)	54	28	199	948	756	435
Moscow (Russia)	56	38	150	959	774	466
Murcia (Spain)	38	-1	25	1804	1188	654
Nantes (France)	45	-2	235	1223	905	506
Napoli/Capodichino (Italy)	41	14	75	1529	1075	602
Negotin (Serbia)	44	23	85	1506	1102	613
Nice (France)	44	7	0	1551	1096	608
Nimes-Courbessac (France)	44	4	75	1553	1113	637
Norderney (Germany)	54	7	2	1021	813	444
Odessa (Ilkraine)	50 46	31	308 41	1032	004 980	440 555
Olbia/Costa Smeralda (Italy)	41	10	0	1544	1098	615
Oslo-Blindern (Norway)	60	11	60	880	721	398
Ostrava/Poruba (Czech Republic)	50	18	253	1022	781	434
Pantelleria Island (Italy)	37	12	830	1687	1149	640
Pecs/Pogany (Hungary)	46	18	165	1338	995	533
Perpignan (France) Pescara (Italy)	43	3 14	48	1032	1060	563
Pisa/S.Giusto (Italy)	44	14	3	1400	1020	553
Pleven (Bulgaria)	43	25	114	1259	903	494
Porto Santo (Madeira)	33	-16	176	1723	1122	597
Porto/Serra Do Pilar (Portugal)	41	-9	91	1643	1149	637
Praha/Karlov (Czech Republic)	50	14	245	997	772	431
Orendi (Malta)	43	21	000 48	1418 1897	1004	558 700
Reims (France)	49	4	99	1139	856	471
Reyjavik (Iceland)	64	-22	16	779	674	381
Riga (Latvia)	57	24	5	898	749	433
Roma/Ciampino (Italy)	42	13	141	1529	1079	601
Rouen (France)	49	17	10	1106	838	464
Salzhurg-Flughafen (Austria)	49	13	200 453	1052	012 777	400
Sandanski (Bulgaria)	40	23	297	1406	997	565
Sarajevo (Bosnia Hercegovina)	44	18	524	1260	903	504
Schleswig (Germany)	55	10	15	959	774	433
Sevilla/San Pablo (Spain)	37	$^{-6}$	16	1190	720	364
Sonnblick (Austria)	43	23 13	592 2429	1107	830 944	407
Split/Marian (Croatia)	44	16	62	1637	1151	640
St Petersburg/Voeikovo (Russia)	60	30	5	746	646	379
St Hubert (Belgium)	50	5	480	1029	793	441
Stockholm (Sweden)	60	18	16	1032	866	511
Stuttgart (Germany)	49	9	415	1140	855	470
Suwaiki (Poland) Szeged (Hungary)	54 46	23	1/1 76	1060 1274	852 946	497 520
Tbilisi (Georgia)	40	45	405	1335	961	536
Timisoara (Romania)	46	21	91	1330	981	547
Toulon (France)	43	6	0	1670	1186	674
Toulouse Blagnac (France)	44	1	130	1384	981	542
Trapani/Birgi (Italy)	38	13	1	2007	1336	760
Ther-Petrisberg (Germany)	50	1	158	1065	825	458

Table 3 Continued

Continued

399

Location	Latitude (°N)	Longitude (°E)	Altitude (m)	Total annual solar radiation on horizontal surface (kW h m ⁻²)	Total solar radiation on horizontal surface from April to September (kW h m ^{-2})	Total solar radiation on horizontal surface from June to August $(kW h m^{-2})$
Trieste (Italy)	46	14	109	1236	898	500
Trikala (Greece)	41	23	4	1112	792	441
Tromso-Langnes (Norway)	70	19	27	652	592	369
Trondheim (Norway)	63	10	100	843	719	414
Ustica Is. (Italy)	39	13	0	1718	1168	642
Valencia (Spain)	39	0	8	1549	1040	573
Valentia (Ireland)	52	-10	10	1039	804	437
Valladolid (Spain)	42	-5	704	1495	1070	603
Varna (Bulgaria)	43	28	80	1256	900	505
Venezia/Tessera (Italy)	46	12	2	1289	951	538
Visby (Sweden)	58	18	50	1102	914	537
Vlissingen (Netherlands)	51	4	1	1050	814	454
Warsaw-Okecie (Poland)	52	21	94	966	787	459
Wien/Hohe Warte (Austria)	48	16	600	1105	844	469
Wuerzburg (Germany)	50	10	209	1115	854	471
Zagreb/Gric (Croatia)	46	16	400	1211	909	503
Zaragoza (Spain)	42	-1	207	1588	1112	619
Zlatibor (Bosnia Hercegovina)	44	20	794	1342	931	513
Zuerich/Kloten (Switzerland)	47	9	480	1134	866	485

 Table 3
 Continued

3 RESULTS

The number of days that the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of total solar radiation and collector surface area for different time periods is shown in Figs 2 to 4 for the whole year, Figs 5 to 7 for the warm half-year period (i.e. April to September), and Figs 8 to 10 for summer (i.e. June to August). Each figure shows results for demand temperatures of 37, 45, and 55 °C. In continental Europe, monthly average solar heated water temperatures are broadly lower for higher latitudes. Figs 2 to 10 show that there is a clear dependence of the 'number of days' on total solar radiation for all three time-periods considered (i.e. whole year, warm half-year, and summer) and at all three demand temperatures considered (i.e. 37, 45, and 55 °C). Significant deviation from general trends may be seen for results corresponding to Lomnicky Stit (Slovakia), Sonnblick (Austria), and Kopaonik (Serbia). These high altitude locations

Fig. 2 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 1 m^2 and for the whole year

Fig. 3 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 2 m² and for the whole year

Fig. 4 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 3 m² and for the whole year

combine high solar radiation with relatively lowambient temperatures. For these locations, the relative dispersion of data increases with increasing total solar radiation. This is because in mountainous areas, there are wide differences in ambient temperature (the principal determinant of heat loss from the collector) for similar levels of insolation. Contour maps of the variation of 'number of days' are shown in Figs 11 to 13 for demand temperatures of 37, 45, and 55 °C, respectively.

Fig. 5 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 1 m² and for the period April to September

Fig. 6 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 2 m² and for the period April to September

4 CORRELATION OF TYPICAL SWH PERFORMANCE

For a specified demand temperature, the number of days that specified hot water demand temperature could be satisfied, *N*, may be assumed to depend solely on the total insolation for the period of year considered. For a particular demand temperature, demand profile and system specification, *N*, may then be determined for any location solely as a

Fig. 7 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 3 m² and for the period April to September

Fig. 8 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 1 m² and for the period June to August

function of total insolation. A correlation between number of days and total solar radiation has the form

$$N = \begin{cases} 0 & \text{for } I < I_0 \\ \frac{(I - I_0)}{(I_{\max} - I_0)} N_{\max} & \text{for } I_0 \leqslant I \leqslant I_{\max} \\ N_{\max} & \text{for } I > I_{\max} \end{cases}$$
(1)

Fig. 9 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 2 m² and for the period June to August

Fig. 10 The number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures as a function of daily total solar radiation on horizontal surface for a collector area of 3 m² and for the period June to August

For summer, $N_{\text{max}} = 92$ days; for April to September, $N_{\text{max}} = 183$ days; and for the whole year, $N_{\text{max}} = 365$ days. If the total solar radiation is less than a minimum threshold value of total solar radiation on horizontal surface, I_0 , then the SWH will be unable to heat water to the specific demand temperature. The minimum threshold insolation increases with increase in specific demand temperature and decreases with increasing solar collector area per unit store volume. The number of days during which the solar heated water temperature exceeds the specified demand temperature is limited to the total number of days in the period under consideration. When the total number of days is reached, the water temperature in SWH storage tank will obviously exceed the specific demand temperature for every day within the period. The latter is associated with a maximum threshold value of insolation, I_{max} . I_0 and I_{max} depend on the solar collector area and the duration of the period under consideration with relationships of the form

$$I_{\rm o} = a \cdot \exp\left(\frac{b}{A_{\rm sc}}\right) \tag{2a}$$

$$T_{\max} = c \cdot \exp\left(\frac{d}{A_{\rm sc}}\right)$$
 (2b)

Coefficients '*a*', '*b*', '*c*', and '*d*' have been obtained from calculations using the least-squares method; the values of these coefficients are given in Table 4 are only valid for collector areas in the

Fig. 11 Contour maps of the number of days in a year for which the temperature of water in the storage tank reaches or exceeds 37 °C for Europe

range $1-4 \text{ m}^2$ and total solar radiation on horizontal surface in the range $1.08-2.16 \text{ GJ m}^2$ for summer, $1.8-3.6 \text{ GJ m}^{-2}$ for the warm half-year, and $2.52-5.4 \text{ GJ m}^{-2}$ when the whole year is considered. The inaccuracy in determining the number of days for which a specified demand temperature is satisfied arising from using equations (1) and (2) is in the range 10-30 per cent due to the approximation error; the error is the smallest for high values of total solar radiation.

5 SENSITIVITY OF SWH PERFORMANCE TO SOLAR COLLECTOR PARAMETERS

Many solar collectors have one transparent cover and do not have a selective coating [10, 11]. Their overall heat loss coefficient (U_L) varies in the range $5.5-7.0 \text{ W m}^{-2} \text{ K}^{-1}$ and their optical coefficient ($\tau \alpha$) varies in the range 0.78–0.8. As the range of $\tau \alpha$ is small, sensitivity analysis has been carried out only for $U_{\rm L}$. As $A_{\rm sc}$ increases, N depends more on insolation and the influence of $U_{\rm L}$ on N is reduced. Data dispersion depends mainly on geographical location of sites; the other parameters are the periods of year, specific demand temperature, and $A_{\rm sc}$ considered. Considering this dispersion as random, the influence of $U_{\rm L}$ can be estimated [12] for the European locations considered

$$\begin{pmatrix} N_{U_{\rm L}} = 5\\ N_{U_{\rm L}} = 7 \end{pmatrix} = 1.13 \pm 0.008; \begin{pmatrix} N_{U_{\rm L}} = 9\\ N_{U_{\rm L}} = 7 \end{pmatrix} = 0.86 \pm 0.008$$
(3)

where brackets denote averaging for all variants. Thus, $U_{\rm L}$ changing from 7 to 5 W m⁻² K⁻¹ increases

Fig. 12 Contour maps of the number of days in a year for which the temperature of water in the storage tank reaches or exceeds 45 °C for Europe

N by 13 per cent and increasing of $U_{\rm L}$ from 7 to 9 W m⁻² K⁻¹ decreases this value by 14 per cent.

6 CORRELATION BETWEEN 'NUMBER OF DAYS' AND 'SOLAR A FRACTION'

The results of calculation of 'number of days' and 'solar fractions' for SWH with storage tank volume of 100 l and daily water consumption of 100 l day⁻¹ for two periods of SWH operation (whole year and April to September) and all considered sites in Europe are shown in Fig. 14. For both cases, the solar collector surface area was varied in range of $1-4 \text{ m}^2$; the specified demand temperatures were 37, 45, and 55 °C. The solar fraction for each day is calculated as shown below, where the initial

temperature of the water in the storage tank is 10 °C.

$$f = 1 - \frac{Q_{\text{aux}}}{Q_{\text{tot}}} \tag{4}$$

If solar preheated water temperature to the end of a day was equal to or higher than the demand temperature, the solar fraction was considered as equal to 1. Average solar fraction for both considered periods of year was calculated as the ratio of the sum of daily solar fractions to the amount of days in the period. *N* was normalized to the amount of days in each period too.

All correlation data points were plotted on a graph of normalized 'number of days' versus average solar fraction for considered periods of year as shown in Fig. 14. The lower the normalized number of days,

Fig. 13 Contour maps of the number of days in a year for which the temperature of water in the storage tank reaches or exceeds 55 °C for Europe

the wider data arrays distribution along the solar fraction axis. For higher values of solar fractions and specific number of days, there was less spread of data points.

7 CONCLUSION

Correlations have been established for the number of days a specified hot water demand temperature can

Table 4Coefficients for the determination of the maximum and minimum threshold total solar radiation on horizontal
surface as functions of demand temperature and period of year

		Coefficients for I_0				Coefficients for I_{max}			
Period of year	Demand temperature (°C)	$a (GJ m^{-2})$	Δ (%)	<i>b</i> (GJ m ⁻²)	Δ (%)	$c (GJ m^{-2})$	Δ (%)	$d ({ m GJ}{ m m}^{-2})$	Δ (%)
Whole year	37	0.86	4.17	0.93	6.45	5.8	0.68	0.57	1.75
2	45	1.09	2.3	1.01	2.97	5.36	3.42	1.08	3.7
	55	1.3	1.93	1.23	4.07	5.79	0.37	1.38	0.72
April to September	37	0.54	26.67	1.4	21.43	3.6	1	0.23	8.7
1 1	45	0.97	8.15	1.01	9.9	3.53	1.33	0.43	8.7
	55	1.22	3.82	1.18	8.47	3.53	0.92	0.63	3.17
June to August	37	0.35	18.75	1.2	16.67	1.9	0.38	0.18	5.56
0	45	0.54	6	1.01	7.92	1.92	1.12	0.32	6.25
	55	0.65	7.78	1.2	16.67	1.94	1.48	0.5	8

 Δ (%) is the maximum error in each case.

Fig. 14 A comparison of the number of days for which the temperature of water in the storage tank reaches or exceeds specified demand temperatures and solar fractions for Europe for the whole year and for the period April to September

be satisfied by a SWH without the use of auxiliary heating for 147 European locations for a whole and part year periods. The accuracy in determining the number of days is in the range 10–30 per cent; the error is the smallest for higher values of total insolation. An example of using the correlation to estimate the performance of a SWH for any location in Europe is provided in Appendix 2 for solar collectors with areas and specifications corresponding to those used in this study. If the latter is not the case, the 'number of days' and the terms I_0 and I_{max} may be calculated using equations (1) and (2), respectively. The coefficients *a*, *b*, *c*, and *d* may be obtained from Table 4 for the period under consideration.

Figures 11 to 13 show that with increasing altitude, particularly in the Alps, contours deviate with greater irregularity from a broad alignment with latitude. The effect of higher summer ambient temperatures associated with the prevailing continental climate in northern Europe can also be seen in the form of the contours in the region of the southern Baltic Sea.

Fig. 15 Mean monthly cumulative daily global insolation on a horizontal plane for July (based on 1985 to 2000 Meteosat data)

(As solar energy collection is more limited in winter, the cold winters also associated with a continental climate have less effect.) Higher demand temperatures entail a larger difference between SWH and ambient temperatures and thus increased system heat loss. As they influence ambient temperature, both altitude and continental climate effects on heat loss become more pronounced at higher demand temperatures. In south-west Spain, maritime cloud cover leads to lower insolation in south-west Spain as shown in Fig. 15 in the crucial summer period.

In colder part of year, there are more days when water is not heated to the specified demand temperatures, therefore in Fig. 14, whole year date points sit below April-to-September data. The solar fraction threshold below which the normalized number of days is zero is 0.3 for April to September and 0.5 for the whole year. (These values for the whole of Europe are very similar to those for London and Northern Ireland [5] conditions.) It is thus not possible for the particular SWH considered to provide hot water at a specified demand temperature of $37 \,^{\circ}$ C or above throughout the year without the use of auxiliary heating at any location in Europe.

Taken with cost and product quality information, the production of contour maps as described in this paper to show the geographic variation of the performance of different SWH would aid both system selection for designers and the definition of appropriate markets for manufacturers.

REFERENCES

- **1 Morrison, G. L.** *Solar water heating in solar energy: the state of the art* (Ed. J. Gordon) 2001 (James and James Publishers Ltd, London, UK).
- **2** Urbschat, C. Sunrise 2002: die europaischen markte fur solarthermie und photovoltaik, 2002 (Eclareon Gmbh, Berlin, Germany).
- **3 Reddy, T. A.** *The design and sizing of active solar thermal systems*, 1987 (Clarendon Press, Oxford, UK).
- **4 Bourges, B.** *European simplified methods for active solar system design,* 1991 (Kluwer Academic Publishers, Dordtrect, The Netherlands).
- **5** Yohanis, Y. G., Popel, O., Frid, S. E., and Norton, B. Analysis of the annual number of days for which solar heated water can be provided above a specified demand temperature. *Sol. Energy*, 2005, in press.
- **6 Beckman, W. A., Klein, S. A.,** and **Duffie, J. A.** *Solar heating design by the f-chart method*, 1977 (Wiley-Interscience, New York).
- 7 Duffie, J. A. and Beckman, W. A. Solar engineering of thermal processes, 1980 (Wiley, New York).
- 8 Klein, S. A., Duffie, J. A., Mitchell, J. C., Kummer, J. P., Beckmann, W. A., Duffie, N. A., Braun, J. E., Urban, R. E., Thornton, J. W., Mitchell, J. W., Freeman, T. L., Evans, B. L., and Fiksel, A. TRNSYS 15, a transient system simulation program. User's manual (version

15), 2000 (Solar Energy Laboratory, University of Wisconsin-Madison).

- **9** Anonymous. *RETScreen international (RETScreen)*, 2000 (CANMET Energy Diversification Research Laboratory (CEDRL), Canada), available from http://retscreen.gc.ca.
- 10 Weiss, W. Come in from the cold? The solar thermal market in Europe. *Renew. Energy World*, 2002 5(4), 91–97.
- 11 Weiss, W. and Faninger, G. Solar thermal collector market in IEA member countries. Report of IEA Solar Heating and Cooling Programme, 2002.
- 12 Zaidel, A. N. Errors in measurement of physical values, 1974 (Science Publishers, Leningrad, Russia) (in Russian).

APPENDIX 1

Notation

a, b, c,	coefficient
and <i>d</i>	
$A_{\rm sc}$	solar collector surface area (m ²)
f	solar fraction
F''	solar collector flow factor
$F_{ m R}$	solar collector heat removal factor
Ι	total solar radiation on horizontal
	surface (GJ m^{-2})
I _{max}	maximum threshold total solar radiation
	on horizontal surface (GJ m ⁻²)
I_0	minimum threshold total solar
	radiation on horizontal surface
	$(GJ m^{-2})$
N	number of days a specified hot water
	demand temperature is met solely by
	solar energy
$N_{\rm max}$	maximum threshold number of
	days a specified hot water demand
	temperature is met solely by solar
	energy
N_{U_1}	for a particular overall heat loss
	coefficient, the number of days
	a specified hot water demand
	temperature is met solely by
	solar energy
Q_{aux}	auxiliary heating requirement (J)
Q_{T}	useful heat produced by solar energy
	during the lifetime of SWH (J)
$Q_{\rm tot}$	total energy required to heat the supply
	water to the demand temperature (J)
t^*	specified demand water temperature in
	storage tank (°C)
$U_{ m L}$	overall heat loss coefficient
	$(W m^{-2} K^{-1})$
$V_{\rm dav}$	daily hot water requirement $(l day^{-1})$
V _{st}	storage volume (l)
au lpha	optical coefficient

APPENDIX 2

As an example of the estimation of the performance of SWH using the correlation developed earlier, a SWH at Kew near London is considered. The total insolation on a horizontal surface for whole year, half-year, and summer are 3.23, 2.51, and 1.43 GJ m⁻², respectively [**9**].

To estimate the solar collector area (A_{SC}) for a half-year operating period, the following procedure is adopted. For a daily hot water requirement $V_{\rm day} = 100$ l, using Fig. 5, determine the 'number of days' (*N*) for a specified temperature (t^*) for 2.51 GJ m⁻² total insolation on a horizontal surface for half-year period operation for collector areas (A_{sc}) of 1, 2, and 3 m²:

(a) for $A_{\rm sc} = 1 \text{ m}^2$ and $t^* \ge 37 \,^{\circ}\text{C}$, N = 50 days;

(b) for $A_{sc} = 1 \text{ m}^2$ and $t^* \ge 45 \text{ °C}$, N = 5 days; (c) for $A_{sc} = 1 \text{ m}^2$ and $t^* \ge 55 \text{ °C}$, N = 0 days.

If the 'number of days' obtained using a collector area of 1 m² does not meet the requirement, then Fig. 6 is used to determine N for a collector area of 2 m^2 . As earlier, *N* is determined as follows:

- (a) for $A_{sc} = 2 \text{ m}^2$ and $t^* \ge 37 \degree \text{C}$, N = 100 days;
- (b) for $A_{sc} = 2 \text{ m}^2$ and $t^* \ge 45 \text{ °C}$, N = 70 days; (c) for $A_{sc} = 2 \text{ m}^2$ and $t^* \ge 55 \text{ °C}$, N = 35 days.

This procedure is repeated for a collector area of 3 m^2 as shown subsequently:

- (a) for $A_{\rm sc} = 3 \text{ m}^2$ and $t^* \ge 37 \,^{\circ}\text{C}$, N = 130 days;
- (b) for $A_{sc} = 3 \text{ m}^2$ and $t^* \ge 45 \degree \text{C}$, N = 85 days; (c) for $A_{sc} = 3 \text{ m}^2$ and $t^* \ge 55 \degree \text{C}$, N = 65 days.

This is based on daily consumption of 1001 and a storage volume of 1001 as well. If the required daily consumption is different, say 300 l, a scaling method can be applied. The storage volume as earlier will be taken to be the same as the daily requirement, i.e. 300 l. The collector area (A_{sc}) is scaled by the ratio of daily requirement to storage, i.e. $A_{\rm sc}$ ($V_{\rm day}/V_{\rm st}$). In this case, the scaling factor will be equal to 3; this means that the new collector area will be three times larger. All the earlier calculations are based on the base case as given in Table 2.