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Examples of G-strand equations

Darryl D. Holm and Rossen I.

Ivanov

1 Introduction

The G-strand equations for a map R × R into a Lie group G are asso-
ciated to a G-invariant Lagrangian. The Lie group manifold is also the
configuration space for the Lagrangian. The G-strand itself is the map
g(t, s) : R × R → G, where t and s are the independent variables of
the G-strand equations. The Euler-Poincaré reduction of the variational
principle leads to a formulation where the dependent variables of the
G-strand equations take values in the corresponding Lie algebra g and
its co-algebra, g∗ with respect to the pairing provided by the variational
derivatives of the Lagrangian.

We review examples of two G-strand constructions, including matrix
Lie groups and the Diffeomorphism group. In some cases the G-strand
equations are completely integrable 1+1 Hamiltonian systems that admit
soliton solutions.

Our presentation is based on our previous works [15, 9, 8, 13, 10]
and is aimed to illustrate the G-strand construction with two simple but
instructive examples:

(i) SO(3)-strand integrable equations for Lax operators, quadratic in
the spectral parameter;

(ii) Diff(R)-strand equations. These equations are in general non-
integrable; however they admit solutions in 2 + 1 space-time with singu-
lar support (e.g., peakons). The one- and two-peakon equations obtained
from the Diff(R)-strand equations can be solved analytically, and po-
tentially they can be applied in the theory of image registration. Our
example is with a system which is a 2 + 1 generalization of the Hunter-
Saxton equation.
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2 Ingredients of Euler–Poincaré theory for

left G-Invariant Lagrangians

Let G be a Lie group. A map g(t, s) : R×R → G has two types of tangent
vectors, ġ := gt ∈ TG and g′ := gs ∈ TG. Assume that the Lagrangian
density function L(g, ġ, g′) is left G-invariant. The left G–invariance of
L permits us to define l : g× g → R by

L(g, ġ, g′) = L(g−1g, g−1ġ, g−1g′) ≡ l(g−1ġ, g−1g′).

Conversely, this relation defines for any reduced lagrangian l = l(u, v) :
g × g → R a left G-invariant function L : TG × TG → R and a map
g(t, s) : R× R → G such that

u(t, s) := g−1gt(t, s) = g−1ġ(t, s) and v(t, s) := g−1gs(t, s) = g−1g′(t, s).

Lemma 2.1. The left-invariant tangent vectors u(t, s) and v(t, s) at the
identity of G satisfy

vt − us = − aduv . (1)

Proof. The proof is standard and follows from equality of cross derivatives
gts = gst.

Equation (1) is usually called a zero-curvature relation.

Theorem 2.2 ( Euler-Poincaré theorem for left-invariant Lagrangians).

With the preceding notation, the following two statements are equiva-
lent:

i Variational principle on TG×TG δ
∫ t2
t1

L(g(t, s), ġ(t, s), g′(t, s)) ds dt =

0 holds, for variations δg(t, s) of g(t, s) vanishing at the endpoints
in t and s. The function g(t, s) satisfies Euler–Lagrange equations
for L on G, given by

∂L

∂g
−

∂

∂t

∂L

∂gt
−

∂

∂s

∂L

∂gs
= 0.

ii The constrained variational principle1

δ

∫ t2

t1

l(u(t, s), v(t, s)) ds dt = 0

1As with the basic Euler–Poincaré equations, this is not strictly a variational prin-

ciple in the same sense as the standard Hamilton’s principle. It is more like the

Lagrange d’Alembert principle, because we impose the stated constraints on the vari-

ations allowed.



D. Holm and R. Ivanov 3

holds on g×g, using variations of u := g−1gt(t, s) and v := g−1gs(t, s)
of the forms

δu = ẇ + aduw and δv = w
′ + advw ,

where w(t, s) := g−1δg ∈ g vanishes at the endpoints. The Euler–
Poincaré equations hold on g

∗ × g
∗ (G-strand equations)

d

dt

δl

δu
− ad∗

u

δl

δu
+

d

ds

δl

δv
− ad∗

v

δl

δv
= 0 & ∂su− ∂tv = [ u, v ] = aduv

where (ad∗ : g× g
∗ → g

∗) is defined via (ad : g× g → g) in the dual
pairing 〈 · , · 〉 : g∗ × g → R by,

〈
ad∗

u

δℓ

δu
, v

〉

g

=

〈
δℓ

δu
, aduv

〉

g

.

In 1901 Poincaré in his famous work proves that, when a Lie algebra
acts locally transitively on the configuration space of a Lagrangian me-
chanical system, the well known Euler-Lagrange equations are equivalent
to a new system of differential equations defined on the product of the
configuration space with the Lie algebra. These equations are called now
in his honor Euler-Poincaré equations. In modern language the contents
of the Poincaré’s article [14] is presented for example in [7, 5]. English
translation of the article [14] can be found as Appendix D in [7].

3 G-strand equations on matrix Lie algebras

Denoting m := δℓ/δu and n := δℓ/δv in g
∗, the G-strand equations be-

come

mt + ns − ad∗
u
m− ad∗

v
n = 0 and ∂tv − ∂su+ aduv = 0.

For G a semisimple matrix Lie group and g its matrix Lie algebra these
equations become

m
T
t + n

T
s + adum

T + advn
T =0,

∂tv − ∂su+ aduv =0
(2)

where the ad-invariant pairing for semisimple matrix Lie algebras is given
by
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〈
m , n

〉
=

1

2
tr(mT

n),

the transpose gives the map between the algebra and its dual ( · )T : g →
g
∗. For semisimple matrix Lie groups, the adjoint operator is the matrix

commutator. Examples are studied in [15, 8, 13].

4 Lie-Poisson Hamiltonian formulation

Legendre transformation of the Lagrangian ℓ(u, v) : g× g → R yields the
Hamiltonian h(m, v) : g∗ × g → R

h(m, v) =
〈
m , u

〉
− ℓ(u, v) . (3)

Its partial derivatives imply

δl

δu
= m ,

δh

δm
= u and

δh

δv
= −

δℓ

δv
= v.

These derivatives allow one to rewrite the Euler-Poincaré equation
solely in terms of momentum m as

∂tm = ad∗δh/δm m+ ∂s
δh

δv
− ad∗

v

δh

δv
,

∂tv = ∂s
δh

δm
− adδh/δm v .

(4)

Assembling these equations into Lie-Poisson Hamiltonian form gives,

∂

∂t

[
m

v

]
=

[
ad∗( · )m ∂s − ad∗

v

∂s + adv 0

] [
δh/δm
δh/δv

]
(5)

The Hamiltonian matrix in equation (5) also appears in the Lie-
Poisson brackets for Yang-Mills plasmas, for spin glasses and for perfect
complex fluids, such as liquid crystals.

5 Example: Integrable SO(3) G-strands with

Lax operator, quadratic in the spectral

parameter

Integrable SO(3) G-strand system was studied in [15] by linking it to the
integrable P -chiral model of [16, 1, 4]. The Lax operator of the system in
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[15] is linear in the spectral parameter. In this example we will provide
the zero curvature representation of a SO(3) G-Strand equations and
thereby prove its integrability, where the Lax operator is quadratic in
the spectral parameter.

5.1 The hat map ̂ : (so(3), [·, ·]) → (R3,×)

The Lie algebra (so(3), [·, ·]) with matrix commutator bracket [ · , · ] maps
to the Lie algebra (R3,×) with vector product ×, by the linear isomor-
phism

u := (u1, u2, u3) ∈ R
3 7→ û :=




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ∈ so(3) .

In matrix and vector components, the linear isomorphism is ûij := − ǫijku
k .

Equivalently, this isomorphism is given by ûv = u × v for all u,v ∈
R

3. This is the hat map ̂ : (so(3), [·, ·]) → (R3,×), which holds for the
skew-symmetric 3× 3 matrices in the matrix Lie algebra so(3).

One may verify the following useful formulas for u,v,w ∈ R
3:

(u× v)̂ = û v̂ − v̂ û =: [û, v̂] ,

[û, v̂]w = (u× v)×w ,(
(u× v)×w

)
̂ =

[
[û, v̂] , ŵ

]
,

u · v = − 1

2
trace(û v̂) =:

〈
û , v̂

〉
,

in which the dot product of vectors is also the natural pairing of 3 × 3
skew-symmetric matrices.

5.2 The SO(3) G-Strand system in R
3 vector form

By using the hat map, so(3) → R
3, the matrix G-Strand system for

SO(3) [15] may be written in R
3 vector form by following the analogy

with the Euler rigid body in standard notation,

∂tΠ+ Ω×Π− ∂sΞ− Γ× Ξ = 0 ,

∂tΓ− ∂sΩ− Γ× Ω = 0 ,
(6)

where Ω := O−1∂tO ∈ so(3) and Π := ∂ℓ/∂Ω ∈ so(3)∗ are the body
angular velocity and momentum, while Γ := O−1∂sO ∈ so(3) and Ξ =
− ∂ℓ/∂Γ ∈ so(3)∗ are the body angular strain and stress. These G-
Strand equations for g = so(3) equations may be expressed in Lie–Poisson
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Hamiltonian form in terms of vector operations in so(3)× R
3 as,

∂

∂t

[
Π
Γ

]
=

[
Π× ∂s + Γ×

∂s + Γ× 0

] [
δh/δΠ = Ω
δh/δΓ = Ξ

]
. (7)

This Hamiltonian matrix yields a Lie–Poisson bracket defined on the dual
of the semidirect-product Lie algebra so(3)sR

3 with a two-cocycle given
by ∂s. Namely,

{f, h} =

∫ [
δf/δΠ , δf/δΓ

]
·

[
Π× ∂s + Γ×

∂s + Γ× 0

] [
δh/δΠ
δh/δΓ

]
ds

=

∫
−Π ·

δf

δΠ
×

δh

δΠ
− Γ ·

(
δf

δΠ
×

δh

δΓ
−

δh

δΠ
×

δf

δΓ

)

+
δf

δΠ
∂s

δh

δΓ
+

δf

δΓ
∂s

δh

δΠ
ds.

(8)

Dual variables are Π dual to so(3) and Γ dual to R
3. For more infor-

mation about Lie–Poisson brackets, see [11].
The R

3 G-Strand equations (6) combine two classic ODEs due sepa-
rately to Euler and Kirchhoff into a single PDE system. The R

3 vector
representation of so(3) implies that ad∗ΩΠ = −Ω × Π = −adΩΠ, so the
corresponding Euler–Poincaré equation has a ZCR. To find its integra-
bility conditions, we set

L := λ2A+ λΠ+ Γ and M := λ2B + λΞ + Ω , (9)

and compute the conditions in terms of Π Ω, Ξ, Γ and the constant
vectors A and B that are required to write the vector system (6) in
zero-curvature form,

∂tL− ∂sM − L×M = 0 . (10)

By direct substitution of (9) into (10) and equating the coefficient of each
power of λ to zero, one finds

λ4 : A×B = 0

λ3 : A× Ξ−B ×Π = 0

λ2 : A× Ω−B × Γ + Π× Ξ = 0

λ1 : Π× Ω+ Γ× Ξ = ∂tΠ− ∂sΞ (EP equation)

λ0 : Γ× Ω = ∂tΓ− ∂sΩ (compatibility)

(11)

where A and B are taken as constant nonzero vectors. These imply the



D. Holm and R. Ivanov 7

following relationships

λ4 : A = αB

λ3 : A× (Ξ−Π/α) = 0 =⇒ Ξ−Π/α = βA

λ2 : A× (Ω− Γ/α) = Ξ×Π = βA×Π

(12)

We solve equations (12) for the diagnostic variables Ξ and Ω, as

Ξ−
1

α
Π = βA and Ω−

Γ

α
− βΠ = γA , (13)

where α, β, γ are real scalars.
The conserved quantities can be evaluated from the Lax representa-

tion:

H−1 =

∫
(A ·Π)ds

H0 =

∫ (
(A×Π)2

2|A|2
+A · Γ

)
ds

H1 =

∫ (
Π · Γ− (A ·Π)

(
(A×Π)2

2|A|4
+

(A · Γ)

|A|2

))
ds.

(14)

Let us now try to find a Hamiltonian h as a linear combination of
H−1, H0 and H1, i.e. h = c−1H−1 + c0H0 + c1H1 for some numerical
constants ck. We need to satisfy the two relations

δh

δΠ
=c−1

δH−1

δΠ
+ c0

δH0

δΠ
+ c1

δH1

δΠ
=

1

α
Γ + βΠ+ γA ≡ Ω,

δh

δΓ
=c−1

δH−1

δΓ
+ c0

δH0

δΓ
+ c1

δH1

δΓ
=

1

α
Π+ βA ≡ Ξ

(15)

Comparing the scalar coefficients arising in front of the vectors A, Π
and Γ from both sides of (15) we obtain

α =c1 = 1,

β =c0 −
A ·Π

|A|2
,

γ =c−1 − c0
A ·Π

|A|2
−

Π2

2|A|2
+

3(A ·Π)2

2|A|4
−

A · Γ

|A|2
,

(16)

c−1 and c0 are arbitrary real constants. The most general Hamiltonian
of course could contain combinations of all conserved quantities, with
coefficients ck where possibly k > 1. In such cases the expressions for
α, β and γ of course will contain terms, related to the higher conserved
quantities, entering the Hamiltonian.
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6 The Diff(R)-strand system

The constructions described briefly in the previous sections can be easily
generalized in cases where the Lie group is the group of the Diffeomor-
phisms. Consider Hamiltonian which is a right-invariant bilinear form
H(u, v). The manifold M where u and v are defined is S1 or in the case
when the class of smooth functions vanishing rapidly at ±∞ is consid-
ered, we will allow M ≡ R. Let us introduce the notation u(g(x)) ≡ u◦g.
Let us further consider an one-parametric family of diffeomprphisms,
g(x, t) ∈ Diff(M) by defining the t - evolution as

ġ = u(g(x, t), t), g(x, 0) = x, i.e. ġ = u ◦ g ∈ TgG; (17)

u = ġ ◦ g−1 ∈ g, where g, the corresponding Lie-algebra is the algebra of
vector fields, Vect(M). Now we recall the following result:

Theorem 6.1. (A. Kirillov, 1980, [2, 3]) The dual space of g is a space of
distributions but the subspace of local functionals, called the regular dual
g
∗ is naturally identified with the space of quadratic differentials m(x)dx2

on M. The pairing is given for any vector field u∂x ∈ Vect(M) by

〈mdx2, u∂x〉 =

∫

M

m(x)u(x)dx

The coadjoint action coincides with the action of a diffeomorphism
on the quadratic differential:

Ad∗g : mdx2 7→ m(g)g2xdx
2

and
ad∗u = 2ux + u∂x

Indeed, a simple computation shows that

〈ad∗u∂x

mdx2, v∂x〉 = 〈mdx2, [u∂x, v∂x]〉 =

∫

M

m(uxv − vxu)dx =

∫

M

v(2mux + umx)dx = 〈(2mux + umx)dx
2, v∂x〉,

i.e. ad∗um = 2uxm+ umx.
The Diff(R)-strand system arises when we choose G = Diff(R). For

a two-parametric group we have two tangent vectors

∂tg = u ◦ g and ∂sg = v ◦ g ,

where the symbol ◦ denotes composition of functions.
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In this right-invariant case, the G-strand PDE system with reduced
Lagrangian ℓ(u, v) takes the form,

∂

∂t

δℓ

δu
+

∂

∂s

δℓ

δv
= − ad∗u

δℓ

δu
− ad∗v

δℓ

δv
,

∂v

∂t
−

∂u

∂s
= aduv .

(18)

Of course, the distinction between the maps (u, v) : R × R → g × g

and their pointwise values (u(t, s), v(t, s)) ∈ g × g is clear. Likewise, for
the variational derivatives δℓ/δu and δℓ/δv.

7 The Diff(R)-strand Hamiltonian structure

Upon setting m = δℓ/δu and n = δℓ/δv, the right-invariant Diff(R)-
strand equations in (18) for maps R × R → G = Diff(R) in one spatial
dimension may be expressed as a system of two 1+2 PDEs in (t, s, x),

mt + ns = − ad∗um− ad∗vn = −(um)x −mux − (vn)x − nvx ,

vt − us = − advu = −uvx + vux .
(19)

The Hamiltonian structure for these Diff(R)-strand equations is obtained
by Legendre transforming to

h(m, v) = 〈m, u〉 − ℓ(u, v) .

One may then write the equations (19) in Lie-Poisson Hamiltonian
form as

d

dt

[
m
v

]
=

[
− ad∗( · )m ∂s + ad∗v
∂s − adv 0

] [
δh/δm = u
δh/δv = −n

]
. (20)

8 Singular solutions of the Diff(R)-strand equa-

tions

For simplicity we continue with the following choice of Lagrangian,

ℓ(u, v) =
1

2

∫
(u2

x + v2x)dx , (21)

The Diff(R)-strand equations (19) admit peakon solutions in both mo-
menta

m = −uxx and n = −vxx,
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with continuous velocities u and v. This is a two-component generaliza-
tion of the Hunter-Saxton equation [18, 17].

Theorem 8.1. The Diff(R)-strand equations (19) admit singular solu-
tions expressible as linear superpositions summed over a ∈ Z

m(s, t, x) =
∑

a

Ma(s, t)δ(x−Qa(s, t)) ,

n(s, t, x) =
∑

a

Na(s, t)δ(x−Qa(s, t)) ,

u(s, t, x) = K ∗m =
∑

a

Ma(s, t)K(x,Qa) ,

v(s, t, x) = K ∗ n =
∑

a

Na(s, t)K(x,Qa) ,

(22)

where K(x, y) = − 1

2
|x− y| is the Green function of the operator −∂2

x:

−∂2

xK(x, 0) = δ(x)

The solution parameters {Qa(s, t),Ma(s, t), Na(s, t)} with a ∈ Z that
specify the singular solutions (22) (which we call ’peakons’ for simplicity,
although the Green function in this case is unbounded) are determined
by the following set of evolutionary PDEs in s and t, in which we denote
Kab := K(Qa, Qb) with integer summation indices a, b, c, e ∈ Z:

∂tQ
a(s, t) = u(Qa, s, t) =

∑

b

Mb(s, t)K
ab ,

∂sQ
a(s, t) = v(Qa, s, t) =

∑

b

Nb(s, t)K
ab ,

∂tMa(s, t) = − ∂sNa −
∑

c

(MaMc +NaNc)
∂Kac

∂Qa
(no sum on a),

∂tNa(s, t) = ∂sMa +
∑

b,c,e

(NbMc −MbNc)
∂Kec

∂Qe
(Keb −Kcb)(K−1)ae .

(23)

The last pair of equations in (23) may be solved as a system for the
momenta, i.e., Lagrange multipliers (Ma, Na), then used in the previous
pair to update the support set of positions Qa(t, s).
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9 Example: Two-peakon solution of a Diff(R)-
strand

Denote the relative spacingX(s, t) = Q1−Q2 for the peakons at positions
Q1(t, s) and Q2(t, s) on the real line and the Green’s function K = K(X).
Then the first two equations in (23) imply

∂tX = −(M1 −M2)K(X) ,

∂sX = −(N1 −N2)K(X).
(24)

The second pair of equations in (23) may then be written as

∂tM1 = −∂sN1 − (M1M2 +N1N2)K
′(X) ,

∂tM2 = −∂sN2 + (M1M2 +N1N2)K
′(X) ,

∂tN1 = ∂sM1 − (N1M2 −M1N2)K
′(X) ,

∂tN2 = ∂sM2 − (N1M2 −M1N2)K
′(X) .

(25)

Assuming X > 0, K ′(X) = − 1

2
sgn(X) = − 1

2
. Introducing for conve-

nience L1,2 = M1,2 + iN1,2 we can rewrite (25) as

(∂t − i∂s)L1 =
1

2
L1L̄2 ,

(∂t − i∂s)L2 = −
1

2
L̄1L2 .

(26)

The solution for X can be expressed formally via L1,2 from (24) as

X = exp

(
1

2
∆−1ℜ(L1L̄2)

)
,

where ∆ = ∂2
t + ∂2

s and ℜ(z) is the real part of z.
From the system (26) we obtain

∆ lnL1 = −
1

4
L1L̄2, ∆lnL2 = −

1

4
L̄1L2, (27)

thus ∆ lnL1 = ∆ ln L̄2 and L1 = L̄2e
h where h(s, t) is an arbitrary

harmonic function: ∆h = 0. Then for the variable Ỹ = lnL1 we have the
equation

∆Ỹ = −
1

4
e2Ỹ−h, (28)

and for Y = lnL1 − 1

2
h − 2 ln 2 + πi we arrive at the Liouville’s 2D

equation
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∆Y = e2Y . (29)

Solutions of (29) are known in the form

Y =
1

2
ln

w2
s + w2

t

f(w)

where the function f(w) could be w2, cos2 w, sin2 w or sinh2 w with w
being an arbitrary harmonic function, ∆w = 0 see e.g. [6, 12, 20]. Thus
the solutions L1,2 depend on two arbitrary complex harmonic functions
h,w. Hence the four peakon parameters M1,2 and N1,2 can be given in
terms of four real arbitrary harmonic functions.

Other examples including complexification of the Camassa-Holm equa-
tion [19] are given in [9].

Conclusions

The G-strand equations comprise a system of PDEs obtained from the
Euler-Poincaré (EP) variational equations for a G-invariant Lagrangian,
coupled to an auxiliary zero-curvature equation. Once the G-invariant
Lagrangian has been specified, the system of G-strand equations in (2)
follows automatically in the EP framework. For matrix Lie groups, some
of the the G-strand systems are integrable. The singular solution of the
Diff(R)-strand equations (19) can also be obtain explicitly in some simple
situations, and the freedom in the solution is given by several arbitrary
harmonic functions of the variables s, t. The complex Diff(R)-strand
equations and their peakon collision solutions have also been solved by
elementary means [9]. The stability of the single-peakon solution under
perturbations into the full solution space of equations (19) would be an
interesting problem for future work.
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