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Application of the Fractional Diffusion Equation
for Predicting Market Behaviour

Jonathan M. Blackledge ∗

Abstract—Most financial modelling system rely on
an underlying hypothesis known as the Efficient Mar-
ket Hypothesis (EMH) including the famous Black-
Scholes formula for placing an option. However, the
EMH has a fundamental flaw; it is based on the as-
sumption that economic processes are normally dis-
tributed and it has long been known that this is not
the case. This fundamental assumption leads to a
number of shortcomings associated with using the
EMH to analyse financial data which includes fail-
ure to predict the future volatility of a market share
value. This paper introduces a new financial risk as-
sessment model based on Lévy statistics and consid-
ers a financial forecasting system that uses a solution
to a non-stationary fractional diffusion equation char-
acterized by the Lévy index. Variation in the Lévy
index are considered in order to assess the future
volatility of financial data together with the likelihood
of the markets become bear or bull dominant thereby
providing a solution to securing an investment portfo-
lio. The key hypothesis associated with this approach
is that a change in the Lévy index precedes a change
in the financial signal from which the index is com-
puted and can therefore be It is shown that there
is a quantitative relationship between Lévy’s charac-
teristic function and a random scaling fractal signal
obtained through a Green’s function solution to the
fractional diffusion equation. In this sense, the model
considered is based on the Fractal Market Hypothe-
sis and a case study is presented to illustrate this hy-
pothesis by predicting the volatility associated with
the foreign exchange markets.

Keywords: Fractional diffusion, Financial signal anal-

ysis, Volatility, Non-stationary signal processing, As-

set management, Foreign exchange markets

1 Introduction

In 1900, Louis Bachelier concluded that the price of a
commodity today is the best estimate of its price in the
future. The random behaviour of commodity prices was
again noted by Working in 1934 in an analysis of time
series data. In the 1950s, Kendall attempted to find pe-
riodic cycles in indices of security and commodity prices
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but did not find any. Prices appeared to be yesterday’s
price plus some random change and he suggested that
price changes were independent and that prices appar-
ently followed random walks. The majority of financial
research seemed to agree; asset price changes appeared
to be random and independent and so prices were taken
to follow random walks. Thus, the first model of price
variation was based on the sum of independent random
variations often referred to as Brownian motion.

Some time later, it was noticed that the size of price
movements depend on the size of the price itself. The
Brownian motion model was therefore revised to include
this proportionality effect and a new model developed
which stated that the log price changes should be Gaus-
sian distributed. This model is the basis for the equation

1
S

d

dt
S(t) = σdX + µdt

where S is the price at time t, µ is a drift term which
reflects the average rate of growth of an asset, σ is the
volatility and dX is a sample from a normal distribu-
tion. In other words, the relative price change of an as-
set is equal to some random element plus some under-
lying trend component. This model is an example of a
log-normal random walk and has the following important
properties: (i) Statistical stationarity of price increments
in which samples of data taken over equal time incre-
ments can be superimposed onto each other in a statis-
tical sense; (ii) scaling of price where samples of data
corresponding to different time increments can be suit-
ably re-scaled such that they too, can be superimposed
onto each other in a statistical sense; (iii) independence
of price changes.

It is often stated that asset prices should follow Gaussian
random walks because of the Efficient Market Hypothesis
(EMH) [1], [2] and [3]. The EMH states that the current
price of an asset fully reflects all available information
relevant to it and that new information is immediately
incorporated into the price. Thus, in an efficient market,
models for asset pricing are concerned with the arrival of
new information which is taken to be independent and
random.

The EMH implies independent price increments but why
should they be Gaussian distributed? A Gaussian Prob-
ability Density Function (PDF) is chosen because price



movements are presumed to be an aggregation of smaller
ones and sums of independent random contributions have
a Gaussian PDF because due to the Central Limit The-
orem [4], [5]. This is equivalent to arguing that all fi-
nancial time series used to construct an ‘averaged signal’
such as the Dow Jones Industrial Average are statistically
independent. However, this argument is not fully justi-
fied because it assumes that the reaction of investors to
one particular stock market is independent of investors
in other stock markets which, in general, will not be the
case as each investor may have a common reaction to eco-
nomic issues that transcend any particular stock. In other
words asset management throughout the markets relies
on a high degree of connectivity and the arrival of new
information sends ‘shocks’ through the market as people
react to it and then to each other’s reactions. The EMH
assumes that there is a rational and unique way to use
available information, that all agents possess this knowl-
edge and that any chain reaction produced by a ‘shock’
happens instantaneously. This is clearly not physically
possible.

In common with other applications of signal analysis, in
order to understand the nature of a financial signal, it is
necessary to be clear about what assumptions are being
made in order to develop a suitable model. It is therefore
necessary to introduce some of the issues associated with
financial engineering as given in the following section [6],
[7] and [8].

2 The Black-Scholes Model

For many years, investment advisers focused on returns
with the occasional caveat ‘subject to risk’. Modern Port-
folio Theory (MPT) is concerned with a trade-off between
risk and return. Nearly all MPT assumes the existence
of a risk-free investment, e.g. the return from deposit-
ing money in a sound financial institute or investing in
equities. In order to gain more profit, the investor must
accept greater risk. Why should this be so? Suppose the
opportunity exists to make a guaranteed return greater
than that from a conventional bank deposit say; then,
no (rational) investor would invest any money with the
bank. Furthermore, if he/she could also borrow money at
less than the return on the alternative investment, then
the investor would borrow as much money as possible
to invest in the higher yielding opportunity. In response
to the pressure of supply and demand, the banks would
raise their interest rates. This would attract money for
investment with the bank and reduce the profit made by
investors who have money borrowed from the bank. (Of
course, if such opportunities did arise, the banks would
probably be the first to invest our savings in them.) There
is elasticity in the argument because of various ‘friction
factors’ such as transaction costs, differences in borrowing
and lending rates, liquidity laws etc., but on the whole,
the principle is sound because the market is saturated

with arbitrageurs whose purpose is to seek out and ex-
ploit irregularities or miss-pricing.

The concept of successful arbitraging is of great impor-
tance in finance. Often loosely stated as, ‘there’s no such
thing as a free lunch’, it means that one cannot ever make
an instantaneously risk-free profit. More precisely, such
opportunities cannot exist for a significant length of time
before prices move to eliminate them.

2.1 Financial Derivatives

As markets have grown and evolved, new trading con-
tracts have emerged which use various tricks to manipu-
late risk. Derivatives are deals, the value of which is de-
rived from (although not the same as) some underlying
asset or interest rate. There are many kinds of deriva-
tives traded on the markets today. These special deals
increase the number of moves that players of the econ-
omy have available to ensure that the better players have
more chance of winning. To illustrate some of the impli-
cations of the introduction of derivatives to the financial
markets we consider the most simple and common deriva-
tive, namely, the option.

2.1.1 Options

An option is the right (but not the obligation) to buy
(call) or sell (put) a financial instrument (such as a stock
or currency, known as the ‘underlying’) at an agreed date
in the future and at an agreed price, called the strike
price. For example, consider an investor who ‘speculates’
that the value of an asset at price S will rise. The investor
could buy shares at S, and if appropriate, sell them later
at a higher price. Alternatively, the investor might buy
a call option, the right to buy a share at a later date. If
the asset is worth more than the strike price on expiry,
the holder will be content to exercise the option, imme-
diately sell the stock at the higher price and generate an
automatic profit from the difference. The catch is that if
the price is less, the holder must accept the loss of the
premium paid for the option (which must be paid for at
the opening of the contract). If C denotes the value of a
call option and E is the strike price, the option is worth
C(S, t) = max(S − E, 0).

Conversely, suppose the investor speculates that an as-
set is going to fall, then the investor can sell shares or
buy puts. If the investor speculates by selling shares that
he/she does not own (which in certain circumstances is
perfectly legal in many markets), then he/she is selling
‘short’ and will profit from a fall in the asset. (The op-
posite of a short position is a ‘long’ position.) The prin-
cipal question is how much should one pay for an op-
tion? Clearly, if the value of the asset rises, then so does
the value of a call option and vice versa for put options.
But how do we quantify exactly how much this gamble



is worth? In previous times (prior to the Black-Scholes
model which is discussed later) options were bought and
sold for the value that individual traders thought they
ought to have. The strike prices of these options were usu-
ally the ‘forward price’, which is just the current price ad-
justed for interest-rate effects. The value of options rises
in active or volatile markets because options are more
likely to pay out large amounts of money when they ex-
pire if market moves have been large, i.e. potential gains
are higher, but loss is always limited to the cost of the pre-
mium. This gain through successful ‘speculation’ is not
the only role that options play. Another role is Hedging.

2.1.2 Hedging

Suppose an investor already owns shares as a long-term
investment, then he/she may wish to insure against a
temporary fall in the share price by buying puts as well.
Clearly, the investor would not want to liquidate hold-
ings only to buy them back again later, possibly at a
higher price if the estimate of the share price is wrong,
and certainly having incurred some transaction costs on
the deals. If a temporary fall occurs, the investor has the
right to sell his/her holdings for a higher than market
price. The investor can then immediately buy them back
for less, in this way generating a profit and long-term in-
vestment then resumes. If the investor is wrong and a
temporary fall does not occur, then the premium is lost
for the option but at least the stock is retained, which has
continued to rise in value. Since the value of a put option
rises when the underlying asset value falls, what happens
to a portfolio containing both assets and puts? The an-
swer depends on the ratio. There must exist a ratio at
which a small unpredictable movement in the asset does
not result in any unpredictable movement in the portfo-
lio. This ratio is instantaneously risk free. The reduction
of risk by taking advantage of correlations between the
option price and the underlying price is called ‘hedging’.
If a market maker can sell an option and hedge away all
the risk for the rest of the options life, then a risk free
profit is guaranteed.

Why write options? Options are usually sold by banks
to companies to protect themselves against adverse move-
ments in the underlying price, in the same way as holders
do. In fact, writers of options are no different to hold-
ers; they expect to make a profit by taking a view of
the market. The writers of calls are effectively taking
a short position in the underlying behaviour of the mar-
kets. Known as ‘bears’, these agents believe the price will
fall and are therefore also potential customers for puts.
The agents taking the opposite view are called ‘bulls’.
There is a near balance of bears and bulls because if ev-
eryone expected the value of a particular asset to do the
same thing, then its market price would stabilise (if a
reasonable price were agreed on) or diverge (if everyone

thought it would rise). Clearly, the psychology and dy-
namics (which must go hand in hand) of the bear/bull
cycle play an important role in financial analysis.

The risk associated with individual securities can be
hedged through diversification or ‘spread betting’ and/or
various other ways of taking advantage of correlations
between different derivatives of the same underlying as-
set. However, not all risk can be removed by diversifica-
tion. To some extent, the fortunes of all companies move
with the economy. Changes in the money supply, interest
rates, exchange rates, taxation, commodity prices, gov-
ernment spending and overseas economies tend to affect
all companies in one way or another. This remaining risk
is generally referred to as market risk.

2.2 Black-Scholes Analysis

The value of an option can be thought of as a function
of the underlying asset price S (a Gaussian random vari-
able) and time t denoted by V (S, t). Here, V can denote
a call or a put; indeed, V can be the value of a whole
portfolio or different options although for simplicity we
can think of it as a simple call or put. Any derivative
security whose value depends only on the current value
S at time t and which is paid for up front, is taken to
satisfy the Black-Scholes equation given by[9]

∂V

∂t
+

1
2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where σ is the volatility and r is the risk. As with other
partial differential equations, an equation of this form
may have many solutions. The value of an option should
be unique; otherwise, again, arbitrage possibilities would
arise. Therefore, to identify the appropriate solution, cer-
tain initial, final and boundary conditions need to be im-
posed. Take for example, a call; here the final condition
comes from the arbitrage argument. At t = T

C(S, t) = max(S − E, 0)

The spatial or asset-price boundary conditions, applied
at S = 0 and S →∞ come from the following reasoning:
If S is ever zero then dS is zero and will therefore never
change. Thus, we have

C(0, t) = 0

As the asset price increases it becomes more and more
likely that the option will be exercised, thus we have

C(S, t) ∝ S, S →∞

Observe, that the Black-Sholes equation has a similarity
to the diffusion equation but with additional terms. An
appropriate way to solve this equation is to transform it
into the diffusion equation for which the solution is well
known and with appropriate transformations gives the
Black-Scholes formula [9]

C(S, t) = SN(d1)− Eer(T−t)N(d2)



where

d1 =
log(S/E) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,

d2 =
log(S/E) + (r − 1

2σ
2)(T − t)

σ
√
T − t

and N is the cumulative normal distribution defined by

N(d1) =
1√
2π

d1∫
−∞

e
1
2 s

2
ds.

The conceptual leap of the Black-Scholes model is to say
that traders are not estimating the future price, but are
guessing about how volatile the market may be in the
future. The model therefore allows banks to define a fair
value of an option, because it assumes that the forward
price is the mean of the distribution of future market
prices. However, this requires a good estimate of the
future volatility σ.

The relatively simple and robust way of valuing options
using Black-Scholes analysis has rapidly gained in pop-
ularity and has universal applications. Black-Scholes
analysis for pricing an option is now so closely linked
into the markets that the price of an option is usually
quoted in option volatilities or ‘vols’. However, Black-
Scholes analysis is ultimately based on random walk mod-
els that assume independent and Gaussian distributed
price changes and is thus, based on the EMH.

The theory of modern portfolio management is only valu-
able if we can be sure that it truly reflects reality for
which tests are required. One of the principal issues with
regard to this relates to the issue of assuming that the
markets are Gaussian distributed. However, it has long
been known that financial time series do not adhere to
Gaussian statistics. This is the most important of the
shortcomings relating to the EMH model (i.e. the failure
of the independence and Gaussian distribution of incre-
ments assumption) and is fundamental to the inability
for EMH-based analysis such as the Black-Scholes equa-
tion to explain characteristics of a financial signal such
as clustering, flights and failure to explain events such as
‘crashes leading to recession.

In this paper, we present an approach to analysing finan-
cial signals that is based on a non-stationary fractional
diffusion equation derived under the assumption that the
data are Lévy distributed. We then consider methods of
solving this equation and provide an algorithm for com-
puting the non-stationary Lévy index using a standard
moving window principle. We also consider a case study
in which the method is use to predict market volatility
focusing on foreign currency exchange [10], [11].

3 The Classical and Fractional Diffusion
Equations

For diffusivity D = σ−1, the homogeneous diffusion equa-
tion is given by (

∇2 − σ ∂
∂t

)
u(r, t) = 0

where r ≡ (x, y, z) is the three-dimensional space vector
and ∇2 is the Laplacian operator given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The field u(r, t) represents a measurable quantity whose
space-time dependence is determined by the random walk
of a large ensemble of particles, a strongly scattered wave-
field or information flowing through a complex network.
We consider an initial value for this field denoted by
u0 ≡ u(r, 0) = u(r, t) at t = 0. The diffusion equa-
tion can be derived using a random walk model for par-
ticles undergoing inelastic collisions. It is assumed that
the movements of the particles are independent of the
movements of all other particles and that the motion of
a single particle at some interval of time is independent
of its motion at all other times. This derivation (usually
attributed to Einstein [12]) is given in the following sec-
tion for the one-dimensional case. For completeness, the
three-dimensional case is considered in Appendix A.

3.1 Derivation of the Classical one-
Dimensional Diffusion Equation

Let τ be a small interval of time in which a particle moves
some distance between λ and λ + dλ with a probability
p(λ) where τ is long enough to assume that the move-
ments of the particle in two separate periods of τ are
independent. If n is the total number of particles and we
assume that p(λ) is constant between λ and λ+ dλ, then
the number of particles that travel a distance between λ
and λ+ dλ in τ is given by

dn = np(λ)dλ

If u(x, t) is the concentration (number of particles per
unit length) then the concentration at time t + τ is de-
scribed by the integral of the concentration of particles
which have been displaced by λ in time τ , as described
by the equation above, over all possible λ, i.e.

u(x, t+ τ) =

∞∫
−∞

u(x+ λ, t)p(λ)dλ (1)

Since, τ is assumed to be small, we can approximate
u(x, t+ τ) using the Taylor series and write

u(x, t+ τ) ' u(x, t) + τ
∂

∂t
u(x, t)



Similarly, using a Taylor series expansion of u(x + λ, t),
we have

u(x+ λ, t) ' u(x, t) + λ
∂

∂x
u(x, t) +

λ2

2!
∂2

∂x2
u(x, t)

where the higher order terms are neglected under the
assumption that if τ is small, then the distance travelled,
λ, must also be small. We can then write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t)

∞∫
−∞

p(λ)dλ

+
∂

∂x
u(x, t)

∞∫
−∞

λp(λ)dλ+
1
2
∂2

∂x2
u(x, t)

∞∫
−∞

λ2p(λ)dλ

For isotropic diffusion, p(λ) = p(−λ) and so p is an even
function with usual normalization condition

∞∫
−∞

p(λ)dλ = 1

As λ is an odd function, the product λp(λ) is also an odd
function which, if integrated over all values of λ, equates
to zero. Thus we can write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t) +

1
2
∂2

∂x2
u(x, t)

∞∫
−∞

λ2p(λ)dλ

so that

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)

∞∫
−∞

λ2

2τ
p(λ)dλ

Finally, defining the diffusivity as

D =

∞∫
−∞

λ2

2τ
p(λ)dλ

we obtain the diffusion equation(
∂2

∂x2
− σ ∂

∂t

)
u(x, t) = 0

where σ = 1/D. Note that this derivation does not de-
pend explicitly on p(λ). However, there is another ap-
proach to deriving this result that is informative with re-
gard to the discussion given in the following section and
is determined by p(λ). Under the condition that p(λ) is
a symmetric function, equation (1) - a correlation inte-
gral - is equivalent to a convolution integral. Thus, using
the convolution theorem, in Fourier space, equation (1)
becomes

U(k, t+ τ) = U(k, t)P (k)

where U and P are the Fourier transforms of u and p
given by

U(k, t+ τ) =

∞∫
−∞

u(x, t+ τ) exp(−ikx)dx

and

P (k) =

∞∫
−∞

p(x) exp(−ikx)dx

respectively. Suppose we consider a Probability Density
Function (PDF) p(x) that is Gaussian distributed. Then
the Characteristic Function P (k) is also Gaussian given
by say (ignoring scaling constants)

P (k) = exp(−a | k |2) = 1− a | k |2 +...

Let
P (k) = 1− a | k |2, a→ 0

We can then write

U(k, t+ τ)− U(k, t)
τ

= −a
τ
| k |2 U(k, t)

so that as τ → 0 we obtain the equation

σ
∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)

where σ = τ/a and we have used the result

∂2

∂x2
u(x, t) = − 1

2π

∞∫
−∞

k2U(k, t) exp(ikx)dk

This approach to deriving the diffusion equation relies
on specifying the characteristic function P (k) and upon
the conditions that both a and τ approach zero, thereby
allowing σ = τ/a to be of arbitrary value. This is the
basis for the approach considered in the following section
with regard to a derivation of the anomalous or fractional
diffusion equation.

3.2 Derivation of the Fractional Diffusion
Equation for a Lévy Distributed Process

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) phys-
ical systems are usually concerned with stochastic fields
that have PDFs where (at least) the first two moments
(the mean and variance) are well defined and finite. Lévy
statistics is concerned with statistical systems where all
the moments (starting with the mean) are infinite. Many
distributions exist where the mean and variance are fi-
nite but are not representative of the process, e.g. the
tail of the distribution is significant, where rare but ex-
treme events occur. These distributions include Lévy dis-
tributions [13],[14]. Lévy’s original approach to deriving



such distributions is based on the following question: Un-
der what circumstances does the distribution associated
with a random walk of a few steps look the same as the
distribution after many steps (except for scaling)? This
question is effectively the same as asking under what cir-
cumstances do we obtain a random walk that is statisti-
cally self-affine. The characteristic function P (k) of such
a distribution p(x) was first shown by Lévy to be given
by (for symmetric distributions only)

P (k) = exp(−a | k |γ), 0 < γ ≤ 2 (2)

where a is a constant and γ is the Lévy index. For γ ≥ 2,
the second moment of the Lévy distribution exists and
the sums of large numbers of independent trials are Gaus-
sian distributed. For example, if the result were a ran-
dom walk with a step length distribution governed by
p(x), γ ≥ 2, then the result would be normal (Gaus-
sian) diffusion, i.e. a Brownian random walk process.
For γ < 2 the second moment of this PDF (the mean
square), diverges and the characteristic scale of the walk
is lost. For values of γ between 0 and 2, Lévy’s charac-
teristic function corresponds to a PDF of the form (see
Appendix B)

p(x) ∼ 1
x1+γ

, x→∞

Lévy processes are consistent with a fractional diffusion
equation as we shall now show [15]. Consider the evolu-
tion equation for a random walk process to be given by
equation (1) which, in Fourier space, is

U(k, t+ τ) = U(k, t)P (k)

From equation (2),

P (k) = 1− a | k |γ , a→ 0

so that we can write
U(k, t+ τ)− U(k, t)

τ
' −a

τ
| k |γ U(k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
u(x, t) =

∂γ

∂xγ
u(x, t), γ ∈ (0, 2] (3)

where σ = τ/a and we have used the result

∂γ

∂xγ
u(x, t) = − 1

2π

∞∫
−∞

| k |γ U(k, t) exp(ikx)dk (4)

The solution to this equation with the singular initial
condition u(x, 0) = δ(x) is given by

u(x, t) =
1

2π

∞∫
−∞

exp(ikx− t | k |γ /σ)dk

which is itself Lévy distributed. This derivation of the
fractional diffusion equation reveals its physical origin in
terms of Lévy statistics.

3.3 Generalisation

The approach used to derived the fractional diffusion
equation given in the previous section can be generalised
further for arbitrary PDFs. Applying the correlation the-
orem to equation (1) we note that

U(k, t+ τ) = U(k, t)P ∗(k)

where the characteristic function P (k) may be asymmet-
ric. Then

U(k, t+ τ)− U(k, t) = U(k, t)[P ∗(k)− 1]

so that as τ → 0 we obtained a generalised anomalous
diffusion equation given by

∂

∂t
u(x, t) =

1
τ

 ∞∫
−∞

u(x+ y, t)p(y)dy − u(x, t)


3.4 Green’s Function for the Fractional Dif-

fusion Equation

Let

u(x, t) =
1

2π

∞∫
−∞

U(x, ω) exp(iωt)dω

where ω is the angular frequency so that equation (3) can
be written as (

∂γ

∂xγ
+ Ω2

)
U(x, ω) = 0

where Ω2 = −iωσ and we choose the positive root Ω =
i(iωσ)

1
2 . For an ideal impulse located at x0, the Green’s

function g is then defined in terms of the solution of [16](
∂γ

∂xγ
+ Ω2

)
g(x | x0, ω) = −δ(x− x0)

Fourier transforming this equation with regard to x and
using equation (4), we obtain an expression for g given
by (with X ≡| x− x0 |)

g(X,ω) =
1

2π

∞∫
−∞

exp(ikX)dk
(k

γ
2 − Ω)(k

γ
2 + Ω)

The integral has two roots at k = ±Ω
2
γ and for k = Ω

2
γ ,

the Green’s function is given by

g(x | x0, ω) =
i

2Ωγ
exp(iΩγ | x− x0 |)

where
Ωγ = i

2
γ (iωσ)1/γ

Suppose we consider the fractional diffusion equation(
∂2

∂x2
− σq ∂

q

∂tq

)
u(x, t)



where we call q the ‘Fourier Dimension’. Using the result

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω

the Green’s function is defined as the solution to(
∂2

∂x2
+ Ω2

q

)
g(x | x0, ω) = δ(x− x0)

where (ignoring the negative root)

Ωq = i(iωσ)
q
2

In this case, the Green’s function is given by

g(x | x0, ω) =
i

2Ωq
exp(iΩq | x− x0 |)

This analysis provides a relationship between the Lévy
index and the Fourier Dimension given by

1
γ

=
q

2

Gaussian processes associated with the classical diffusion
equation are thus recovered when γ = 2 and q = 1 and
γ ∈ (0, 2] ≡ q ∈ (∞, 1]

3.4.1 Green’s Function for q = 2

When q = 2, we recover the Green’s function for the wave
equation For Ω2 = −ωσ, we have

g(X,ω) =
1

2iωσ
exp(−iωσX)

Fourier inverting, using the convolution theorem and not-
ing that

1
2π

∞∫
−∞

exp(−iωσX) exp(iωt)dω = δ(t− σX)

and
1

2π

∞∫
−∞

1
2iω

exp(iωt)dω =
1
4

sgn(t)

where

sgn(t) =

{
+1, t < 0
−1, t > 0

we obtain an expression for the time-dependent Green’s
function given by

G(x | x0, t) =
1

2π

∞∫
−∞

g(x | x0, ω) exp(iωt)dω

=
1

4σ
sgn(t− σ | x− x0 |)

which describes the propagation of a wave travelling at
velocity 1/σ with a wavefront that occurs at t = σ |
x− x0 |.

3.4.2 Green’s Function for q = 1

For q = 1, Ω1 = i
√
iωσ and

G(X, t) =
1

2π

∞∫
−∞

exp(−
√
iωσX)

2
√
iωσ

exp(iωt)dω

Using the result

1
2πi

c+i∞∫
c−i∞

exp(−a√p)
2
√
p

exp(pt)dp =
1√
πt

exp[−a2/(4t)]

where a is a constant, then, with p = iω we obtain

G(x | x0, t) =
1√
πσt

exp[−σ(x− x0)2/(4t)], t > 0

which is the Green’s function for the classical diffusion
equation, i.e. a Gaussian function.

4 Green’s Function Solution to the Frac-
tional Diffusion Equation for a Seper-
able Stochastic Source Function

We consider a Green’s function solution to the equation(
∂2

∂x2
− σq ∂

q

∂tq

)
u(x, t) = −F (x, t)

when F (x, t) = f(x)n(t) where f(x) and n(t) are stochas-
tic functions described by PDFs Pr[f(x)] and Pr[n(t)]
respectively. Although a Green’s function solution does
not require the source function to be separable, utilis-
ing a separable function in this way allows a solution
to be generated in which the terms affecting the tempo-
ral behaviour of u(x, t) are clearly identifiable. Although
we consider the fractional diffusion equation for values
of q ∈ (1,∞), for generality, we consider a solution for
q ∈ (−∞,∞). Thus, we require a general solution to the
equation(

∂2

∂x2
− σq ∂

q

∂tq

)
u(x, t) = −f(x)n(t), −∞ ≤ q ≤ ∞

Let

u(x, t) =
1

2π

∞∫
−∞

U(x, ω) exp(iωt)dω

and

n(t) =
1

2π

∞∫
−∞

N(ω) exp(iωt)dω

Then, using the result

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω



we can transform the fractional diffusion equation to the
form (

∂2

∂x2
+ Ω2

q

)
U(x, ω) = −f(x)N(ω)

The Green’s function solution is then given by

U(x0, ω) = N(ω)

∞∫
−∞

g(x | x0, ω)f(x)dx (5)

under the assumption that u and ∂u/∂x→ 0 as x→ ±∞.

4.1 General Series Solution

The evaluation of u(x0, t) via direct Fourier inversion for
arbitrary values of q is not possible because of the irra-
tional nature of the Green’s function with respect to ω.
To obtain a general solution, we use the series represen-
tation of the exponential function and write

U(x0, ω) =
iM0N(ω)

2Ωq

[
1 +

∞∑
m=1

(iΩq)m

m!
Mm(x0)
M0

]
(6)

where

Mm(x0) =

∞∫
−∞

f(x) | x− x0 |m dx

We can now Fourier invert term by term to develop a
series solution. Given that we consider −∞ < q < ∞,
this requires us to consider three distinct cases.

4.1.1 Solution for q = 0

Evaluation of u(x0, t) in this case is trivial since, from
equation (5)

U(x0, ω) =
M(x0)

2
N(ω) or u(x0, t) =

M(x0)
2

n(t)

where

M(x0) =

∞∫
−∞

exp(− | x− x0 |)f(x)dx

4.1.2 Solution for q > 0

Fourier inverting, the first term in equation (6) becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω =

M0

2σ
q
2

1
2π

∞∫
−∞

N(ω)
(iω)

q
2

exp(iωt)dω

=
M0

2σ
q
2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ
(
q
2

) ∞∫
−∞

n(τ)
(t− τ)1−(q/2)

dτ

The second term is

−M1

2
1

2π

∞∫
−∞

N(ω) exp(iωt)dω = −M1

2
n(t)

The third term is

− iM2

2.2!
1

2π

∞∫
−∞

N(ω)i(iωσ)
q
2 exp(iωt)dω =

M2σ
q
2

2.2!
d
q
2

dt
q
2
n(t)

and the fourth and fifth terms become

M3

2.3!
1

2π

∞∫
−∞

N(ω)i2(iωσ)q exp(iωt)dω = −M3σ
q

2.3!
dq

dtq
n(t)

and

i
M4

2.4!
1

2π

∞∫
−∞

N(ω)i3(iωσ)
3q
2 exp(iωt)dω =

M4σ
3q
2

2.4!
d

3q
2

dt
3q
2

n(t)

respectively with similar results for all other terms. Thus,
through induction, we can write u(x0, t) as a series of the
form

u(x0, t) =

M0(x0)
2σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ
(
q
2

) ∞∫
−∞

n(τ)
(t− τ)1−(q/2)

dτ

−M1(x0)
2

n(t) +
1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)σkq/2

dkq/2

dtkq/2
n(t)

Observe that the first term involves a fractional integral
(the Riemann-Liouville integral), the second term is com-
posed of the source function n(t) alone (apart from scal-
ing) and the third term is an infinite series composed of
fractional differentials of increasing order kq/2. Also note
that the first term is scaled by a factor involving σ−q/2

whereas the third term is scaled by a factor that includes
σkq/2 so that

lim
σ→0

u(x0, t) = −M1(x0)
2

n(t)

+
M0(x0)
2σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ
(
q
2

) ∞∫
−∞

n(τ)
(t− τ)1−(q/2)

dτ



4.1.3 Solution for q < 0

In this case, the first term becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω

=
M0

2
σ
q
2

1
2π

∞∫
−∞

N(ω)(iω)
q
2 exp(iωt)dω =

M0

2
σ
q
2
d
q
2

dt
q
2
n(t)

The second term is the same is in the previous case (for
q > 0) and the third term is

− iM2

2.2!
1

2π

∞∫
−∞

N(ω)i
(iωσ)

q
2

exp(iωt)dω

=
M2

2.2!
1

σq/2
1

(2i)q
√
π

Γ
(

1−q
2

)
Γ
(
q
2

) ∞∫
−∞

n(τ)
(t− τ)1−(q/2)

dτ

Evaluating the other terms, by induction we obtain

u(x0, t) =
M0(x0)σq/2

2
dq/2

dtq/2
n(t)− M1(x0)

2
n(t)

+
1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)
σkq/2

1
(2i)kq

√
π

Γ
(

1−kq
2

)
Γ
(
kq
2

)
×
∞∫
−∞

n(τ)
(t− τ)1−(kq/2)

dτ

Here, the solution is composed of three terms: a frac-
tional differential, the source term and an infinite series
of fractional integrals of order kq/2. Thus, the roles of
fractional differentiation and fractional integration are re-
versed as q changes from being greater than to less than
zero.

4.2 Fractional Differentials

Fractional differentials D̂q of any order q need to be con-
sidered in terms of the definition for a fractional differen-
tial given by

D̂qf(t) =
dn

dtn
[În−qf(t)], n− q > 0

where n is an integer and Î is the fractional integral op-
erator (the Riemann-Liouville transform),

Îpf(t) =
1

Γ(p)

t∫
−∞

f(τ)
(t− τ)1−p dτ, p > 0

The reason for this is that direct fractional differentia-
tion can lead to divergent integrals. However, there is

a deeper interpretation of this result that has a synergy
with the issue over whether a fractionally diffusive system
has ‘memory’ and is based on observing that the evalu-
ation of a fractional differential operator depends on the
history of the function in question. Thus, unlike an inte-
ger differential operator of order n, a fractional differen-
tial operator of order q has ‘memory’ because the value
of Îq−nf(t) at a time t depends on the behaviour of f(t)
from −∞ to t via the convolution with t(n−q)−1/Γ(n−q).
The convolution process is of course dependent on the his-
tory of a function f(t) for a given kernel and thus, in this
context, we can consider a fractional derivative defined
via the result above to have memory. In this sense, the
operator

∂2

∂x2
− σq ∂

q

∂tq

describes a process that has a memory association with
the temporal characteristics of the system it is attempting
to model. This is not an intrinsic characteristic of systems
that are purely diffusive q = 1 or propagative q = 2.

4.3 Asymptotic Solutions for an Impulse

We consider a special case in which the source function
f(x) is an impulse so that

Mm(x0) =

∞∫
−∞

δ(x) | x− x0 |m dx =| x0 |m

This result immediately suggests a study of the asymp-
totic solution

u(t) = lim
x0→0

u(x0, t)

=


1

2σq/2
1

(2i)q
√
π

Γ( 1−q
2 )

Γ( q2 )

∞∫
−∞

n(τ)
(t−τ)1−(q/2) dτ, q > 0;

n(t)
2 , q = 0;
σq/2

2
dq/2

dtq/2
n(t), q < 0.

The solution for the time variations of the stochastic field
u for q > 0 are then given by a fractional integral alone
and for q < 0 by a fractional differential alone. In partic-
ular, for q > 0, we see that the solution is based on the
convolution integral (ignoring scaling)

u(t) =
1

t1−q/2
⊗ n(t), q > 0 (7)

where ⊗ denotes convolution integral over t which in ω-
space is given by (ignoring scaling)

U(ω) =
N(ω)

(iω)q/2

This result is the conventional random fractal noise model
for Fourier Dimension q [17], [18] and [19]. Table 1 quan-
tifies the results for different values of q with conventional



name associations. Note that Brown noise conventionally
refers to the integration of white noise but that Brownian
motion is a form of pink noise because it classifies diffu-
sive processes identified by the case when q = 1. The
field u has the following fundamental property for q > 0:

λq/2Pr[u(t)] = Pr[u(λt)]

This property describes the statistical self-affinity of u.
Thus, the asymptotic solution considered here, yields a
result that describes a random scaling fractal field char-
acterized by a Power Spectral Density Function (PSDF)
of the form 1/ | ω |q which is a measure of the time
correlations in the signal.

q-value t-space ω-space Name
(PSDF)

q = 0 1
t ⊗ n(t) 1 White noise

q = 1 1√
t
⊗ n(t) 1

|ω| Pink noise

q = 2
t∫
n(t)dt 1

ω2 Brown noise

q > 2 t(q/2)−1 ⊗ n(t) 1
|ω|q Black noise

Table 1: Noise characteristics for different values of q.
Note that the results given above ignore scaling factors.

Note that q = 0 defines the Hilbert transform of n(t)
whose spectral properties in the positive half space are
identical to n(t) because

1
t
⊗ n(t) =

1
2π

∞∫
−∞

[−iπsign(ω)]N(ω) exp(iωt)dω

where

sgn(ω) =

{
1, ω > 0;
−1, ω < 0.

The statistical properties of the Hilbert transform of n(t)
are therefore the same as n(t) so that

Pr[t−1 ⊗ n(t)] = Pr[n(t)]

Hence, as q → 0, the statistical properties of u(t) ‘reflect’
those of n, i.e.

Pr
[

1
t1−q/2

⊗ n(t)
]

= Pr[n(t)], q → 0

However, as q → 2 we can expect the statistical properties
of u(t) to be such that the width of the PDF of u(t)
is reduced. This reflects the greater level of coherence

(persistence in time) associated with the stochastic field
u(t) for q → 2.

The asymptotic solution compounded in equation (7) is
equivalent to considering a model for u based on the equa-
tion(

∂2

∂x2
− ∂q

∂tq

)
u(x, t) = δ(x)n(t), q > 0, x→ 0 (8)

where n(t) is ‘white noise’. However, we note that for
| x |> 0 the function exp(iΩq | x |) does not affect the
ω−q scaling law of the power spectrum, i.e. ∀x,

| U(x, ω) |2=
| N(ω) |2

4σqωq
, ω > 0

Thus for a ‘white noise’ spectrum N(ω) the Power Spec-
trum Density Function of U is determined by ω−q and any
algorithm for computing an estimate of q given | U(ω) |2
therefore applies ∀x and not just for the case when x→ 0.
Since we can write

U(x, ω) = N(ω)
i

2Ωq
exp(iΩq | x |) = N(ω)

1
2(iωσ)q/2

×
(

1 + i(iωσ)q/2 | x | − 1
2!

(iωσ)q | x |2 +...
)

unconditionally, by inverse Fourier transforming, we ob-
tain the following expression for u(x, t) (ignoring scaling
factors including σ):

u(x, t) = n(t)⊗ 1
t1−q/2

+ i | x | n(t)

+
∞∑
k=1

ik+1

(k + 1)!
| x |2k dkq/2

dtkq/2
n(t)

Here, the solution is composed of three terms composed
of (i) a fractional integral, (ii) the source term n(t); (iii)
an infinite series of fractional differentials of order kq/2.

4.4 Non-stationary Model

Real financial signals are non-stationary. An example
of this is illustrated in Figure 1 which shows a non-
stationary walk in the complex plane obtained by tak-
ing the Hilbert transform of the corresponding signal, i.e.
computing the analytic signal

s(t) = u(t) +
i

πt
⊗ u(t)

and plotting the real and imaginary component of this
signal in the complex plane.

The fractional diffusion operator in equation (8) is ap-
propriate for modelling fractional diffusive processes that
are stationary. Since financial signals are highly non-
stationary, the model must therefore be extended to the
non-stationary case if it is to be of value for financial sig-
nal analysis. In developing a non-stationary fractional



Figure 1: Non-stationary behaviour in the complex plane
(right) obtained by computig the Hilbert transform of
the signal (left) - FTSE Close-of-Day from 02-04-1984 to
24-12-1987.

diffusive model, we could consider the case where the dif-
fusivity is time variant as defined by the function σ(t).
However, a more interesting case arises when the char-
acteristics of the diffusion process itself change over time
becoming more or less diffusive as q → 1 and q → 2 re-
spectively. In thise sense we consider q to be a function of
time τ and introduce a non-stationary fractional diffusion
operator given by

∂2

∂x2
− σq(τ) ∂

q(τ)

∂tq(τ)

This operator is the theoretical basis for the results pre-
sented in this paper. In terms of using this model to
develop an asset management metric that is predictive of
future behaviour we consider the following hypothesis: a
change in q(τ) precedes an associated change in a finan-
cial signal. The goal of this model/hypothesis is to be
able to compute a function - namely q(τ) - which is a
measure of the non-stationary behaviour of an economic
signal with regard to its future behaviour. This is be-
cause, in principle, the value of q(τ) should reflect the
early stages of a change in the behaviour of u(t) provided
an accurate enough numerical algorithm for computing
q(τ) is available. This is discussed in the following sec-
tion.

5 Financial Signal Analysis

If we consider the case where q(τ) is a relatively slowly
varying function of time so that∣∣∣∣∂q∂τ

∣∣∣∣ << ∣∣∣∣∂u∂t
∣∣∣∣

then we can consider q(τ) to be constant over a ‘win-
dow of time’ τ . Ignoring scaling, for a quasi-stationary

segment of a financial signal,

u(t, τ) =
1

t1−q(τ)/2
⊗ n(t), q > 0

which has characteristic spectrum

U(ω, τ) =
N(ω)

(iω)q(τ)/2

The PSDF is characterised by ω−q(τ), ω > 0 and our
problem is thus, to compute q(τ) from the data

P (ω, τ) =| U(ω, τ) |2=
| N(ω) |2

ωq(τ)
, > 0

. Consider the PSDF

P̂ (ω, τ) =
c

ωq(τ)

with logarithmic transformation

ln P̂ (ω, τ) = C + q(τ) lnω

where C = ln c. The problem is then reduced to imple-
menting an appropriate method to compute q (and C) by
finding a best fit of the line ln P̂ (ω) to the data lnP (ω).
Application of the least squares method for computing q
for a given τ , which is based on minimizing the error

e(q, C) = ‖ lnP (ω)− ln P̂ (ω, q, C)‖22

with regard to q and C, leads to errors in the estimates
for q. The reason for this is that relative errors at the
start and end of the data lnP may vary significantly es-
pecially because any errors inherent in the data P will be
‘amplified’ through application of the logarithmic trans-
form required to linearise the problem. In general, ap-
plication of a least squares approach is very sensitive to
statistical heterogeneity [20] and may provide values of
q that are not compatible with the rationale associated
with the model (i.e. values of 1 < q < 2 that are interme-
diate between diffusive and propagative processes). For
this reason, an alternative approach is considered which,
in this paper, is based on Orthogonal Linear Regression
(OLR) [21].

Applying a standard moving window, q(τ) is computed
by repeated application of OLR based on the m-code
available from [22]. This provides a numerical estimate
of the function q(τ) whose behaviour ‘reflects’ the ‘state’
of the financial signal. Since q is, in effect, a statistic, its
computation is only as good as the quantity (and qual-
ity) of data that is available for its computation. For this
reason, a relatively large window is required whose length
is compatible with the number of samples available.

5.1 Numerical Algorithm

The principal numerical algorithm associated with the
application of the model as follows:



Step 1: Read data (financial time series) from file into
operating array a[i], i = 1, 2, ..., N .

Step 2: Set length L < N of moving window w to be
used.

Step 3: For j = 1 assign L + j − 1 elements of a[i] to
array w[i], i = 1, 2, ..., L.

Step 4: Compute the power spectrum P [i] of w[i] using
a Discrete Fourier Transform (DFT).

Step 5: Compute the logarithm of the spectrum exclud-
ing the DC, i.e. compute log(P [i])∀i ∈ [2, L/2].

Step 6: Compute q[j] using the OLR algorithm.

Step 7: For j = j + 1 repeat Step 3 - Step 5 stopping
when j = N − L.

Step 8: Write the signal q[j] to file for further analysis
and post processing.

The following points should be noted:

(i) The DFT is taken to generate an output in standard
form where the zero frequency component of the power
spectrum is taken to be P [1].

(ii) With L = 2m for integer m, a Fast Fourier Transform
can be used

(iii) The minimum window size that should be used in
order provide statistically significant values of q[j] is L =
64 when q can be computed accurate to 2 decimal places.

An example of the output generated by this algorithm for
a 1024 element ‘look-back’ window is given in Figure 2
using Dow Jones Industrial Average Close-of-Day data
obtained from [23]. Table 2 provides some basic statisti-
cal information with regard to q(τ) for this data whose
mean value is 1.27. Application of the Null Hypothesis
test with regard to whether or not q(τ) is Gaussian dis-
tributed is negative, i.e. the ‘Composite Normality’ is of
type ‘Reject’. Thus, q(τ) is not normally distributed.

A closer inspection of data such as that given in Figure 2
reveals a qualitative relationship between trends in the
financial signal u(t) and q(τ) in accordance with the the-
oretical model considered. In particular, over periods of
time in which q(τ) increases in value, the amplitude of
the financial signal u(t) decreases. Moreover, and more
importantly, an upward trend in q(τ) appears to be a
precursor to a downward trend in u(t), a correlation that

Figure 2: Computation of q(τ) (red) using a 1024 element
window obtained from a time series composed of Dow
Jones Industrial Average Close-of-Day data u(t) from
from 02-11-1932 to 24-05-2010 after normalisation (blue).

is compatible with the idea that a rise in the value of
q(τ) relates to the ‘system’ becoming more propagative,
which in stock market terms, indicates the likelihood for
the markets becoming ‘bear’ dominant in the future.

Results of the type given in Figure 2 not only provides for
a general appraisal of different macroeconomic financial
time series, but, with regard to the size of the selected
window used, an analysis of data at any point in time.
The output can be interpreted in terms of ‘persistence’
and ‘anti-persistence’ and in terms of the existence or
absence of after-effects (macroeconomic memory effects).
For those periods in time when q(τ) is relatively constant,
the existing market tendencies usually remain. Changes
in the existing trends tend to occur just after relatively
sharp changes in q(τ) have developed. This behaviour
indicates the possibility of using the time series q(τ) for
identifying the behaviour of a macroeconomic financial
system in terms of both inter-market and between-market
analysis. These results support the possibility of using
q(τ) as an independent volatility predictor to give a risk
assessment associated with the likely future behaviour
of different time series. Further, because this analysis is
based on a self-affine model, the interpretation of a finan-
cial signal via q(τ) should, in principle, be scale invariant.

5.2 Macrotrend Analysis

In order to develop a macrotrend signal that has optimal
properties with regard the assessment of risk in terms of
the likely long-term future behaviour of a financial sig-
nal, it is important that the filter used is: (i) consistent
with the properties of a Variation Diminishing Smooth-
ing Kernel (VDSK); (ii) that the last few values of the
trend signal are ‘data consistent’. VDSKs are convolu-



Statistical Parameter Value for q(τ)
Minimum Value 0.9702
Maximum value 1.5947
Range 0.6245
Mean 1.2662
Median 1.2936
Standard Deviation 0.1444
Variance 0.0209
Skew -0.2422
Kertosis 1.9043
Composite Normality Reject

Table 2: Statistical parameters associated with q(τ) com-
puted for the Dow Jone Industrial Average Close-of-Day
data from 02-11-1928 to 24-05-2010 given in Figures 2

tion kernels with properties that guarantee smoothness
around points of discontinuity of a given signal where
the smoothed function is composed of a similar succes-
sion of concave or convex arcs equal in number to those
of the signal. VDSKs also have ‘geometric properties’
that preserve the ‘shape’ of the signal. There are a range
of VDSKs including the Gaussian function and, for com-
pleteness, Appendix C provides an overview of the princi-
pal analytical properties, including some basic Theorem’s
and Proof’s relating to VDSKs.

In practice, the computation of the smoothing process
using a VDSK must be performed in such a way that
the initial and final elements of the output data are en-
tirely data consistent with the input array in the locality
of any element. Since a VDSK is a non-localised filter
which tends to zero at infinity (see Appendix C), in or-
der to optimise the numerical efficiency of the smoothing
process, filtering is undertaken in Fourier space. How-
ever, in order to produce a data consistent macrotrend
signal using a Discrete Fourier Transform, wrapping ef-
fects must be eliminated. The solution is to apply an
‘end point extension’ scheme which involves padding the
input vector with elements equal to the first and last val-
ues of the vector. The length of the ‘padding vectors’ is
taken to be at least half the size of the input vector. The
output vector is obtained by deleting the filtered padding
vectors.

Figures 3 is an example of a macrotrend analysis ob-
tained using the VDSK filter exp(−αω2) which include
the normalised gradients computed using a ‘forward dif-
ferencing scheme’ illustrating ‘phase shifts’ associated
with the two signals.

6 Case Study: Volatility Predictions for
Foreign Exchange Markets

Since the publication of the preference-free option by
Black and Sholes in 1973 [9], option pricing theory has

Figure 3: Analysis of Dow Jones Industrial Average
Close-of-Day data from 18-01-1994 to 25-05-2010. Top:
Data u(t) (blue) and q(τ) (red) computed using a window
of 1024; Centre: Associated macrotrends obtained for
α = 0.01; Bottom: Normalised gradients of macrotrends
computed using a forward differencing scheme.

developed into a standard tool for designing, pricing and
hedging derivative securities of all types. For an ideal
market, six inputs are required: the current stock price,
the strike price, the time to expiry, the risk-free interest
rate, the dividend and the volatility. The first three in-
puts are known from the outset but the last three must
be estimated. The problem with this is that the correct
values for these parameters are only known when the op-
tion expires which means that the future values of these
quantities need to be known or accurately estimated if
an option is to be priced correctly. The most important
of these parameters is the volatility. This is because a
change in volatility has the biggest impact on the price
of an option. Volatility measures variability or dispersion
about a central tendency and is a measure of the degree
of price movement in a stock, a futures contract or any
other market.

Fundamental to the Black-Scholes model is that financial
asset prices are random variables that are log-normally
distributed. Therefore, the relative price changes are
usually measured by taking the differences between the
logarithmic prices which are taken to be normally dis-
tributed. This is consistent with the log-normal model
discussed in Section 1 where the volatility is proportional
to d(lnS)/dt. Thus, for a stock price signal (S1, S2, ...Sn),



using a forward differencing scheme, we let

vi = ln
(
Si+1

Si

)
and define the volatility as

σ =

√√√√ 1
n− 1

n∑
i=1

(vi − v̄)2

where v̄ is the mean given by

v̄ =
1
n

n∑
i=1

vi

This result defines the volatility in terms of the standard
deviation of the sample signal vi which is a measure of
the dispersion of a stock price signal whose variations in
time are computed using a moving window.

In order to compare volatilities for different interval
lengths, it is common to express volatility in annual terms
by scaling the estimate with an annualisation factor (nor-
malising constant) h which is the number of intervals per
annum such that σannual = σ

√
h where h = 252 for daily

data (252 being approximately, the number of trading
days per annum), h = 52 for weekly data and h = 12 for
monthly data. Defining volatility in terms of variations in
the standard deviation of an assets returns from the mean
implies that large values of volatility fluctuate over a wide
range leading to high risk. This means that if we assume
that the mean of the log-relative returns is zero, then,
a 10% volatility represents the following (according to a
normal distribution): in one year, returns will be within
[-10%, +10%] with a probability of 68.3% (1 standard
deviation from the mean); within [-20% , +20%] with a
probability of 95.4% (2 standard deviations), and within
[-30% , +30%] with a probability of 99.7% (3 standard
deviations). For this reason volatility is usually presented
in terms of a percentage.

In this case study we use the value of q(τ) to predict
the volatility associated with foreign exchange markets.
This is based on observing the positions in q(τ) where the
derivative is zero (i.e. when q′(τ) ≡ dq(τ)/dτ = 0) after
generating a macrotrend (as discussed in Section 4.2) and
applying a threshold. Above this threshold, the volatil-
ity is predicted to reduce and below the threshold, it is
predicted to increase. The rationale for this approach
relates to the idea that as q approaches 1 the ‘economy’
becomes diffusive and as q approaches 2, it becomes prop-
agative. This is equivalent to the Lévy index approaching
2 and 1, respectively. The problem is to determine op-
timum values for the length of the moving window L,
the smoothing parameter α and the threshold T which
is achieved by undertaking a range of tests using histor-
ical data. Figure 4 shows an example of this approach
based on the US to Australian dollar exchange rate from

03/08/2003 to 16/04/2010, close-of-day. The positions at
which q′(τ) = 0 coupled with the applied threshold, de-
fine the ‘critical points’ at which a prediction is made on
the future volatility that, in this example, is computed
using a 30 day ‘look-back’ window. This depends upon
whether the value of q at which q′(τ) = 0 is above (volatil-
ity predicted to decrease) or below (volatility predicted
to increase) the threshold.

Figure 4: US/Australian dollar exchange rate from
03/08/2003 to 16/04/2010 for L = 512, α = 0.002 and
T = 1.4. The signals are as follows: On the scale of
1 to 2 are q(τ) (blue) and the associated macrotrend
(red); on the scale of 0 to 1 are the normalised exchange
data (blue) and associated macrotrend (red) and the nor-
malised volatility (cyan). The positions in time at which
q′ = 0 is given in green.

Table 3 provides a quantification of the method. Here,
the date at which q′(t) = 0 is provide together with a
prediction on whether the volatility will go up or down,
the volatility at the date given (i.e. the date at which the
prediction is made) and the volatility 30 days and then 60
days after the date of the prediction. Also provided is a
True/False criterion associated with each prediction that,
for this example, yields a prediction accuracy of 69% .

Figure 5 shows the same analysis applied to the
Japanese Yen to US Dollar exchange from 03/08/2003
to 18/04/2010 with an assessment of the predictions be-
ing given in Table 4 that, in this example, provides 75%
accuracy. As a final example, Table 5 shows the re-
sults obtained for the Euro/US Dollar exchange rate from
28/10/2002 to 09/04/2010.



Date at which Prediction: 30 day volatility 30 day volatility 60 day volatility True/False
q′(t) = 0 Up ⇑ or Down ⇓ at date after date after date

√
/×

2 Mar 2006 ⇓ 7.34% 9.58% 10.70% ×
29 May 2006 ⇓ 11.58% 9.95% 9.08%

√

23 Jun 2006 ⇓ 10.94% 7.93% 8.15%
√

4 Oct 2006 ⇑ 6.59% 5.95% 5.58% ×
3 Jan 2007 ⇑ 5.58% 8.52% 8.36%

√

11 Jul 2007 ⇑ 6.51% 16.71% 15.41%
√

7 Aug 2007 ⇑ 11.42% 18.26% 14.77%
√

1 Nov 2008 ⇑ 10.00% 18.94% 16.97%
√

26 Feb 2008 ⇑ 15.58% 14.52% 12.82% ×
20 May 2008 ⇑ 11.57% 8.07% 9.88% ×
9 Oct 2009 ⇑ 34.55% 59.36% 45.11%

√

2 Apr 2010 ⇑ 18.69% 21.54% 20.38%
√

1 Mar 2010 ⇓ 13.23% 8.27% 10.74%
√

Table 3: Assessment of volatility predictions obtained for the US dollar to Australian dollar exchange rate
from 03/08/2003 to 16/04/2010.

Date at which Prediction: 30 day volatility 30 day volatility True/False
q′(t) = 0 Up ⇑ or Down ⇓ at date after date

√
/×

25 Jul 2005 ⇓ 9.53% 7.07%
√

27 Oct 2005 ⇑ 7.59% 10.29%
√

19 May 2006 ⇓ 9.55% 8.33%
√

16 Jan 2007 ⇑ 5.08% 10.27%
√

7 Aug 2007 ⇑ 8.03% 11.24%
√

5 Oct 2007 ⇑ 11.49% 11.44% ×
17 Dec 2007 ⇓ 14.23% 10.48%

√

5 Mar 2008 ⇑ 8.66% 14.13%
√

9 Jun 2008 ⇓ 10.90% 9.30%
√

26 Dec 2008 ⇑ 17.56% 15.17% ×
20 Apr 2009 ⇑ 16.57% 13.66% ×
28 May 2009 ⇑ 12.77% 13.24%

√

16 Jul 2009 ⇑ 13.80% 10.33% ×
26 Oct 2009 ⇑ 9.94% 13.41%

√

13 Apr 2010 ⇑ 8.29% 14.20%
√

6 May 2010 ⇑ 11.49% 14.42%
√

Table 4: Assessment of volatility predictions associated with Japanese Yen to US dollar
exchange rate from 03/08/2003 to 18/04/2010.

7 Discussion

In terms of the non-stationary fractional diffusion model
considered in this paper, the time varying Fourier Di-
mension q(τ) can be interpreted in terms of a ‘gauge’ on
the characteristics of dynamical system characterised by
fractional diffusive processes. In a statistical sense, q(τ) is
just another measure that may, or otherwise, be of value
to market traders. In comparison with other statistical
measures, this can only be assessed through its practical
application in a live trading environment. However, in
terms of its relationship to a stochastic model for finan-
cial time series data, q(τ) appears to provide a measure
that is consistent with the physical principles associated
with a random walk that includes a directional bias, i.e.

fractional Brownian motion. The model considered, and
the signal processing algorithm proposed, has a close as-
sociation with re-scaled range analysis for computing the
Hurst exponent H [24] [25] and [26]. In this sense, the
principal contribution of this paper has been to consider
an approach that is quantifiable in terms of a model that
has been cast in terms of a specific fractional partial dif-
ferential equation. As with other financial time series,
their derivatives, transforms etc., a range of statistical
measures can be used to characterise q(τ) and it is noted
that in all cases studied to date, the composite normality
of the signal q(τ) is of type ‘Reject’. In other words, the
statistics of q(τ) are non-Gaussian. Further, assuming
that a financial time series is statistically self-affine, the
computation of q(τ) can be applied over any time scale



Date at which Prediction: 30 day volatility 60 day mean volatility True/False
q′(t) = 0 Up ⇑ or Down ⇓ at date after date

√
/×

17 Dec 2003 ⇑ 9.82% 11.09%
√

17 Jun 2004 ⇓ 12.17% 9.09%
√

3 Nov 2004 ⇑ 7.70% 8.56%
√

20 Jul 2005 ⇓ 10.43% 9.03%
√

27 Dec 2005 ⇑ 8.62% 8.90%
√

26 Jun 2006 ⇓ 9.42% 7.97%
√

7 Feb 2007 ⇑ 5.65% 5.42% ×
28 May 2007 ⇑ 4.56% 5.26

√

12 Mar 2008 ⇑ 7.64% 8.95%
√

19 Nov 2008 ⇓ 22.16% 20.64%
√

12 Mar 2009 ⇑ 14.21% 20.64%
√

29 Jun 2009 ⇓ 18.98% 10.92%
√

30 Sep 2009 ⇑ 7.93% 8.66%
√

Table 5: Assessment of volatility predictions associated with Euro to US dollar exchange rate
from 28/10/2002 to 09/04/2010

Figure 5: Japanese Yen to US dollar exchange rate from
03/08/2003 to 18/04/2010 for L = 512, α = 0.002 and
T = 1.4. The signals are as follows: On the scale of
1 to 2 are q(τ) (blue) and the associated macrotrend
(red); on the scale of 0 to 1 are the normalised exchange
data (blue) and associated macrotrend (red) and the nor-
malised volatility (cyan). The positions in time when
q′ = 0 is given in green.

provided there is sufficient data for the computation of
q(τ) to be statistically significant. Thus, the results as-
sociated with the Close-of-Day data studied in this pa-
per are, in principle, applicable to signals associated with
data over a range of time scales.

As shown in Section 2.4 we obtain a simple algebraic rela-
tionship between Fourier Dimension q and the Lévy index
γ given by γ−1 = q/2. Adhering to the numerical range of
the Lévy index, we note that for γ ∈ (0, 2] then q ∈ (∞, 1].
However, q is related to other parameters including the
Hurst exponent and the Fractal Dimension as shown in
Appendix D. For a fractal signal where DF ∈ (1, 2), then
q ∈ (2, 1) and γ ∈ (1, 2). Thus, the Fourier Dimension is
simply related to the Fractal Dimension and Lévy index.
The approach used is therefore consistent with assum-
ing that financial signals are fractal signals and we may
therefore consider equation (7) to be a classification of
the ‘Fractal Market Hypothesis’ (FMH) based on Lévy
statistics in contrast to the Efficient Market Hypothesis
that is based on Gaussian statistics. In the context of the
ideas presented in this paper, the FMH has a number of
fundamental differences with regard to the EMH which
are tabulated in Table 6.

The material presented in this paper has been exclu-
sively concerned with a one-dimensional model for frac-
tional diffusion. However, we note that for the three-
dimensional case, equation (1) becomes

u(r, t+ τ) =

∞∫
−∞

u(r + λ, t)p(λ)dλ

where r denotes the three-dimensional space vector r ≡
(x, y, z) and that in (three-dimensional) Fourier space

U(k, t+ τ) = U(k, t)P (k)



where k is the spatial frequency vector (kx, ky, kz) and
k ≡| k |. Thus, for the Characteristic Function

P (k) = exp(−a | k |γ) = 1− a | k |γ , a→ 0,

U(k, t+ τ)− U(k, t)
τ

= −a
τ
U(k, t) | k |γ

and using the Reisz definition of a fractional n-
dimensional laplacian given by

∇γ ≡ − 1
(2π)n

∫
dnk | k |γ exp(ik · r)

we obtain (for τ → 0) the three dimensional homogeneous
fractional diffusion equation(

∇γ − σ ∂
∂t

)
u(r, t) = 0

However, the Green’s function for the three-dimensional
case is given by [16]

g(r, ω) =
exp(iΩγr)

4πr

where r ≡| r | which is not characterised by a ω−
1
γ -type

scaling law. In two-dimensions, the Green’s function is
[16] (ignoring scaling)

g(r, ω) ∼ exp(iΩγr)√
Ωγr

and it is clear that

| g(r, ω) |∼ 1√
r(ωσ)

1
γ

, σ → 0

which is characterised by a ω−
1
2γ scaling law. The inabil-

ity for the three-dimensional fractional diffusion equation
to yield ω−

1
γ -type fractal noise is overcome if we consider

a model based on the separable case [27]. We consider
the equation(

∂γ

∂xγ
+

∂γ

∂yγ
+

∂γ

∂zγ
− σ ∂

∂t

)
u(x, y, z, t) = n(x, y, z, t)

and a solution where

n(x, y, z, t) = δ(x)nx(t) + δ(y)ny(t) + δ(z)nz(t)

and

u(x, y, z, t) = ux(x, t) + uy(y, t) + uz(x, t)

The source function n is then taken to model a system
characterised by a separable spatial impulse with separa-
ble white noise function (nx, ny, nz). This model is used
for the morphological analysis of Hyphal growth rates,
for example, where the fractal dimension provides an es-
timate of the metabolic production of filamentous fungi
[28].

8 Conclusion

The value of q(τ) characterises stochastic processes that
can vary in time and are intermediate between fully dif-
fusive and propagative or persistent behaviour. Appli-
cation of Orthogonal Linear Regression to financial time
series data provides an accurate and robust method to
compute q(τ) when compared to other statistical estima-
tion techniques such as the least squares method. As a
result of the physical interpretation associated with the
fractional diffusion equation derived in Section 2.2, we
can, in principle, use the signal q(τ) as a predictive mea-
sure in the sense that as the value of q(τ) continues to
increases, there is a greater likelihood for propagative be-
haviour of the markets. This is reflected in the data anal-
ysis based on the examples given in which the Gaussian
VDSK exp(−αω2) has been used to smooth both u(t) and
q(τ) to obtain macrotrends in which the value of α deter-
mines the level of detail in the output. From the example
provided in Figure 3 and other trials that have been un-
dertaken (details of which lie beyond the scope of this
paper), it is clear that the ‘turning point’ (i.e. positions
in time where q′(t) = 0) appear to ‘flag’ a future change
in the trend of the signal u(t). This feature is reflected
in the ‘cross-over points’ of the normalised gradients for
u′ and q′(t) illustrated in Figure 3, i.e. points in time
when u′(t), ‖u′‖∞ = 1 and q′(τ), ‖u′‖∞ = 1 are ap-
proximately the same and whose gradients are of opposite
polarity. These characteristics are a consequence of the
phase shifts that exist in the gradients of u(t) and q(τ)
over different frequency bands. Although the interpreta-
tion of these phase shifts requires further study, from the
results obtained to date, it is clear that they provide an
assessment of the risk associated with a particular invest-
ment portfolio and has been used to develop a model for
forecasting volatility as discussed in Section 5. However,
application of this model for predicting market behavour
is dependent on optimising two parameters, namely, the
length of the moving window L and the filter parameter
α. Evaluation of historical data for a given time series
(with a specific sampling rate) is required in order to op-
timise the values of these parameters.

The model used is predicated on the assumption that fi-
nancial time series are Lévy distributed and one of the
key results of this paper has been to provide connectiv-
ity between Lévy distributed processes used to derive the
fractional diffusion equation and random scaling fractal
signals in terms of a Green’s function solution to this
equation. The value of the Lévy index γ = 2/q is then
used to gauge the likely future behavior of the signal un-
der the FMH: a change in γ precedes a change in the
signal.



EMH FMH

Gaussian Non-Gaussian
Statistics Statistics

Stationary Non-stationary
Process Process

No memory - Memory -
no historical correlations historical correlations

No repeating Many repeating
patterns at any scale patterns at all scales -

‘Elliot waves’

Continuously stable Continuously unstable
at all scales at any scale -

‘Lévy Flights’

Table 6: Principal differences between the Efficient Mar-
ket Hypothesis (EMH) and the Fractal Market Hypoth-
esis (FMH).

Appendix A: Einstein’s Derivation of the
Diffusion Equation

Let τ be a small interval of time in which a particle moves
between λ and λ + dλ with probability P (λ) where λ =√
λ2
x + λ2

y + λ2
z and τ is small enough to assume that the

movements of the particle are τ -independent. If u(r, t) is
the concentration (i.e. the number of particles per unit
volume) then the concentration at time t + τ generated
by a source function F (r) is given by

(r, t+ τ) =

∞∫
−∞

u(r + λ, t)P (λ)dλ+ F (r, t) (A.1)

Since τ << 1, we may approximate u(r, t+ τ) as

u(r, t+ τ) = u(r, t) + τ
∂

∂t
u(r, t)

and write u(r + λ, t) in terms of the Taylor series

u(r + λ, t) =u+ λx
∂u

∂x
+ λy

∂u

∂y
+ λz

∂u

∂z

+
λ2
x

2!
∂2u

∂x2
+
λ2
y

2!
∂2u

∂y2
+
λ2
z

2!
∂2u

∂z2

+ λxλy
∂2u

∂x∂y
+ λxλz

∂2u

∂x∂z
+ λyλz

∂2u

∂y∂z
+ ...

However, higher order terms can be neglected since, if
τ << 1, then the distance travelled, λ, must also be

small. Equation (A.1) may then be written as

u+ τ
∂u

∂t
= F (r, t) +

∞∫
−∞

uP (λ)dλ

+

∞∫
−∞

(
λx
∂u

∂x
+ λy

∂u

∂y
+ λz

∂u

∂z

)
P (λ)dλ

+

∞∫
−∞

(
λ2
x

2!
∂2u

∂x2
+
λ2
y

2!
∂2u

∂y2
+
λ2
z

2!
∂2u

∂z2

)
P (λ)dλ

+

∞∫
−∞

(
λxλy

∂2u

∂x∂y
+ λxλz

∂2u

∂x∂z
+ λyλz

∂2u

∂y∂z

)
P (λ)dλ

Assuming that P (λ) is normalized we have
∞∫
−∞

P (λ)dλ = 1

so that

τ
∂

∂t
u =

∞∫
−∞

λ2
x

2
∂2u

∂x2
P (λ)dλ+

∞∫
−∞

λxλy
2

∂2u

∂x∂y
P (λ)dλ

+

∞∫
−∞

λxλz
2

∂2u

∂x∂z
P (λ)dλ+

∞∫
−∞

λyλx
2

∂2u

∂y∂x
P (λ)dλ

+

∞∫
−∞

λ2
y

2
∂2u

∂y2
P (λ)dλ+

∞∫
−∞

λyλz
2

∂2u

∂y∂z
P (λ)dλ

+

∞∫
−∞

λzλx
2

∂2u

∂z∂x
P (λ)dλ+

∞∫
−∞

λzλy
2

∂2u

∂z∂y
P (λ)dλ

+

∞∫
−∞

λ2
z

2
∂2u

∂z2
P (λ)dλ+

∞∫
−∞

λx
∂u

∂x
P (λ)dλ

+

∞∫
−∞

λy
∂u

∂y
P (λ)dλ+

∞∫
−∞

λz
∂u

∂z
P (λ)dλ+ F (r, t)

which may be written as a matrix equation of the follow-
ing form

∂

∂t
u(r, t) = ∇ ·D∇u(r, t) + V · ∇u(r, t) + F (r, t)

where D is the diffusion tensor given by

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


where

Dij =

∞∫
−∞

λiλj
2τ

P (λ)dλ =
1
2τ
〈λiλj〉



and V is a flow vector which describes any drift velocity
that the particle ensamble may have and is given by

V =

VxVy
Vz

 Vi =

∞∫
−∞

λi
τ
P (λ)dλ =

1
τ
〈λi〉

Note that as λiλj = λjλi, the diffusion tensor is diago-
nally symmetric (i.e. Dij = Dji). For isotropic diffusion
where 〈λiλj〉 = 0 for i 6= j and 〈λiλj〉 = 〈λ2〉 for i = j
and with no drift velocity so that V = 0, then

∂

∂t
u(r, t) = ∇ ·

D 0 0
0 D 0
0 0 D

∇u(r, t) + F (r, t)

= D∇2u(r, t) + F (r, t)

where

D =

∞∫
−∞

λ2

2τ
P (λ)dλ

Appendix B: Evaluation of the Lévy Dis-
tribution

We wish to show that the Characteristic Function
P (k) = exp(−a | k |γ), 0 < γ ≤ 2 is equiv-
alent to a Probability Density Function given by
p(x) ∼ x−(1+γ), x → ∞., i.e. we wish to prove the
following:

Theorem

1
x1+γ

↔ exp(−a | k |γ), 0 < γ ≤ 2, x→∞

where ↔ denotes transformation from real to Fourier
space1.

Proof of Theorem
For 0 < γ < 1, and since the characteristic function is
symmetric, we have

p(x) = Re[f(x)]

where

f(x) =
1
π

∞∫
0

eikxe−k
γ

dk

=
1
π

[ 1
ix
eikxe−k

γ

]∞
k=0

− 1
ix

∞∫
0

eikx(−γkγ−1e−k
γ

)dk


=

γ

2πix

∞∫
−∞

dkH(k)kγ−1e−k
γ

eikx, x→∞

1The author acknowledges Dr K I Hopcraft, School of Mathe-
matical Sciences, Nottingham University, England, for his advice
in respect of this result.

where

H(k) =

{
1, k > 0
0, k < 0

For 0 < γ < 1, f(x) is singular at k = 0 and the greatest
contribution to this integral is the inverse Fourier trans-
form of H(k)kγ−1. Noting that

F−1

[
1

(ik)γ

]
∼ 1
x1−γ

where F−1 denotes the inverse Fourier transform, and
that

H(k)↔ δ(x) +
i

πx
∼ δ(x), x→∞

then, using the convolution theorem, we have

f(x) ∼ γ

iπx

i1−γ

xγ

and thus

p(x) ∼ 1
x1+γ

, x→∞

For 1 < γ < 2, we can integrate by parts twice to obtain

f(x) =
γ

iπx

∞∫
0

dkkγ−1e−k
γ

eikx

=
γ

iπx

[
1
ix
kγ−1e−k

γ

eikx
]∞
k=0

+
γ

πx2

∞∫
0

dkeikx[(γ − 1)kγ−2e−k
γ

− γ(kγ−1)2e−k
γ

]

=
γ

πx2

∞∫
0

dkeikx[(γ−1)kγ−2e−k
γ

−γ(kγ−1)2e−k
γ

], x→∞

The first term of this result is singular and therefore pro-
vides the greatest contribution and thus we can write,

f(x) ' γ(γ − 1)
2πx2

∞∫
−∞

H(k)eikx(kγ−2e−k
γ

)dk

In this case, for 1 < γ < 2, the greatest contribution to
this integral is the inverse Fourier transform of kγ−2 and
hence,

f(x) ∼ γ(γ − 1)
πx2

i2−γ

xγ−1

so that

p(x) ∼ 1
x1+γ

, x→∞

which maps onto the previous asymptotic as γ → 1 from
the above.



Appendix C: Variation Diminishing
Smoothing Kernels

Variation Diminishing Smoothing Kernels (VDSK) are
convolution kernels with properties that guarantee
smoothness and thereby, eliminate Gibbs’ effect around
points of discontinuity of a given function. Further the
smoothed function can be shown to be made up of a sim-
ilar succession of concave or convex arcs equal in number
to those of the function. Thus, we consider the following
question: let there be given a continuous or discontinu-
ous function f whose graph is composed of a succession
of alternating concave or convex arcs. Is there a smooth-
ing kernel (or a set of them) which produces a smoothed
function whose graph is also made up of a similar succes-
sion of concave or convex arcs equal in number to those
of f?.

C.1 Laguerre-Pôlya Class Entire Functions

The class of kernels which relate to this question are a
class of entire functions which shall be called class E
originally studied earlier by E Laguerre and G Pôlya. An
entire function E(z), z ∈ C belongs to the class E

⇐⇒

E(z) = exp(bz−cz2)
∞∏
λ=1

(
1− z

a(λ)

)
exp[z/a(λ)], (C.1.1)

where b, c, a(λ) ∈ R, c ≥ 0, and

∞∑
λ=1

a−2(λ) <∞. (C.1.2)

where ⇐⇒ is taken to denote ‘if and only if’ - iff.
The convergence of the series (C.1.2) guarantees that
the product in (C.1.1) converges and represents an entire
function. Laguerre proved, and Pôlya added a refine-
ment, that a sequence of polynomials, having real roots
only, which converge uniformly in every compact set of
the complex plane C, approaches a function of class E in
the uniform limit of such a sequence. For example,

exp(−z2) = lim
λ→∞

(
1− z2

λ2

)λ2

,

and the polynomials (1 − z2/λ2) have real roots only.
In this definition, it is not assumed that the a(λ) are
distinct. To include the case in which the product has a
finite number of factors or reduces to 1 without additional
notation, it is assumed that certain points on all the a(λ)
may be ∞. Furthermore, it is assumed, without loss of
generality, that the roots a(λ) are arranged in an order
of increasing absolute values,

0 < |a(1)| ≤ |a(2)| ≤ |a(3)| ≤ . . .

Examples of functions belonging to class E are

1, 1− z, exp(z), exp(z2), cos z

sin z
z

, Γ−1(1− z), Γ−1(z)

Note that the product of two functions of this class pro-
duce a new function of the same class.

C.2 Variation Diminishing Smoothing Ker-
nels (VDSKs)

A function k is variation diminishing iff it is of the form

k(x) = (2πi)−1

i∞∫
−i∞

[E(z)]−1 exp(zx) dz, (C.2.1)

where E(z) ∈ E is given by

E(z) = exp(bz−cz2)
∞∏
λ=1

(
1− z

a(λ)

)
exp[z/a(λ)], (C.2.2)

with b, c, a(λ) ∈ R, c ≥ 0, and

∞∑
λ=1

a−2(λ) <∞

In other words, a frequency function k is variation dimin-
ishing iff its bilateral Laplace transform equals [E(z)]−1:

[E(z)]−1 =

∞∫
−∞

k(x) exp(−zx) dx. (C.2.3)

In order to define a smoothing kernel, the function k
given in (C.2.1) must be an even function. For, if k(x) is
even, then the corresponding bilateral Laplace transform
[E(z)]−1 is also even. This fact follows readily from

[E(z)]−1

=

∞∫
−∞

k(x) exp(−zx) dx =

∞∫
−∞

k(−x) exp(−zx) dx

=

∞∫
−∞

k(x) exp(zx) dx = [E(−z)]−1

Conversely, if [E(z)]−1 is even, then its inverse bilateral
transform is even since a component of convergence of
(C.2.3) contains the imaginary axis. This follows from
the fact that the component of convergence of each one
of the functions which compose E(z) contains completely
the imaginary axis. Further, it follows that

[E(iu)]−1 = K(u), (C.2.4)

where K(u) is the FT of k. From the evenness of
[E(z)](−1) it follows that K(u) is real, hence k is even.



But E(z) is even iff b = 0 and a(2λ − 1) = −a(2λ),
λ = 1, 2, . . . . Therefore E(z) is taken to be

E(z) = exp(−cz2)
∞∏
λ=1

(
1− z2

a2(λ)

)
, (C.2.5)

with c, a(λ) ∈ R, c ≥ 0, and

∞∑
λ=1

a−2(λ) <∞

Equation (C.2.4) establishes the relationship between the
bilateral Laplace transform and the Fourier transform of
k. Thus, any analysis associated with use of the bilat-
eral Laplace transform can be undertaken in terms of the
Fourier transform.

Using equation (C.2.4) the Fourier transform of (C.2.1)
is given by

k(x)↔ K(u) = [E(iu)]−1 = exp(−cu2)
∞∏
λ=1

( a2(λ)
a2(λ) + u2

)
,

(C.2.6)
where ↔ denotes transformation from real to Fourier
space, c, a(λ) ∈ R, c ≥ 0, and

∞∑
λ=1

a−2(λ) <∞.

Because equation (C.2.6) is a variation diminishing func-
tion by construction and |K(0)| ≤ 1, then the following
result holds.

Theorem C.2.1 (VDSKs)

k defined as in equation (C.2.6)

=⇒

1. k is a smoothing kernel belonging to SK1,

2. k is variation diminishing,

3. k(x) ≥ 0, x ∈ R.

In order to make a complete study of the VDSKs, such
kernels will be divided in three classes: The Finite VD-
SKs, The Non-Finite VDSKs, and The Gaussian VDSK.

C.3 The Finite VDSKs

The finite and the non-finite VDSKs are kernels which
can be synthesized from the following basic function:

e(x) =
1
2

exp(−|x|), x ∈ R. (C.3.1)

The finite VDSKs are made up by a finite number of con-
volutions of functions a(λ) e[a(λ)x], λ = 1, 2, . . . . Clearly
e(x) is a VDSK with mean ν = 0 and variance σ2 = 2
and its Fourier transform is given by

e(x)↔ 1
1 + u2

. (C.3.2)

Note that if a > 0, then a e(ax) is again a VDSK. Us-
ing the similarity property of the Fourier transform and
equation (C.3.2), its Fourier transform is given by

a e(ax)↔ a2

a2 + u2
. (C.3.3)

Its mean ν again vanishes and its variance takes the value
σ2 = 2/a2.

Let a(1), a(2), . . . , a(n) > 0 be constants, some or all of
which may be coincident. The following VDSKs are in-
troduced

kλ(x) = a(λ) e[a(λ)x], λ = 1, 2, . . . , n. (C.3.4)

The combination of these functions by convolution gives
a new VDSKs with properties quantified in the following
theorem.

Theorem C.3.1 (Properties of The Finite VDSKs)

1. a(λ) > 0, λ = 1, 2, . . . ,

2. kλ(x) = a(λ) e[a(λ)x],

3. k = k1 ⊗ k2 ⊗ · · · ⊗ kn,

4. K(u) =
n∏
λ=1

(
a2(λ)/(a2(λ) + u2)

)
=⇒

A. k is a VDSK,

B. k(x)↔ K(u),

C. k has mean ν = 0,

D. k has variance σ2 =
n∑
λ=1

(
2/a2(λ)

)
<∞.

Proof. A. The assertion follows from mathematical in-
duction.

B. It follows from Convolution Theorem and mathemat-
ical induction.

C. Let kλ(x)↔ Kλ(u). Then because each kλ is a VDSK,
it follows that the respective mean, νλ, is given by

νλ = iK ′λ(0) = 0, λ = 1, 2, . . . , n

Moreover, if n = 2, then the mean ν of k is given by

ν = iK ′(0) = i(K1K2)′(0) = i(K1K2
′+K1

′K2)(0) = i(0) = 0

The assertion follows from this result and mathematical
induction.

D. Let kλ(x) ↔ Kλ(u). Then because kλ is a VDSK, it
follows that the respective variance, σ2

λ, is given by

σ2
λ = −K ′′(0) =

2
a2λ

, λ = 1, 2, . . . , n



Furthermore, from the result given in C above, if n = 2,
then the mean σ2 of k is given by

σ2 = −K ′′(0) = −(K1K2)′′(0)

= (−K1K2
′′ − 2K1

′K2
′ −K1

′′K2)(0) =
2

a2(1)
+

2
a2(2)

The assertion follows from this result and mathematical
induction. From the explicit expression of K(u) given in
Theorem C.3.1. it follows that

K(u) =
n∏
λ=1

(
a2(λ)

a2(λ) + u2

)

=
n∏
λ=1

(
a(λ)

a(λ)− iu

)(
−a(λ)

−a(λ)− iu

)

=
n∏
λ=1

(
a(λ)

a(λ)− iu

) n∏
λ=1

(
−a(λ)

−a(λ)− iu

)

=
2n∏
λ=1

(
d(λ)

d(λ)− iu

)
where d(λ) = a(λ) for λ = 1, 2, . . . , n and d(λ) = −a(λ)
for λ = n + 1, n + 2, . . . , 2n. Thus k is of degree 2n and
the following theorem holds.

Theorem C.3.2 (Degree of Differentiability of The
Finite VDSKs)

k a finite VDSK,

=⇒

1. k ∈ C2n−2(R,R),

2. k ∈ C2n−1(R,R) except at x = 0, where

k2n−1(0+), k2n−1(0−)

both exist.

The asymptotic behaviour of k and its Fourier transform,
K, will be now studied.

Theorem C.3.3 (Asymptotic Behaviour of The
Fourier transform of The Finite VDSKs)

1. k a finite VDSK,

2. k(x)↔ K(u)

=⇒

|K(u)| = O(|u|−2n), |u| → ∞

Proof. k is made up of a finite convolution operations
of functions kλ(x) = a(λ) e[a(λ)x], where a(λ) > 0, λ =

1, 2, . . . , n; and whose FT, Kλ(u), satisfy the inequality

|Kλ(u)| =
∣∣∣∣ a2(λ)
a2(λ) + u2

∣∣∣∣ ≤ a2(λ)
|u|2

, λ = 1, 2, . . . , n

Thus

|K(u)| =

∣∣∣∣∣
n∏
λ=1

Kλ(u)

∣∣∣∣∣ ≤
n∏
λ=1

(
a2(λ)
|u|2

)
= |u|−2n

n∏
λ=1

a2(λ).

(C.3.5)

From the above theorem we construct the following corol-
larys.

Corollary C.3.4 (Absolute and Quadratic Integra-
bility of The Fourier transform of The Finite VD-
SKs)

1. k a finite VDSK,

2. k(x)↔ K(u)

=⇒

K(u) ∈ L(R,R) ∩ L2(R,R).

Corollary C.3.5 (Absolute and Quadratic Integra-
bility of The Finite VDSKs)

k a finite VDSK,

=⇒

k(x) ∈ L(R,R) ∩ L2(R,R).

The Fourier transform K(u) of the Fourier transform of
k is given by

K(u)↔ 2πk(−x)

Since k is a even function then

K(u)↔ 2πk(x)

This result in conjunction with Corollary C.3.4. and
Riemann-Lebesgue Lemma proves the following theorem.

Theorem C.3.6 (Asymptotic Behaviour of The Fi-
nite VDSKs)

k a finite VDSK

=⇒

k(x)→ 0 as |x| → ∞.

C.4 The Non-Finite VDSKs

We now study kernels k holding the property

k(x)↔ K(u) =
∞∏
λ=1

(
a2(λ)

a2(λ) + u2

)
(C.4.1)



which are non-finite kernels. In particular, the infinite
product in equation (C.4.1) may have only a finite num-
ber of factors, so that the finite VDSKs of the last sec-
tion are included. Kernels holding equation (C.4.1) can
be synthesized from the basic kernel

e(x) =
1
2

exp(−|x|), x ∈ R

The non-finite VDSKs are composed of a non-finite num-
ber of functions a(λ) e[a(λ)x], λ = 1, 2, . . . . The proper-
ties of such kernels are given in the following theorem.

Theorem C.4.1 (Properties of The Non-Finite
VDSKs)

1. a(λ) > 0, λ = 1, 2, . . . ,

2. kλ(x) = a(λ) e[a(λ)x],

3. k = k1 ⊗ k2 ⊗ · · · ⊗ kn . . . ,

4. K(u) =
∞∏
λ=1

(
a2(λ)/(a2(λ) + u2)

)
=⇒

A. k is a VDSK,

B. k(x)↔ K(u),

C. k has mean ν = 0,

D. k has variance σ2 =
∞∑
λ=1

(
2/a2(λ)

)
<∞.

Since k (Theorem C.4.1) is made up by a non-finite num-
ber of convolution operationw, then it is of degree infinity,
which leads to the following.

Theorem C.4.2 (Degree of Differentiability of The
Non-Finite VDSKs)

k a non-finite VDSK

=⇒

k ∈ C∞(R,R).

The asymptotic behaviour of the Fourier transform of a
non-finite kernel is established in the following theorem.

Theorem C.4.3 (Asymptotic Behaviour of The
Fourier transform of The Non-Finite VDSKs)

1. k a non-finite VDSK,

2. k(x)↔ K(u),

3. R, p > 0

=⇒

|K(u)| = O(|u|−2p), |u| → ∞.

Proof. Choose N > p and so large that |a(λ)| ≥ R when
λ > N which is possible since |a(λ)| → ∞ as λ→∞. Set

KN (u) =
∞∏

λ=N+1

(
a2(λ)

a2(λ) + u2

)

By equation (C.3.5), it follows that

|K(u)| ≤ |KN (u)|
|u|2N

N∏
λ=1

a2(λ)

Because |KN (u)| never vanishes and is continuous for all
u ∈ R, then it has a positive lower bound. Hence, for a
suitable constant M

|K(u)| ≤ M

|u|2N

In particular, if p = 1 in the above theorem and because k
is a variation diminishing function, the following corollary
results.

Corollary C.4.4 (Absolute Integrability of The
Non-Finite Kernels and Their FT)

1. k a non-finite VDSK,

2. k(x)↔ K(u)

=⇒

k,K ∈ L(R,R).

Application of the symmetry property of the Fourier
transform, the Riemann-Lebesgue Lemma and the above
corollary proves the following theorem.

Theorem C.4.5 (Asymptotic Behaviour of The
Non-Finite VDSKs)

k a non-finite VDSK

=⇒

k(x)→ 0 as |x| → ∞.

Some examples of non-finite VDSKs are:

π

4
sech2(

πx

2
)↔ u cschu

=
∞∏
λ=1

(
λ2π2

λ2π2 + u2

)
, (C.4.2)

1
2

sech(
πx

2
)↔ sechu =

∞∏
λ=1

(
(2λ− 1)2π2

(2λ− 1)2π2 + u2

)
.

(C.4.3)
Note that a non-finite VDSK does not necessarily belongs
to L2(R,R), e.g. the kernel given by equation (C.4.3).



C.5 The Gaussian VDSK

The Gaussian VDSK, k, is defined by the relation

k(x)↔ K(u) = exp(−cu2), c > 0. (C.5.1)

With c→ 1/4c2, the Gaussian VDSK is now defined as

k(x)↔ K(u) = exp(−u2/4c2), c > 0. (C.5.2)

The basic properties of the above kernel follow directly
and are collated together in the following theorem.

Theorem C.5.1 (Basic Properties of The Gaussian
VDSK)

1. k(x) = c gauss(cx), c > 0,

2. K(u) = exp(−u2/4c2), c > 0,

3. p > 0

=⇒

A. k is a VDSK,

B. k(x)↔ K(u),

C. k has mean ν = 0,

D. k has variance σ2 = 1/2c2,

E. k,K ∈ L(R,R) ∩ L2(R,R),

F. k,K ∈ C∞(R,R),

G. |k(x)| = o(|x|−p),

H. |K(u)| = o(|u|−p).

If in equation (C.5.1), c is considered as a variable, say
t, then after taking the inverse Fourier transform with
respect to x we obtain a real valued function of two vari-
ables, i.e.

k(x, t) =
1√
4πt

exp(−x2/4t). (C.5.3)

This new function is the familiar source solution of the
diffusion equation(

∂2

∂x2
− ∂

∂t

)
k(x, t) = 0 (C.5.4)

C.6 Geometric Properties of The VDSKs

We consider the general geometric properties shared by
the finite, non-finite and the Gaussian VDSKs where
k denotes either a finite, non-finite or Gaussian VDSK
throughout.

Theorem C.6.1 (Geometric Properties of The VD-
SKs)

1. k a VDSK,

2. f : R→ R bounded and convex (concave)

=⇒

A. For a, b ∈ R

V [k(x)⊗ f(x)− a− bx] ≤ V [f(x)− a− bx], (C.6.1)

B. (k ⊗ f)(x) is convex (concave).

Proof. A. Inequality (C.6.1) follows by a direct applica-
tion of the variation diminishing property of k.

B. It is well known that f is convex iff

∆2
hf(x) = f(x+ 2h)− 2f(x+ h)− f(x) ≥ 0,

for all x ∈ R, h > 0. Because k is a non-negative func-
tion, then

∆2
h[(k ⊗ f)(x)] = ∆2

h

 ∞∫
−∞

k(y)f(x− y) dy



=

∞∫
−∞

k(y)∆2
hf(x− y) dy ≥ 0

Thus the inequality follows. The case for which f is con-
cave follows using a similar argument but ∆2

hf(x) ≤ 0,
for all x ∈ R, h > 0.

The geometric significance of inequality (C.6.1) is that
the number of intersections of the straight line y = a+bx,
a, b ∈ R, with (k ⊗ f)(x) does not exceed the number of
intersections of y = a + bx with y = f(x). As a special
instance of such an inequality, it follows that (k ⊗ f)(x)
is non-negative if f is non-negative.

Corollary C.6.2 (Non-Negativity of k ⊗ f)

1. k a VDSK,

2. f : R→ R, f ≥ 0, and bounded

=⇒

(k ⊗ f)(x) ≥ 0, x ∈ R.

From the above results, it is clear that if f is composed of
a succession of alternating convex or concave arcs, then
k ⊗ f is also made up of a similar succession of convex
or concave arcs equal in number to those of f . Thus, a
VDSK is shape preserving.



Appendix D: Relationships between the
Hurst Exponent and the Topological,
Fractal and Fourier Dimensions

Suppose we cut up some simple one-, two- and three-
dimensional Euclidean objects (a line, a square surface
and a cube, for example), make exact copies of them and
then keep on repeating the copying process. Let N be
the number of copies that we make at each stage and let
r be the length of each of the copies, i.e. the scaling ratio.
Then we have

NrDT = 1, DT = 1, 2, 3, ...

where DT is the topological dimension. The similarity
or fractal dimension is that value of DF which is usually
(but not always) a non-integer dimension ‘greater’ that
its topological dimension (i.e. 0,1,2,3,... where 0 is the
dimension of a point on a line) and is given by

DF = − log(N)
log(r)

The fractal dimension is that value that is strictly greater
than the topological dimension. In each case, as the
value of the fractal dimension increases, the fractal be-
comes increasingly ‘space-filling’ in terms of the topolog-
ical dimension which the fractal dimension is approach-
ing. A fractal exhibits structures that are self-similar.
A self-similar deterministic fractal is one where a change
in the scale of a function f(x) (which may be a multi-
dimensional function) by a scaling factor λ produces a
smaller version, reduced in size by λ, i.e.

f(λx) = λf(x)

A self-affine deterministic fractal is one where a change
in the scale of a function f(x) by a factor λ produces a
smaller version reduced in size by a factor λq, q > 0, i.e.

f(λx) = λqf(x)

For stochastic fields, the expression

Pr[f(λx)] = λqPr[f(x)]

describes a statistically self-affine field - a random scaling
fractal. As we zoom into the fractal, the shape changes,
but the distribution of lengths remains the same.

There is no unique method for computing the fractal di-
mension. The methods available are broadly categorized
into two families: (i) Size-measure relationships, based
on recursive length or area measurements of a curve or
surface using different measuring scales; (ii) application
of relationships based on approximating or fitting a curve
or surface to a known fractal function or statistical prop-
erty, such as the variance.

Consider a simple Euclidean straight line λ of length L(λ)
over which we ‘walk’ a shorter ‘ruler’ of length δ. The
number of steps taken to cover the line N [L(λ), δ] is then
L/δ which is not always an integer for arbitrary L and δ.
Since

N [L(λ), δ] =
L(λ)
δ

= L(λ)δ−1,

⇒ 1 =
lnL(λ)− lnN [L(λ), δ]

ln δ

= −
(

lnN [L(λ), δ]− lnL(λ)
ln δ

)
which expresses the topological dimension DT = 1 of the
line. In this case, L(λ) is the Lebesgue measure of the
line and if we normalize by setting L(λ) = 1, the latter
equation can then be written as

1 = − lim
δ→0

[
lnN(δ)

ln δ

]
since there is less error in counting N(δ) as δ becomes
smaller. We also then have N(δ) = δ−1. For extension
to a fractal curve f , the essential point is that the fractal
dimension should satisfy an equation of the form

N [F (f), δ] = F (f)δ−DF

where N [F (f), δ] is ‘read’ as the number of rulers of size
δ needed to cover a fractal set f whose measure is F (f)
which can be any valid suitable measure of the curve.
Again we may normalize, which amounts to defining a
new measure F ′ as some constant multiplied by the old
measure to get

DF = − lim
δ→0

[
lnN(δ)

ln δ

]
where N(δ) is taken to be N [F ′(f), δ] for notational con-
venience. Thus a piecewise continuous field has precise
fractal properties over all scales. However, for the dis-
crete (sampled) field

D = −
〈

lnN(δ)
ln δ

〉
where we choose values δ1 and δ2 (i.e. the upper and
lower bounds) satisfying δ1 < δ < δ2 over which we ap-
ply an averaging processes denoted by 〈 〉. The most
common approach is to utilise a bi-logarithmic plot of
lnN(δ) against ln δ, choose values δ1 and δ2 over which
the plot is uniform and apply an appropriate data fitting
algorithm (e.g. a least squares estimation method or, as
used in this paper, Orthogonal Linear Regression) within
these limits.

The relationship between the Fourier dimension q and the
fractal dimension DF can be determined by considering
this method for analysing a statistically self-affine field.
For a fractional Brownian process (with unit step length)

A(t) = tH , H ∈ (0, 1]



where H is the Hurst dimension. Consider a fractal curve
covering a time period ∆t = 1 which is divided up into
N = 1/∆t equal intervals. The amplitude increments
∆A are then given by

∆A = ∆tH =
1
NH

= N−H

The number of lengths δ = N−1 required to cover each
interval is

∆A∆t =
N−H

N−1
= N1−H

so that
N(δ) = NN1−H = N2−H

Now, since

N(δ) =
1
δDF

, δ → 0,

then, by inspection,

DF = 2−H

Thus, a Brownian process, where H = 1/2, has a fractal
dimension of 1.5. For higher topological dimensions DT

DF = DT + 1−H

This algebraic equation provides the relationship between
the fractal dimension DF , the topological dimension DT

and the Hurst dimension H. We can now determine
the relationship between the Fourier dimension q and the
fractal dimension DF .

Consider a fractal signal f(x) over an infinite support
with a finite sample fX(x), given by

fX(x) =
{
f(x), 0 < x < X;
0, otherwise.

A finite sample is essential as otherwise the power spec-
trum diverges. Moreover, if f(x) is a random function
then for any experiment or computer simulation we must
necessarily take a finite sample. Let FX(k) be the Fourier
transform of fX(x), PX(k) be the power spectrum and
P (k) be the power spectrum of f(x). Then

fX(x) =
1

2π

∞∫
−∞

FX(k) exp(ikx)dk,

PX(k) =
1
X
|FX(k)|2

and
P (k) = lim

X→∞
PX(k)

The power spectrum gives an expression for the power
of a signal for particular harmonics. P (k)dk gives the
power in the range k to k+dk. Consider a function g(x),
obtained from f(x) by scaling the x-coordinate by some

a > 0, the f -coordinate by 1/aH and then taking a finite
sample as before, i.e.

gX(x) =
{
g(x) = 1

aH
f(ax), 0 < x < X;

0, otherwise.

LetGX(k) and P ′X(k) be the Fourier transform and power
spectrum of gX(x), respectively. We then obtain an ex-
pression for GX in terms of FX ,

GX(k) =

X∫
0

gX(x) exp(−ikx)dx =

1
aH+1

X∫
0

f(s) exp
(
− iks

a

)
ds

where s = ax. Hence

GX(k) =
1

aH+1
FX

(
k

a

)
and the power spectrum of gX(x) is

P ′X(k) =
1

a2H+1

1
aX

∣∣∣∣FX (ka
)∣∣∣∣2

and, as X →∞,

P ′(k) =
1

a2H+1
P

(
k

a

)
Since g(x) is a scaled version of f(x), their power spectra
are equal, and so

P (k) = P ′(k) =
1

a2H+1
P

(
k

a

)
If we now set k = 1 and then replace 1/a by k we get

P (k) ∝ 1
k2H+1

=
1
kq

Now since q = 2H + 1 and DF = 2−H, we have

DF = 2− q − 1
2

=
5− q

2

The fractal dimension of a fractal signal can be calculated
directly from q using the above relationship. This method
also generalizes to higher topological dimensions giving

q = 2H +DT

Thus, since
DF = DT + 1−H

then q = 5 − 2DF for a fractal signal and q = 8 − 2DF

for a fractal surface so that, in general,



q = 2(DT + 1−DF ) +DT = 3DT + 2− 2DF

and

DF = DT + 1−H = DT + 1− q −DT

2
=

3DT + 2− q
2
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