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A Comparative Test of Brillouin Amplification
and Erbium-Doped Fiber Amplification for

the Generation of Millimeter Waves
With Low Phase Noise Properties

Markus Junker, Max James Ammann, Member, IEEE, Andreas Thomas Schwarzbacher, Jens Klinger,
Kai-Uwe Lauterbach, and Thomas Schneider

Abstract—Measurements of phase noise of a 40-GHz carrier
signal are presented. The carrier is generated by the amplification
of harmonics due to stimulated Brillouin scattering. An analogy
to a generation of millimeter waves by an erbium-doped fiber
instead of the Brillouin amplifier is investigated and discussed. In
our setup, both show a comparable behavior in respect to their
noise characteristics.

Index Terms—Brillouin scattering, millimeter-wave generation,
phase noise.

I. INTRODUCTION

MILLIMETER waves are expected to be promising and
important frequencies for future wireless communica-

tion systems. The frequency domain above 30 GHz offers an
increase of the transmission bandwidth for radio links. The mil-
limeter-wave frequency band overcomes the spectral conges-
tion in lower frequency regions and offers an enormously large
bandwidth. In the 60-GHz band, for instance, data transmission
of 1.25 Gbit/s was shown [1]. Furthermore in [2], a wireless
link with a data rate up to 3 Gbit/s and a carrier frequency of
120 GHz was verified. Short-range propagation systems in the
59–64-GHz frequency band that is set as a target frequency band
has been developed [3]–[5] in Japan.

The requirements for carrier frequencies in wireless com-
munications are, in fact, very high. Beside frequency stability,
magnitude, and a narrow bandwidth, the most important prop-
erty of a carrier signal is the phase noise. It describes the noise
of the phase at a certain offset from the carrier measured in
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a 1-kHz bandwidth (dBc/Hz). It limits the application of car-
rier signals and is an important criterion for the use of different
modulation formats in communication systems [6]. Phase noise
degrades millimeter and microwave systems introducing a sig-
nificant irreducible error rate. In [7], the 60-GHz region phase
noise of 59 and 85 dBc/Hz at 10 and 100 kHz, respectively,
offset from the carrier were measured. A millimeter-wave gen-
eration of 42 GHz was shown in [8] where a measurement of

80 dBc/Hz at 10-kHz offset was verified. By using the method
of PM–IM conversion in chirped fiber gratings, a phase noise
of 87 dBc/Hz at 10-kHz offset at a frequency of 28 GHz
were measured [9]. Currently, Kawanishi et al. [10] reported on
a 44-GHz signal generated by an integrated reciprocating op-
tical modulator with a phase noise property of 88.5 dBc/Hz
at 10-kHz offset from the carrier. In [11], the millimeter-wave
generation of 33.87 GHz was realized by using hybrid mode
locking of a monolithic distributed Bragg reflector (DBR) laser
and a phase noise of 70 dBc/Hz was measured.

In this paper, we focus our discussions on the low phase-noise
properties of the Brillouin amplification part. This gain can be
seen as one of the most significant parts of signal generation in
our system. This noise property is proven by a comparison to
an erbium-doped fiber (EDF) amplification. It is realized by re-
placing the Brillouin amplifier in the setup physically. An align-
ment of all parameters to both amplification versions makes this
possible.

In Section II, the experimental setup is briefly described. The-
oretical results of the low phase-noise analyses are shown in
Section III. In Section IV, experimental results focused on a
comparison of Brillouin amplification and EDF amplification
are evaluated. Finally, the conclusions and discussions are given
in Section V.

II. EXPERIMENT

Stimulated Brillouin scattering (SBS) is the nonlinear effect
with the smallest threshold. SBS is an interaction between the
material (optical fiber) and the incident light wave. The result is
a density modulation of the refractive index, which can be seen
as an acoustic wave. The pump wave is scattered at the grating
resulting in a backward scattered wave, i.e., the Stokes wave.
Owing to the Doppler effect, the Stokes wave is down shifted
in frequency of 10.7 GHz. We measured a Brillouin gain band-
width of 28.8 MHz. A similar experimental setup was discussed
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Fig. 1. Experimental setup for the generation of millimeter waves. (SL: signal
laser, MZM: Mach–Zehnder modulator, PL: pump laser, PD: photodiode, ESA:
electrical spectrum analyzer, C: circulator, SSMF: standard single-mode fiber.)

in detail in [12]. At this point, we want to give an overview about
the system idea. A fiber laser is used as the signal laser with a
narrow linewidth 2 kHz (Fig. 1), 20-mW output power, and a
wavelength of 1550 nm. The linewidth of the signal laser should
be as low as possible owing to the fact that it significantly de-
fines the linewidth of the millimeter-wave signal. A polariza-
tion controller adjusts the polarization to its optimum for the
Mach–Zehnder modulator (MZM). External modulation by an
MZM driven in the nonlinear domain (upper/lower quadratic
operation point) is performed to generate a frequency comb.
The modulation frequency is 9.8 GHz, hence, the separation of
the sidebands has a distance of 9.8 GHz [see Fig. 1, inset (a)].
By changing the operation point, switching between even- and
odd-order sidebands is possible. The frequency comb is injected
into a 50.43-km standard single-mode fiber (SSMF). The light
of two DFB pump lasers combined in a 3-dB coupler is launched
into the same fiber from the opposite side via a circulator. The
frequencies of the pump lasers are adjusted in such a manner
that the frequencies are 10.7 GHz higher than the frequencies
in the comb. Due to this, only two wavelengths out of the comb
are amplified by Brillouin scattering. The pump power is below
the Brillouin threshold that we calculated to be around 8.1 mW.
Hence, the Stokes wave is stimulated by the sideband and not by
the noise in the fiber. The linewidth of the pump lasers is below
1 MHz.

Due to the natural attenuation, all other sidebands are atten-
uated while propagating in the fiber. The result at the output of
the circulator is two strong frequency components with a sepa-
ration depending on the order of the amplified sidebands: 19.6,
39.2, 58.8 GHz and so on [see Fig. 1, inset (b)]. The two ampli-
fied harmonics are then superimposed in a photodiode (PD) and
the actual millimeter wave is generated by heterodyning [see
Fig. 1, inset (c)]. The optical input power at the PD is 1 mW.
The output frequency is with being the frequency of the
electrical generator and being the order of the sideband.

The modulation of the millimeter wave can be done quite
simply by modulating the electrical generator, the signal laser,
one of the pump lasers, or one amplified sideband.

III. THEORY

One of the simplest ways of generating millimeter waves is
the heterodyning of two frequencies in a PD. The generation
of two phase correlated waves can be done by double-sideband
suppressed carrier (DSB-SC) modulation with MZMs. Due to

the fact that both optical components are derived from a single
source, their phases are totally correlated at the source [13]. If
the optical component (sidebands) separation is in the tens of
gigahertz region and fiber length of many tens of kilometers,
the decorrelation effect owing to the fiber dispersion is negli-
gible small. Hence, the millimeter-wave signal has a minimum
of phase noise induced by the two heterodyned waves. In prin-
ciple, the millimeter-wave generation of our setup follows the
same restrictions as the generation by the heterodyning of two
sidebands of an SSB-SC modulation in a PD [13]. If one assume
no Brillouin amplification process in our setup, the resulting
spectrum and the phase noise is the same. The only alternation
in our setup is the adding of a Brillouin amplification process.
The theoretical conditions for limiting the phase-noise induc-
tion to the millimeter wave are described in the following.

SBS as an amplifier, in general, induces many problems to
the system. The Brillouin gain bandwidth is low and the spon-
taneous emission noise (SEN) can be 500 times larger than in a
Raman amplifier [14]. Furthermore, a noise figure (NF) of 20 dB
limits the system performance for preamplifiers.

In contrast to that, Ferreira et al. [15] reported that driving
the amplifier in the saturation regime could significantly reduce
the SEN. A short amplifier length can provide considerable im-
provement on the gain of the signals and decreases the SEN as
well. Furthermore, the noise power increases with signal de-
tuning. Hence, if the detuning between the pump and signal
wave is minimized, the noise power can be notably reduced. An-
other way for decreasing the amplified spontaneous noise power
is the setting of relatively high input signals powers when the
Brillouin amplifier is operated in the saturation regime.

To maintain the phase-correlated state during their propaga-
tion in the fiber and while amplifying by two independent lasers,
one has to consider two properties of the system. They are de-
scribed below. A basis for simulating the amplification of two
frequencies was shown in [16] where nonlinear effects accom-
panied with the susceptibility and the phase shift due to
Brillouin amplification were considered. A part of a differential
equation system, which describes the amplified sidebands at the
circulator output, is shown in (1) and (2) as follows:

(1)

(2)

where is the power of the signal wave, is the power of
the pump wave, is the phase matching factor, is the at-
tenuation in the fiber, is the nonlinear coefficient, and is
the effective core area. Equations (1) and (2) show the first and
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second amplified sideband, respectively, with their amplifica-
tion by SBS and the attenuation in the real part. The imaginary
part (in squared brackets) describes the phase shift due to non-
linear processes accompanied by like cross phase modulation
(XPM) and self phase modulation (SPM) (in brackets). Further-
more, the phase shift due to the Brillouin gain coefficient is
considered.

If we assume that the signal waves and pump
waves have the same power, the phase shift
due to SPM and XPM of both amplified sidebands is equal.
Furthermore, the Brillouin gain and the effective area
have the same values in (1) and (2), respectively. Hence, the
phase-matching factor is variable and is described by

(3)

and

(4)

where is the velocity and is the attenuation coefficient of
the acoustic wave. is the signal wavelength and is the
wavelength for maximum amplification. If there is no detuning
between the signal wave and pump wave , the
phase shifts of both amplified sidebands are equal [16].

Concluding the theoretical part: the influence of phase decor-
relation of two waves derived from one source is negligible.
A high signal power, a low detuning, a short fiber length, and
driving the amplifier in the saturation regime can significantly
reduce the noise. If the power of both sidebands is nearly equal,
the phase change due to SPM and XPM is the same. If the de-
tuning between the pump and the signal wave is minimal, the
phase shifts for both sidebands are also equal. Hence, the SBS
influences on the millimeter wave is small. All theoretical de-
rived system and setup settings have been considered with the
exception of the short fiber length.

IV. EXPERIMENTAL RESULTS

In order to prove the high signal performance of the gener-
ated carrier, it is necessary to analyze the stability, spectrum,
and phase-noise properties. Due to the fact that our equipment
(spectrum analyzer and PD) is frequency limited to 40 GHz, all
measurements have been done in this domain. Theoretically, the
system (Fig. 1) is able to generate up to 160 GHz depending on
the MZM used in the setup. Other possible frequency comb-gen-
eration techniques would have only the bandwidth of the PD as a
limitation, which is 330 GHz [17]. This could be a Fabry–Perot
laser or a comb generation due to four wave mixing (FWM).
Fig. 2 shows the carrier signal at a frequency of 39.199989 GHz
with a bandwidth of 300 Hz. Due to the resolution limitation
of the electrical spectrum analyzer (ESA), it was not possible
to measure the real bandwidth of the carrier. The ESA has a
resolution bandwidth (RBW) and a video bandwidth (VBW) of
300 Hz. Note that the actual bandwidth is possibly lower, but not

Fig. 2. Carrier signal at 39.199989 GHz at the output of the PD (bottom and
left) and long-term stability of itself (top and right).

measurable. The signal was measured with an ESA at the output
of the PD. As one can see, it has very good spectral purity. The
detuning of the signal wave and pump wave is minimized and
the amplified sidebands have the same magnitude.

Fig. 2 shows also a power time measurement over a range
of 4 h and it is proven that the signal is indeed constant. The
short-term fluctuations in the plot are a result of the temperature
controllers of the pump lasers. Due to a thermistor setting reso-
lution of minimal 1 , which is approximately 42 MHz, the fre-
quency of the pump lasers changes within this range. This fluc-
tuation causes a frequency shift of the Brillouin gain and, thus,
a change of the amplitude of the amplified harmonic. Owing to
the fact that two sidebands are amplified, the fluctuations are
doubled. Distortions of this kind can be easily and significantly
reduced by using temperature controllers with a higher setting
resolution.

The temperature stability depends significantly on the com-
ponents used in the system. The 9.8-GHz generator has fre-
quency stability of 5 10 Hz C. The pump laser wave-
length is adjusted by a control loop to stay fixed at the wave-
length of the sideband that should be amplified. The electro/op-
tical frequency conversion in the MZM is temperature inde-
pendent as well. The only parameter, which is a function of
the temperature, is the Brillouin shift. In [18], it is shown that
the Brillouin shift is 1.36 MHz C in an SSMF at 1.32 m. If
we assume that the Brillouin shift at 1.55 m is nearly equal
and the Brillouin bandwidth is 28.8 MHz, there is a need of

10.6 C temperature change for a total detuning of the Stokes
wave and sideband. Due to the fact that the detuning of both am-
plified sidebands would be the same, a temperature shift affects
only the power of the millimeter wave, but not the phase. This
problem can be reduced, on the one hand, by a control loop,
which regulate the pump laser wavelength to the maximum am-
plification and, on the other hand, the Brillouin bandwidth can
easily be broadened by an external phase modulation [19]. This
increases the Brillouin bandwidth and, hence, the system inde-
pendence on the temperature. Note that there was no connection
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Fig. 3. Phase-noise measurement of the 39.199989-GHz signal. At 10-kHz
offset from the carrier, the phase noise is �94.8 dBc/Hz. The inset shows the
phase noise property of the 9.8-GHz oscillator.

between the temperature and millimeter-wave frequency real-
ized during the measurements.

The phase noise of the generated signal is shown in Fig. 3. The
noise at a frequency separation above 10 kHz from the carrier is

94.8 dBc/Hz, although the method is not yet optimized. This
is a remarkably small value compared to other investigations on
millimeter waves [7]–[11]. If one considers a Brillouin amplifi-
cation process in the system, this result is even more impressive.
Due to the inefficient opto-electronic conversion, the magnitude
of the measured signal is 26.5 dBm. The input power at the PD
is 1 mW. By optimizations of the fiber length shown in [15], one
can assume a further decrease of the phase noise. The peaks at
55 and 150 Hz have their origin in the 9.8-GHz signal generator,
which provides the MZM with the necessary power. The total
phase noise of the millimeter wave is induced, on the one hand,
by the noise of each component used in the system and, on the
other hand, the phase noise induced by the SBS has to be added
logarithmically together with the noise of the components. The
peak at 300 kHz is the relative intensity noise (RIN) oscilla-
tion peak that is typically around 250–300 kHz in the fiber laser
(signal laser).

The generation of millimeter waves by Brillouin scattering
(Fig. 1) is a closed system. Hence, the output signal is the object
that needs to be analyzed. On the other hand, we want to show
that SBS is still of interest as an amplifier for special applica-
tions. Therefore, it is necessary to evaluate the characteristics of
the Brillouin amplifier.

An important property of conventional amplification systems
is the NF. The NF is the ratio of actual output noise to that which
would exist if the device itself did not introduce noise.

Due to the fact that all other devices in our system have an
unknown phase noise portion, it is not possible to draw a con-
clusion from it to the Brillouin amplification part. The NF anal-
ysis of the Brillouin amplifier in our setup is only possible by a
comparison test. Two setup changes are necessary to realize this
comparison.

First we change the MZM operation point in such a manner
that only even-order sidebands are generated (carrier, 2, 4, 6,

Fig. 4. Modified setup for comparison SBS-EDFA gain. (EDFA: erbium-doped
fiber amplifier.)

Fig. 5. Phase-noise measurement of the 39.199989-GHz signal generated
by an EDFA (dark curve). At 10-kHz offset from the carrier the phase
noise is �95 dBc/Hz. The bright curve is phase-noise measurement of the
39.199989-GHz signal generated by SBS (see Fig. 3).

8) by changing the bias voltage [see Fig. 4, inset (a)]. Hence, all
other harmonics are suppressed. The second harmonics have the
highest magnitude and are adjusted in such a manner that they
have the same value as before the change. Due to the natural
attenuation in the 50-km fiber, the optical power is decreased. In
order to have the same output power, there is a need to amplify
the modified frequency comb with a gain of 32 dB by an erbium-
doped fiber amplifier (EDFA) [see Fig. 4, inset (b)]. The EDFA
has a maximum NF of 6 dB at a gain of 32 dB.1 The optical
power of the EDF amplified sidebands is 1 mW, which is the
same as in the measurement in Fig. 3. Hence, the optical input
power at the PD is 1 mW as well. At the output of the PD, again
the 39.199989-GHz carrier signal is detected [see Fig. 4, inset
(c)].

The amplification of the sidebands by an EDFA allows a
comparison between the two amplification systems because all
other parameters are unchanged. Although the phase spectrum
at 10-kHz offset is nearly equal ( 95 dBc/Hz) to the SBS gained
signal, the quality has decreased near the carrier.

As can be seen in Fig. 5, the influence of the electrical gener-
ator increases as one can see at 130 Hz due to the EDFA amplifi-
cation. It proves that the Brillouin amplifier driven in our regime

1Personal contact with the EDFA manufacture/results of simulations.
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induces a low amplified spontaneous emission (ASE) noise to
the signal, as does an EDFA.

We have shown that the impact to the phase of a signal by a
Brillouin amplifier can be significantly reduced. We focus our
future research to the modulation of the signal and the optimiza-
tion in respect to the noise.

V. CONCLUSION

New phase-noise measurements of a millimeter waves have
been presented. The values show very low phase-noise proper-
ties in the frequency domain at 40 GHz. A phase-noise value
of 94.8 dBc/Hz prove the high quality of the signal. This low
phase noise is even more impressive if one considers Brillouin
amplification in the setup. We also discussed the comparison be-
tween the application of a Brillouin amplifier and an EDF am-
plifier in our setup. It is realized by replacing the Brillouin am-
plifier with an EDF amplifier and aligning all parameters to the
reference (EDFA). It shows a high-quality NF performance.

Although the EDF amplification has shown similar
phase-noise results, it is unusable for the generation of mil-
limeter waves up to 160 GHz. The EDF amplifies all sidebands
in the same way, which limits the millimeter-wave frequency
to 40 GHz depending on the operation point of the MZM [see
Fig. 4, inset (a)]. In our setup, we used the SBS as a filter as
well. The selective Brillouin amplification amplifies just the
sidebands that correspond to the desired carrier signal. An am-
plification of the eighth sideband is possible by SBS that is not
using an EDFA. The EDF amplification is only a comparison
parameter in this paper.
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