Assessing the Market Niche of Eurasian Rail Freight in the Belt and Road Era.

Xu Zhang
Technological University Dublin, xu.zhang@tudublin.ie

Hans-Joachim Schramm
Vienna University of Economics and Business Administration

Follow this and additional works at: https://arrow.tudublin.ie/beschspart

Recommended Citation
Assessing the Market Niche of Eurasian Rail Freight in the Belt and Road Era

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Logistics Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>IJLM-12-2019-0351.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Global logistics, Logistics cost, Logistics services, Logistics strategy, Maritime logistics, Agile</td>
</tr>
<tr>
<td>Research Method:</td>
<td>Modelling</td>
</tr>
<tr>
<td>Geography:</td>
<td>Europe, China</td>
</tr>
</tbody>
</table>

To be cited as:

Assessing the Market Niche of Eurasian Rail Freight in the Belt and Road Era

ABSTRACT

Purpose
This paper presents an overview of the recent development of Eurasian rail freight in the Belt and Road era and further evaluates its service quality in terms of transit times and transport costs compared to other transport modes in containerised supply chains between Europe and China.

Design/methodology/approach
A trade-off model of transit time and transport costs based on quantitative data from primary and secondary sources is developed to demonstrate the market niche for Eurasian rail freight vis-a-vis the more established modes of transport of sea, air, and sea/air. In a scenario analysis, further cargo attributes influencing modal choice are employed to show for which cargo type Eurasian rail freight service is favourable from a shipper’s point of view.

Findings
At present, Eurasian rail freight is about 80% less expensive than air freight with only half of the transit time of conventional sea freight. Our scenario analysis further suggests that for shipping time-sensitive goods with lower cargo value ranging from 1.23 USD/kg to 10.89 USD/kg as well as goods with lower time sensitivity and higher value in a range of 2.46 USD/kg to 21.78 USD/kg, total logistics costs of Eurasian rail freight service rail is cheaper than all other modes of transport.

Practical implications
As an emerging competitive solution, Eurasian rail freight demonstrates to be an option beneficial in terms of transport cost, transit time, reliability and service availability, which offers a cost-efficient option enabling shippers to build up agile and more sustainable supply chains between China and Europe.

Original/value
Our study firstly provides a comprehensive assessment of present Eurasian rail freight including a thorough comparison with alternative modes of transport from a shipper’s point of view.

Keywords
Belt and Road Initiative, Eurasian Land Bridge; Trans-Siberian Railway; container block train; service quality; transport cost; transit time; cargo value; value to weight ratio.
1. Introduction

In 2013, the term ‘Belt and Road’ first came into the spotlight as China’s masterplan initiative to revive the Ancient Silk Road was announced by Chinese President Xi Jinping. Following the National Development and Reform Commission (NDRC) (2015), the now called ‘Belt and Road Initiative’ (BRI) is often communicated as a “National Vision” and “Foreign Strategy” towards regional cooperation, and it is also mentioned about infrastructural project construction and investments (van der Leer and Yau, 2016).

The BRI includes two major parts - the New Silk Road Economic Belt and the 21st-Century Maritime Silk Road (hereinafter referred to as the Belt and the Road respectively). Both represent a network of ports, railways, roads, pipelines, and utility grids connecting China with Central Asia, West Asia, and parts of South Asia, Europe, and Africa (NDRC, 2015; Tian, 2016). Although the BRI is more than just physical connections (Tian, 2016), it provides a blueprint framework for Chinese diplomatic, commercial, and foreign infrastructure policies to get access to new markets for trade and investments (van der Putten and Meijnders, 2015). The aims of the BRI are to (1) promote connectivity of Asian, European and African continents via land, sea, and air, (2) establish and strengthen regional cooperation and partnerships among the countries along these routes, and (3) facilitate the flow of economic resources and integration of markets (Song, 2015).

The Belt part of BRI revives the Ancient Silk Road as a land route for trading between the East and the West – not by camel or donkey but by railway (Otsuka, 2001), and goods remain in the same container for the entire intermodal journey (Rodrigue, 2017). Currently, the Eurasian rail freight only takes a small share of the total transport volume between China and Europe (Bucsky, 2019). However, with the rapid growth of freight transport on the rail routes along the Belt, the Ancient Silk Road trading routes are coming back to life again as container block trains have emerged as an alternative transport mode there in recent years (see Figure 1). In 2019, it is reported that there are 8,225 container block trains with 725,000 TEU transported on the Belt (MOFCOM, 2020).

![Figure 1: China-Europe rail freight continues to soar](Source: CRCT (2019), Modor Intelligence (2019), Zhang (2019))
In response to the emergence of Eurasian rail freight, most research studies on Eurasian rail freight and the BRI are policy studies or consultancy work (Davydenko et al., 2012; UNECE, 2012, 2017; Rastogi and Arvis, 2014; Ardunio, 2016; Galushko, 2016; UIC and Roland Berger, 2017; Jakóbowski et al., 2018; Vinokurov et al., 2018). In addition to this, a rapidly increasing number of scholarly contributions deal with the competitiveness of container block train operations between China and Europe like Rodemann and Templar (2014), Besharati et al. (2017), Chen et al. (2017), Seo et al. (2017), Yang et al. (2017, 2018), Wiegmans and Janis (2018), Jiang et al. (2018, 2019), Wen et al. (2019), Bucsky (2019), Dunmore et al. (2019), Lu et al. (2019), Kundu and Shen (2019) or Feng et al. (2020) as well as some more in the Chinese language as discussed in Liu et al. (2018) and Lee et al. (2018). Other less related works are Song et al. (2011), Song and Na (2012), Tsuji (2013) or Kim et al. (2020) focusing on multimodal freight transports via Trans-Siberian Railway (TSR) with a short sea leg from China, South Korea and/or Japan to Russian Far East. Another stream of literature deals with a comparison of Northern Sea Route (NSR) with Suez Channel Route (SCR) and TSR or other routes of the Belt part of BRI from/to South Korea (Moon et al., 2015; Zeng et al., 2020).

However, when comparing alternative transport modes, only a few authors go beyond just comparing the Belt and Road part of BRI by including air cargo (Seo et al., 2017; Dunmore et al., 2019; Kundu and Shen, 2019) or road haulage (Rodemann and Templar, 2014). Furthermore, while almost all studies deal with transport costs or freight rates solemnly on container shipment level, they do not take different cargo values and/or service quality needs by shippers explicitly into consideration with the notable exception of recent works by Yang et al. (2018), Bucsky (2019), Dunmore et al. (2019), Lu et al. (2019), Kundu and Sheu (2019) or Zeng et al. (2020).

In contrast, this paper takes a shipper’s perspective on the modal choice to assess the competitiveness of rail freight with a wider range of alternative transport modes, where service quality attributes and cargo value are considered as a novel contribution from the previous studies. A comparative analysis with a trade-off model based on transit time and transport costs is developed to evaluate the market niche for Eurasian rail freight vis-a-vis the more established modes of transport, namely sea, air, and sea/air. In a scenario analysis, further cargo attributes influencing the modal choice are employed to further investigate for which cargo type Eurasian rail freight service is favorable. In this respect, this paper contributes to the knowledge base of Eurasian multimodal freight transport research studies by incorporating service quality and cargo value of Eurasian rail freight in the Belt and Road era.

The remainder of this paper is organised as follows. Section 2 presents a comprehensive overview of recent literature on Eurasian rail freight developments. In Section 3, service quality issues of Eurasian rail freight are highlighted to provide a basis for the comparative analysis in form of a trade-off model of transport costs and transit times compared with other modes of transport followed by a scenario analysis based on cargo type. The results of the trade-off model of transport costs and transit times and the scenario analysis based on cargo type demonstrate the market niche for Eurasian rail freight services thoroughly discussed in Section 4. Finally, Section 5 concludes with managerial implications and limitations of this study, and future research agendas are also proposed.

2. Background and Service Characteristics

In this section, we aim to presents an overview of the recent developments concerning Eurasian rail freight operations based on literature available in English, Russian and Chinese language.
and complemented by interviews with main players being active on this market. First, a detailed geographic overview of the two major routes and three corridors on the Belt between China and Europe will be introduced. Following a review of the Eurasian rail freight services in terms of its current routing development, types of goods transported, market players, bottlenecks in operations, and the hot-debated governmental subsidy issue. These service characteristics of Eurasian rail freight will provide a basis for us to construct the comparative and scenario analysis in this study.

2.1 Eurasian Rail Freight Transport in the Belt and Road Era

The Belt part of BRI connects cities in Europe with Russian Far East and China by railway lines running through East Asia, Central Asia, Southern Russia, Eastern Mediterranean, Arabian Peninsula and Europe (Lin, 2011). Given that at least some parts of this Belt follow the same track with the Ancient Silk Road, thus it is also called “New Silk Road” or “Modern Silk Road” (NDRC, 2015). The Belt includes two major rail land bridges between Europe and Asia as shown in Figure 2, namely:

- **The Trans-Siberian Railway** (TSR, or First Eurasian Land Bridge) served as the main land bridge between Russian Far East and Western Europe from the late 1960s until the early 1990s (Lilliopolou et al., 2005; Pieriegud, 2007). The TSR starts from the Russian Far East Pacific seaports Vladivostok and Nakhodka running west through Russian Federation to Moscow, and further reaches European countries such like Finland, Latvia and Poland through different rail routes (OSJD, 2019), at the east end, maritime links connecting the aforementioned Russian seaports with China, South Korea or Japan are also considered as a natural extension of the intermodal transport routes of this traditional Eurasian land bridge (Song et al, 2011; Song and Na, 2012; Tsuji, 2013; Moon et al., 2015; Zeng et al., 2020; Kim et al., 2020).

- **The New Eurasian Land Bridge** (NELB, or Second Eurasian Land Bridge) originally spans from the Pacific port of Lianyungang in China running through China, Kazakhstan, Russian Federation, Belarus to Rotterdam in the Netherlands (Islam et al., 2013; OSJD, 2019) with a variety of intermodal terminals as points of origin and destination in between.

![Figure 2: Route of the Trans-Siberian Railway (red) and the New Eurasian Land Bridge (green) Source:OSJD,2009](image)

The abovementioned TSR and NELB are the current two main routes connecting Asia to Europe (Sárvári and Széidovitz, 2016). Notably, these two major Eurasian land bridges consist of several train routings across various countries with individual branch lines that partially share
the same main line sections as well (Rodemann and Templar, 2014). They can be described as follows:

The Northern Corridor provides three alternative branch lines connecting China and Europe via TSR (Islam et al., 2013; Galushko, 2016; OSJD, 2019), namely:

- China – TSR via Alashankou/Dostik and transit through Kazakhstan (Kazakh route)
- China – TSR via Erenhot/Zamyn-Uud and transit through Mongolia (Mongolian route)
- China – TSR via Manzhouli/Zabaykalsk (Manchurian route)

Trains on this route start in China, head via one of the three border crossings for the TSR toward the west and enter European Union at Brest/Malaszewicze, Siemianovska/Svisloch, Kuznitsa/Bruzhi or (but to much less extent) via Slovakia, Hungary, Estonia, Latvia, Lithuania, Finland and/or the Russian exclave of Kaliningrad (van Leijen, 2018b; OSJD, 2019; UTLC, 2020). However, it is noted that the classic TSR line starting in Vladivostok or Nachodka is not considered in the BRI development strategy (Sárvári and Szeidovitz, 2016).

The Central Corridor provides an alternative east-west route through Kazakhstan and Russian Federation to connect China and Europe called NELB. Trains on this route cross the Chinese-Kazakh border at Alashankou/Dostik or Altynkol/Khorgos and usually run further west via railway lines south to the TSR towards the aforementioned border crossings to European Union. This route is the main target of the Belt in the BRI (Sárvári and Szeidovitz, 2016).

Meanwhile, it is worth mentioning that there is the **Southern Corridor** called the Trans-Caspian International Transport Route (TITR, http://titr.kz/en) upcoming which runs through Kazakhstan, the Caspian Sea, Azerbaijan and Georgia further to Turkey, Ukraine or European countries. However, this routing requires at least one ferry trip across the Caspian Sea and transcends the Caucasus towards the Black Sea or Turkey to reach Europe and these multiple border crossings, ferry trips, and current geopolitical issues in the Caucasus region make it rather unattractive (Sárvári and Szeidovitz, 2016; Bucsky, 2019).

2.2. Service Characteristics of Eurasian Rail Freight

In March 2011, China launched the China Railway Express (CR Express) freight service to enhance connectivity with markets in Central Asia and Europe along the Belt of BRI (Luo, 2017; Jiang et al., 2018). Originating from different parts of China, these container block trains have different routings: trains starting in the western and central part of China, namely Urumqi, Chongqing, Chengdu, Wuhan or Xi’an go via Alashankou or Altynkol to Europe, whereas trains from the east coastal and northern region such as Putian, Shengyang, Suzhou, or Zhengzhou tend to leave China via Manzhouli or Erenhot and follow the TSR to Europe (Luo, 2017; OSJD, 2019; CRCT, 2019).

Following OSJD (2019), Zhang (2019) and Bucsky (2019) most of the traffic goes along the Kazakh route. Here, the joint-stock company United Transport and Logistics Company – Eurasian Rail Alliance (UTLC) is regarded as the domain player offering services for transportation of containers by regular container block trains between China and Europe through the transit countries of Kazakhstan, Russian Federation and Belarus (UTLC, 2020).

By the end of 2018, CR Express run 65 dedicated block train lines connecting 56 Chinese cities with 49 cities in 15 European countries (China Railway Supply Chain & Logistics, 2019). The
main intermodal terminals on the European side were Malaszewicze, Warsaw, Duisburg or Hamburg, with some dedicated block trains also end at Budapest, Klaipeda, Lodz, London, Madrid, Muuga, Nuremberg, Pardubice, Riga, Rotterdam, Schwarzheide or Tilburg (CRCT, 2019; OSJD, 2019; Pomfret, 2019). New lanes with many more new origins in China and destinations in Europe announced from time to time in media.

However, Eurasian rail freight service operations have some idiosyncratic features concerning types of goods transported, major market players engaged in block train operations and bottlenecks and heavy subsidization of freight rates that should be taken into consideration.

Types of goods transported
Currently, most of the goods transported on these Eurasian rail freight routes between China and Europe are mainly machinery and equipment, vehicles and spare parts, household appliances, food and beverages, garment and electronic products (Wang, 2017; Bucsky, 2019), see Table 1. The type of cargo transported by rail gradually shifted to higher value-added goods (Sárvári and Szeidovitz, 2016), whereas the types of cargo on the return trips from Europe to China are high-value machinery and equipment, vehicles and spare parts, as well as luxury goods, foods, and beverages.

<table>
<thead>
<tr>
<th>Cargo Value</th>
<th>Westbound (China - Europe)</th>
<th>Eastbound (Europe - China)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-value Goods</td>
<td>Machinery and equipment, vehicles and spare parts, electronic products</td>
<td>Machinery and equipment, vehicles and spare parts, luxury garment and leather goods</td>
</tr>
<tr>
<td>Low-value Goods</td>
<td>Luggage, stationery, handicrafts, garment, household appliance, coffee beans, tea, textiles, chemical products, flowers and trees</td>
<td>Wine, beer, milk, meat, olive oil, cosmetics, timber</td>
</tr>
</tbody>
</table>

Major market players engaged in Eurasian container block train operations
It is important to understand who the major players in this Eurasian container block train market are. Apart from the aforementioned CR Express and UTLC, container transports along these Eurasian rail freight corridors as shown in Section 2.1 comprise a variety of different market players due to the railway systems spanning multiple countries and operators, which forms a complex contractual network (Davydenko et al., 2012; UNECE, 2017; Jakóbowksi et al., 2018; Bucsky, 2019). Table 2 shows principle market players in Eurasian rail freight container transport as identified by Pieriegud (2007), Davydenko et al. (2012), and updated based on author’s desk research and interviews with main players in the Eurasian rail freight market.

<table>
<thead>
<tr>
<th>Market Player</th>
<th>Function</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Container operator</td>
<td>Container carrier, organise dedicated block trains or single container transports</td>
<td>InterRail Services, Russkaya Troyka, Hupac International Logistics, Far Eastern Transport Group (DVTG), Far East Land Bridge (FELB), China Railway Express (CR Express), Sino Railway, Hunan Xiang Ou Express Logistics*, Hao Logistics*, YuXinOu Logistics*, Yiwu CF Intl. Logistics*, HLT Intl. Logistics Ningbo (H&T), Wuhan Asia-Europe Logistics (WAE), etc.</td>
</tr>
<tr>
<td>National railway company</td>
<td>Provision of traction, infrastructure, wagons, tariff policy</td>
<td>Russian Railways (RZD), Belarussian Railways (BC), Kazakhstan Railways (KZH), Chinese Railways (KZD), Deutsche Bahn (DB), Polish State Railways (PKP), Latvian Railways (LDZ), Railcargo Austria</td>
</tr>
<tr>
<td>Affiliated company for container transport</td>
<td>Organise and operate intermodal transport on behalf of railways</td>
<td>DB Intermodal, TransContainer, KTZ Express*, United Transport & Logistics Company (UTLC), CRIntermodal, China Railway Container Transport (CRCT), Trans Eurasia Logistics (TEL), YuXinOu Logistics*</td>
</tr>
<tr>
<td>Container owners</td>
<td>Own containers for own transport and/or leasing; shipping companies, leasing companies</td>
<td>Maersk, Evergreen, Seaco, China Railway Express*, Far East Land Bridge (FELB), TransContainer, Far Eastern Transport Group (DVTG), Pantos Logistics, China Railway Container Transport (CRCT)*, etc.</td>
</tr>
<tr>
<td>Terminal operator</td>
<td>Handling of containers on behalf of container transport companies and container owners</td>
<td>Deutsche Umschlaggesellschaft Schiene-Straße (DUSS), TransContainer, Duisport*, Russian Railways (RZD), Far Eastern Transport Group (DVTG), CRIntermodal*, China Railway Container Transport (CRCT), PKP Cargo, KTZ Express*</td>
</tr>
<tr>
<td>Railway agency</td>
<td>Book transport on behalf of train operators</td>
<td>Kaztransservice, Transrail, Belintertrans*</td>
</tr>
<tr>
<td>Customs agents</td>
<td>Customs clearance on behalf of forwarders</td>
<td>Far Eastern Transport Group (DVTG), PKP Cargo, United Transport & Logistics Company (UTLC), TransContainer, Pantos Logistics*, Belintertrans*</td>
</tr>
</tbody>
</table>

Source: Pieriegud (2007), Davydenko et al., (2012), updates by the authors indicated with “*”

Heavy subsidisation of freight rates
To promote rail freight on the Belt and maintain normalised operation, operations of CR express under BRI are heavily subsidised (Bresharati et al., 2017; Qiwen and Xianliang, 2017; Jiang et al., 2018; Bucsky, 2019; Kundu and Sheu, 2019; Feng et al., 2020), varying from 1,000 to 7,000 USD per FEU (Wang, 2015; Jiang et al., 2018).

Provincial and local governments in China provide a various amount of subsidies to railway operators. The amount of subsidy will be granted based on the block train booking forecast submitted by the operators (Jiang et al., 2018) to cover the cost gap between rail and sea freight. For example, trains origins from inland cities such as Chongqing, Chengdu, Zhengzhou, and
Wuhan received higher subsidies with an average of 7,000 USD per FEU; Trains from coastal city Suzhou receive a lower subsidy of 1,000 USD per FEU (Jiang et al., 2018). Due to the imbalanced cargo volume, this subsidy even more heavily goes to covering the under-capacity running on the eastbound trip from Europe to China (Jiang et al., 2018; EUCCC, 2020).

Such subsidies may distort the freight market, since the freight rate of CR express service is often lower than its cost, and sometimes as low as sea freight rate (Chen et al., 2017; EUCCC, 2020). However, it is reported that the Chinese government plans to reduce the subsidy by 30 per cent in 2020, and abolish it entirely by 2022 (EUCCC, 2020).

Bottlenecks in Eurasian rail freight operations

Operating long-haul container block trains across multiple countries in a short time is not easy, as complex legal environment, technical limitations, physical constraints, capacity limits, and imbalanced cargo volumes post bottlenecks in Eurasian rail freight operations (Islam et al. 2013; InterRail, 2017; Besharati et al., 2017; Vinokurov et al., 2018; Jakóbowski et al., 2018). These bottlenecks are summarised in Table 3 along with improvements in the meantime.

<table>
<thead>
<tr>
<th>Bottlenecks Identified</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex legal environment</td>
<td>Differences in transport and customs law lead to arbitrary transport documentation and lengthy border crossing procedures (Kallas, 2012, Galushko, 2016, Jakóbowski et al., 2018; Zhu and Filimonov, 2018)</td>
</tr>
<tr>
<td></td>
<td>The International Rail Transport Committee (CIT) established a combined CIM-SMGS consignment note as a commonly accepted transport document along the Belt route (Galushko, 2016); The foundation of the Eurasian Customs Union (EACU) including the Russian Federation, Belarus, and Kazakhstan in 2010 eased transit through these countries and China joined the TIR Carnet transit framework in 2017 which allows end-to-end transit operations (UIBE and IRU, 2017).</td>
</tr>
<tr>
<td>Technical limitations</td>
<td>Lack of unified standardization (e.g. railway gauge) hinders the interoperability of railway systems (Galushko, 2016, Panova et al., 2018). The technical infrastructure of railways en route such as double track lines or electrification might hinder an uninterrupted transport (Liu, 2014).</td>
</tr>
<tr>
<td></td>
<td>The wide-spread use of intermodal containers ease these interoperability issues considerably - but it still takes about 2 to 21 hours to complete the trans-load for a container block train (UTLC, 2020).</td>
</tr>
<tr>
<td>Physical Constrains</td>
<td>Extreme weather condition with minus 40°C Celsius in Siberia can be a challenge for many sensitive goods (Woods, 2015)</td>
</tr>
<tr>
<td></td>
<td>Nowadays containers for such block trains are equipped with thermal insulation and active temperature control systems whenever necessary (InterRail, 2017; UTLC, 2020).</td>
</tr>
</tbody>
</table>
Capacity limits

In China, a block train can carry around 55 FEUs, on the TSR up to 75 FEUs, while in Europe, they are usually limited to max. 44 FEUs, and also all freight trains have to give priority to passenger trains (Jakóowski et al., 2018).

- Limit on the structure gauge. This also prevents to transport containers double-stacked to add on capacity due to limited clearance.

Imbalanced cargo volume

- The number of westbound block trains is about three times of the eastbound ones (InterRail, 2017; Besharati et al., 2017; Vinokurov et al., 2018, Jakóowski et al., 2018).

- A general trend towards a more balanced ratio of westbound and eastbound cargo volumes has been witnessed (Woods, 2015; InterRail, 2017). Since 2018, only block trains with more than 40 full containers are allowed to depart and are eligible for subsidies (van Leijen, 2018a).

Source: Authors’ own

3. Methodology

Employing a comparative analysis and a scenario analysis approach, the study is to examine the service quality of rail freight compared to the other current existing containerised transport solutions between China and Europe, namely sea, air, and sea/air transport modes. The sea/air concept is a multimodal transport of cargo by sea on its first leg followed by air which comes along with “half the time half the cost” (Raguraman and Chan, 1994). Moreover, the service quality of rail freight and modal choice from the shipper’s perspective are highlighted in this section to provide a basis for the comparative analysis in this study. A trade-off model based on transport cost and transit time and scenario analysis based on cargo value will be constructed based on transport costs and transit time, to compare the cost and time differences of sending a containerised shipment from China to Europe by sea, air, sea/air, or rail respectively.

3.1. Service Quality of Freight Transport

With the purpose to examine the service quality of rail freight with other alternative transport modes, it is important to understand the ‘service quality’ concept and provide definitions to clarify the research scope in this study. It is commonly agreed that service quality is characterised by customer's perception of service (Shaineshe and Mathur, 2000), so that it can be defined as “the difference between customer expectations of service and perceived service” (Shahin, 2006). Accordingly, when service quality is to be evaluated, the difference between the services that customers expect and the services perceived has to be examined.

To evaluate the service quality, the measurement method should be adopted to examine the difference between the services that customers expected and the services perceived. Measurement will be conducted to compare the changes in service quality, and also to identify the problems thus further improve service delivery (Shahin, 2006).
There are an array of factors and determinants to measure service quality (Prasad and Shekhar, 2010). The most commonly used metrics for measurement of service quality is called SERVQUAL, firstly proposed by Parasuraman et al., 1988). Five dimensions - tangibles, reliability, responsiveness, assurance, and empathy are used as basic instruments for service quality measurement to examine gaps between expectations and perceptions (Parasuraman et al., 1988; Zeithaml et al., 1990). Although the SERVQUAL instruments have been widely used and proven to be valid and reliable in different service contexts, they still need to be modified and adapted to reflect specific service settings (Prasad and Shekhar, 2010).

Based on the SERVQUAL metrics, RAILQUAL has been developed as a service quality scale to measure the rail service quality passenger transport with three additional dimensions - convenience, comfort, and connection - added to the basic five SERVQUAL metrics (Prasad and Shekhar, 2010).

However, the “RAILQUAL” metrics are used for measuring the quality of rail passenger service. This study focuses on examining the quality of rail freight service and very few published literature reports the use of SERVQUAL to assess the rail freight transport service.

To understand the service quality of freight transport, variables are identified by researchers in investigating shippers’ freight service decision choice between different transport modes. Matear and Gray (1993) applied principal components analysis to explore the underlying structure of the service choice decision for shippers and freight suppliers when choosing between sea and air modes of transport (see Table 4). Five principal components - carrier, route, timing, price characteristics, and control over other parties have been considered as important factors in the modal choice.

Table 4: Service attributes for service choice decision

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>Service Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier characteristics</td>
<td>Arrival time; Fast response to problems; Handle special requirements and urgent deliveries; Good relationship with carriers.</td>
</tr>
<tr>
<td>Route characteristics</td>
<td>Proximity to origin and destination; Optimised route choice.</td>
</tr>
<tr>
<td>Timing characteristics</td>
<td>High service frequency; On-time collection and delivery; Short transit time;</td>
</tr>
<tr>
<td>Price characteristics</td>
<td>Low price; Value for money price; Special offer or discounts.</td>
</tr>
<tr>
<td>Control over other parties</td>
<td>Transport preference of trading partner; Documentation completed carrier.</td>
</tr>
</tbody>
</table>

Source: Adapted from Matear and Gray (1993)

Among these five principal components, Matear and Gray (1993) pointed out that frequency, reliability (i.e. punctuality concerning the time of arrival) and capacity (i.e. the availability of freight space) are the most important ones. Later on, Rodemann and Templar (2014), as well as Seo et al. (2017) confirmed that transport cost, transit time, as well as transit time reliability are the major modal choice decision criteria concerning goods transports between China and Europe.

3.2 Data Collection
Quantitative data obtained in this study includes quotes of transport, transit time, the distance of each route for each mode on each route (see Table 5). To maintain the integrity and reliability of the data collection process, freight rates for rail, sea, air and sea/air were requested from
major container operators or forwarders in Austria, Germany, China, and Kazakhstan. Additionally, average freight rates for sea and air were retrieved from Freightos (http://www.freightos.com) and SeaRates (http://www.searates.com) as well as cross-checked with secondary data provided by Chen et al. (2017), Jiang et al. (2018), Dunmore et al. (2019) and Drewry Shipping Consultants (https://www.drewry.co.uk/). Both freight rates and transit times presented are averages based on a sample of quotations for each transport leg.

Table 5: Data collection summary

<table>
<thead>
<tr>
<th>Data Collected</th>
<th>Data Type</th>
<th>Source</th>
<th>Collection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>FEU FCL freight rate for all possible routes from Asia to Europe, Transit time along major corridors</td>
<td>European and Central Asian block train operators Chinese and Central Asian rail freight forwarders Secondary data from literature</td>
<td>Online enquiry Site visits, Skype and face-to-face interview Secondary data collection</td>
</tr>
<tr>
<td>Sea</td>
<td>FEU FCL freight rate and transit time from China to Germany</td>
<td>Freightos.com SeaRates.com World Container Index (WCI) by Drewry</td>
<td>Online enquiry Secondary data collection</td>
</tr>
<tr>
<td>Air</td>
<td>Unit rate (per kg) and transit times from China to Germany</td>
<td>Freightos.com SeaRates.com East-West Air Price Index (API) by Drewry</td>
<td>Online enquiry Secondary data collection</td>
</tr>
<tr>
<td>Sea/Air</td>
<td>Unit rate (per kg) and transit times from China to Germany</td>
<td>European freight forwarder Sea/air freight operator</td>
<td>Quotes request with freight forwarder Secondary data collection</td>
</tr>
<tr>
<td>Distance</td>
<td>The separate distance of each transport leg and the total distance of each route</td>
<td>SeaRates.com Ecotransit.org</td>
<td>Online enquiry</td>
</tr>
</tbody>
</table>

Source: Authors’ own

Furthermore, a set of assumptions have been made to make the different modes comparable:

- Transport routes are all terminal-terminal intermodal, excluding local cartage service at both origin and destination. Accordingly, ancillary costs (i.e. fees for customs clearance, security checks, agency, insurance, document and container handling) are not included.
- Freight rate quotations for all modes of transport are for an FEU full container load (FCL) freight-all-kinds. The cargo transported in an FEU by sea and rail is assumed max. 20 tonnes, and for air and sea/air max. 10 tonnes. Concerning transport capacity, it is assumed that max. 45 FEU can be transported per block train, max. 3 FEU per airplane and 9,000 FEU or more per vessel by sea (Woods, 2015; Bucsky, 2019; Dunmore et al., 2019).
- Transit times stated were as indicated by the freight operators or forwarders. However, delays caused by congestions at intermodal terminals, border crossing points, documentation handling processes still occur regularly (Galushka, 2016).

It is noted as all the primary data from major container operators or forwarders in Austria, Germany, China, and Kazakhstan were collected during the period from 1st June to 31st July 2017. Due to commercial consideration, confidentiality, and protection of personal data, the
personal and company information in the data obtained were made anonymous in this study. Freight rate quotations and transit times stated may be subject to change due to the volatility of the freight rates in the marketplace. In this sense, the freight rates and transit times presented here reflect a “snapshot” of the current market situation and need to be considered in a more general context. However, the Eurasian Rail Alliance Index (http://index1520.com/) demonstrates well, that freight rates by sea and rail, in particular, did not fluctuate as much over time since 2017. The same is valid for air cargo freight rates, too, if we look on the TAC Index (https://www.tacindex.com) while abstracting from recurrent seasonality patterns.

4. Results

4.1 Comparative Analysis of Transport Costs and Transit Times
To build up a realistic and at the same challenging scenario, Shanghai in China and Hamburg in Germany were selected as the origin and destination points, as both cities have a seaport serving as a major container hub with direct connection on the China-Europe trade lane and are quite often used when it comes on freight rate benchmarking.

Table 6 summarises the transport costs and average transit times of shipping a single FCL shipment of one FEU from Shanghai to Hamburg for four modes of transport on a terminal-terminal basis for 2017 compared to figures raised by U.S. Chamber of Commerce (2006) with sea/air calculated separately based on historical freight quotations of that time available to the authors.

Table 6: Transport costs and transit times for different transport modes in 2006 and 2017

<table>
<thead>
<tr>
<th>Transport Mode</th>
<th>Year</th>
<th>Distance (km)</th>
<th>Transit Time (days)</th>
<th>Transport Cost (USD/FEU)</th>
<th>Cost/Distance (USD/km)</th>
<th>Transport Speed (km/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>2017</td>
<td>11,249</td>
<td>16</td>
<td>6,350</td>
<td>0.56</td>
<td>703.1</td>
</tr>
<tr>
<td>Rail</td>
<td>2006</td>
<td>-</td>
<td>47</td>
<td>8,450</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sea</td>
<td>2017</td>
<td>20,053</td>
<td>32</td>
<td>2,410</td>
<td>0.12</td>
<td>626.7</td>
</tr>
<tr>
<td>Sea</td>
<td>2006</td>
<td>-</td>
<td>30</td>
<td>2,740</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Air</td>
<td>2017</td>
<td>8,822</td>
<td>4</td>
<td>32,490</td>
<td>3.68</td>
<td>2,205.5</td>
</tr>
<tr>
<td>Air</td>
<td>2006</td>
<td>-</td>
<td>5</td>
<td>25,000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sea/Air</td>
<td>2017</td>
<td>16,008</td>
<td>19</td>
<td>16,650</td>
<td>1.04</td>
<td>842.5</td>
</tr>
<tr>
<td>Sea/Air</td>
<td>2006</td>
<td>-</td>
<td>19</td>
<td>22,600</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

By freight rate, the sea was and is still the cheapest option and air is very much higher than the other modes. Sea/air transport costs are around half of the air, whereas Eurasian rail freight is about 80% less costly than air and ranked next to the sea as the second cheapest option. In terms of transit time, which includes the actual time of transport plus time when a container is waiting at terminals or borders crossings for customs clearance or trans-loading gauge changes etc., air (3 to 5 days) is by far the fastest transport solution from China to Europe, and rail (14 to 16 days) or sea/air (18 to 20 days) are about half of the time than sea (usually 30 to 34 days, but could be much longer when a container is subject to transshipment en route).
Furthermore, these different modes of transport come along with different routing, so that the
distance of each mode travelled varies and cost per km is in line with the total transport cost of
each mode. In terms of average transport speed, sea/air (about 843 km/day) is faster than rail
(about 704 km/day), but due to its slower sea leg (about 627 km/day), the total transit time of
sea/air is still higher than Eurasian rail freight.

Finally, most striking is a significant shift of transit times in the past decade from 45-50 days
to 16 days on average with now only 1 or 2 days of variation due to different routing. At the
same time, transport costs decreased from 8,450 USD in 2006 to nowadays 6,350 USD for an
FEU from Shanghai to Hamburg. On some specific routes from inland China cities (i.e. Chong-
qing or Changsha) via Kazakhstan to Germany, these transport costs can be even lower with
around 3,700 to 4,500 USD due to subsidies granted by provincial and local governments in
China as discussed in Section 2.2.

4.2. Scenario Analysis Based on Cargo Type

In the previous section, it has been discovered that rail comes along with much shorter transit
time than sea and much lower cost than air which qualifies it to be an alternative mode of
transport to fit into the market niche of shipping high-value and time-sensitive goods. But goods
transported by Eurasian rail freight cover a much wider range of cargo from high-value goods
such as luxury products, machinery, equipment, vehicles and spare parts, and time-sensitive
goods such as food and beverage, to general commodities such as textiles and chemical products
as shown in Section 2.2.

Goods are considered to be time-sensitive when they are subject to depreciation and uncertain
demand due to “inventory holding costs, perishability, rapid technological obsolescence, and un-
certain demand” (Hummels, 2007; Hummels and Schaur, 2013). Furthermore, inventory hold-
ing costs include the capital cost of the goods in transit, cost of buffer stock at the destination
warehouse to accommodate variation in arrival time. In addition to this, depreciation costs in-
clude spoilage of perishable goods or rapid technological obsolescence. Hence, the time of
goods spend in transit will impose a combination of inventory holding and depreciation costs
on consumers.

Moreover, Hummels and Schaur (2013) defined the estimated value of time per day transit time
which depends mainly on the value of cargo and expressed these time costs in tariff equivalents
by calculating the estimated value of one day saved in transit for each product. To reflect how
much consumer’s value of timely delivery for the full range of product categories being traded
and shipped, it was estimated that each day of goods in transit is equivalent to a tariff of about
1% per day levied on the value of cargo for most goods employing trade and shipping data from
U.S. imports of merchandise database. This estimation varies over the type of goods, as bulk
products and raw materials are less time-sensitive than complex manufactures and perishable
goods are subject to rapid depreciation, such as fresh fruit and vegetables (Hummels, 2007). As
the daily depreciation rate of goods with high time sensitivity and high value can be as high as
about 2%, one day in transit translates into a tariff equivalent of 2%.

When combining these findings with transit times and transport cost figures as shown in Table
4, estimated values of time per day in transit and value to weight ratios can now be employed
for scenario analysis to include time sensitivity and value of cargo transported. Then the value
of time in transit (defined as a combination of inventory holding and depreciation cost) allows
assessing the relations between transport costs, transit time and total logistics costs for goods
of high versus low time sensitivity between different modes of transport. Or more strictly defined:

- Inventory holding and depreciation costs are incorporated in the form of a tariff equivalent as a proxy. In line with the estimations of Hummels and Schaur (2013), this tariff equivalent is set to 1% per day of cargo value for goods with lower time sensitivity, and 2% per day for goods with higher time sensitivity.
- Calculation of total logistics costs only include the direct transport costs and indirect inventory holding and depreciation costs during the transit expressed in this tariff equivalent.
- An average shipment is assumed to be 10 tons per FEU, so that cargo value expressed in USD per kg can be easily calculated and compared over all four modes of transport.

Results of the scenario analysis are shown in Figure 3 and can be summarised as follows: Whenever goods shipped have a low time sensitivity, and value to weight ratio is around 2.55 USD/kg, rail is almost equal to sea and after around 21.78 USD/kg, air gets cheaper than rail. If goods shipped have a high time sensitivity, rail is already cheaper than sea for cargo values of higher than 1.23 USD/kg and air is then cheaper when cargo value is higher than 10.89 USD/kg. Hence, in both scenarios, sea is the cheapest mode of transport when cargo value is low. Then rail fits into the niche and becomes the cheaper solution for cargo values ranging from relatively low value to average and high-value goods with sea/air always coming along with higher total logistics costs.

To put these results in a better context, EUROSTAT COMEXT Dataset DS-043327 can be employed to get further insights about shipments running between China (including Hong Kong and Macao) and European Union (EU), classified according to Harmonized System (HS). In 2018, a wide range of goods was exported from China to EU with a value to weight ratio of around 0.41 USD/kg (HS Chapter 25-27: mineral products) to 338.90 USD/kg (HS Chapter 97-99: works of art, collector pieces and antiques) and imports to EU average 7.26 USD/kg (see Table 7). Goods exported from EU to China came along with a value to weight ratio of 5.65 USD/kg on average and range from 0.34 USD/kg (HS Chapter 44-46: wood and articles of wood) to 4,412.56 USD/kg (HS Chapter 71: jewelry, etc.) in 2018.
Table 7: Average value to weight ratios in USD/kg by mode of transport in 2018

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Sea</th>
<th>Rail</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import (CIF) China to EU</td>
<td>7.26</td>
<td>4.95</td>
<td>11.04</td>
<td>80.83</td>
</tr>
<tr>
<td>Export (FOB) EU to China</td>
<td>5.65</td>
<td>2.04</td>
<td>13.01</td>
<td>117.43</td>
</tr>
<tr>
<td>Maximum Carrier Liability</td>
<td>-</td>
<td>3.54</td>
<td>24.07</td>
<td>31.15</td>
</tr>
</tbody>
</table>

Source: EUROSTAT COMEXT Dataset DS-043327, own calculations

Furthermore, it is important to note that according to applicable transport law and/or general terms of conditions, carriers on all transport modes have certain liability limits for loss or damage of goods being transported. For example, air carrier liability is limited to about max. 31.15 USD/kg (22 SDR/kg following to Montreal Convention of 1999 or IATA Resolution 660a effective 28 December 2019), in rail freight it is max. 24.07 USD/kg (17 SDR/kg according to CIM of 1999 and SMGS of 2015 with no limitation other than the value of cargo) and in sea freight usually max. 3.54 USD/kg (2.5 SDR/kg in Hague-Visby Rules of 1968, see e.g. https://www.ivt-int.org/en/basics/). This, in turn, gives a strong indication, which goods are prone to be transported by sea, air, and rail: low-value goods by sea, high-value goods by air and rail is (again) in between and value of cargo within the liability limits of the respective carriers on average (see Table 7).

Focusing on rail mode of transport only, we get a value to weight ratio of shipments between 0.13 USD/kg (HS Chapter 44-46: wood and articles thereof) and 292.82 USD/kg (HS Chapter 97-99: works of art, collector pieces and antiques) with an average of 11.04 USD/kg in 2018. However, 42.79% of all westbound rail traffic by weight from China to EU in 2018 is dominated by machinery and equipment with a value to weight ratio of 14.66 USD/kg (see Table 8). Eastbound traffic to China consists mainly of vehicles and spare parts, machinery and equipment followed by some low value, but heavyweight products (see Table 8).

Table 8: Top 5 of goods transported by rail between China and EU in 2018

<table>
<thead>
<tr>
<th>Imports (FOB) China to EU</th>
<th>%</th>
<th>USD/kg</th>
<th>Exports (CIF) EU to China</th>
<th>%</th>
<th>USD/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Chapter 84-85: Machinery and equipment</td>
<td>42.79</td>
<td>14.66</td>
<td>HS Chapter 86-89: Vehicles and spare parts</td>
<td>27.88</td>
<td>21.47</td>
</tr>
<tr>
<td>HS Chapter 72-83: Base metals and articles</td>
<td>13.79</td>
<td>3.19</td>
<td>HS Chapter 84-85: Machinery and equipment</td>
<td>13.83</td>
<td>21.08</td>
</tr>
<tr>
<td>HS Chapter 94-96: Miscellaneous manufactures</td>
<td>7.57</td>
<td>7.08</td>
<td>HS Chapter 44-46: Wood and articles thereof</td>
<td>13.67</td>
<td>0.13</td>
</tr>
<tr>
<td>HS Chapter 50-63: Textiles and textiles articles</td>
<td>6.72</td>
<td>9.62</td>
<td>HS Chapter 72-83: Base metals and articles</td>
<td>12.92</td>
<td>4.00</td>
</tr>
<tr>
<td>HS Chapter 86-89: Vehicles and spare parts</td>
<td>5.80</td>
<td>8.62</td>
<td>HS Chapter 47-49: Pulp of wood and articles</td>
<td>11.19</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Source: EUROSTAT COMEXT Dataset DS-043327, own calculations

Cargo value is not the only way to explain the market niche of Eurasian rail freight as the modal choice depends on time sensitivity, too. Based on the above findings, the preferred modal choice from a shipper’s point of view can be split in 2x2 scenarios (see Figure 4) as follows:
Scenario I: High-value cargo with high time sensitivity: Whenever cargo value is above 12 USD/kg (i.e. 120,000 USD per FEU), it can be generally considered as high-valued (U.S. Chamber of Commerce, 2006). This is especially true for equipment, spare parts, and electronic products among the goods of HS Chapter 84-89, which may require frequent weekly replenishment. In this scenario, air with the shortest transit time of less than one week and most of the time the lowest total logistics costs is the most favourable solution. However, whenever special space and weight limitations or restrictions on the transport of dangerous goods and lithium batteries occur for air, rail with less restriction on cargo type and much larger capacity available might be an alternative solution at least in some cases.

Scenario II: High-value cargo with low time sensitivity: High-value cargo with low time sensitivity can be luxury garments and leather goods. In this scenario, rail with about two weeks transit time can cover a wide range of goods from 2.46 USD/kg to 21.48 USD/kg with the lowest total logistics costs in comparison to all other modes of transport.

Scenario III: Low-value cargo with high time sensitivity: When the average cargo value is around 6 USD/kg (i.e. 60,000 USD per FEU) or less, this can be considered as low-value cargo. In this scenario, for goods with short lead-time demand (e.g. high-fashion apparel, electronic products), rail continues to be the favourable option with half of the transit time than sea and much lower transport cost and larger capacity than air. Rail is able to provide the cheapest total logistics cost for a range from 1.23 USD/kg to 10.89 USD/kg.

Scenario IV: Low-value cargo with low time sensitivity: For the majority share of transport goods with low-value of less than 2.46 USD/kg, sea with by the far largest shipping capacity available is the cheapest solution closely followed by rail.
5. Conclusions

This study examined the service quality of Eurasian rail freight based on transit times and transport costs, and scenario analysis with a special focus on cargo type and associated total logistics costs have been used to identify its market niche from a shipper’s point of view. Taking the transport of an FEU from Shanghai to Hamburg as an example, we found that present Eurasian rail freight service fits into the sweet spot between sea and air. Eurasian rail freight is about 80% cheaper than air with only half of the transit time of conventional sea. Our scenario analysis further suggests that when shipping time-sensitive goods with cargo values ranging from 1.23 USD/kg to 10.78 USD/kg, rail is cheaper than all other modes of transport and much faster than sea - the same is valid for goods with lower time sensitivity ranging from 2.46 USD/kg to 21.78 USD/kg.

5.1. Managerial Implications

Moreover, some practical recommendations on the way forward for Eurasian rail freight service development in the Belt and Road era should be noted. On a strategic level, high-level collaborations among the government of countries and railway stakeholders along the Belt of BRI are required to foster favourable legal and technical agreements to facilitating Eurasian rail freight operations. On an operational level, keep rail freight rates low to maintain competitiveness, optimise routing to lower transit times, target market to seize profit, improve public awareness to gain business are recommended for Eurasian rail freight operators to keep developing in this new Belt and Road era.

BRI is considered as a major enabler to the rapid development of Eurasian rail freight within the last decade and it can be regarded favourable in several ways:

Faster than sea and cheaper than air
In Section 4.1, a general comparison based on the costs and transit times among rail, sea, air and sea/air was conducted, which pointed out that Eurasian rail freight is about 80% cheaper than air with only half of the transit time of sea. Besides, a historical shift of its positioning in the market has also been captured - its transit time has significantly shortened from one month (or more) to only two weeks or even less. The driving force behind this significant improvement of its service in recent years can be traced back to two main factors. On one hand, BRI focuses on the Central Corridor rather than the traditional Northern Corridor, which helps to boost the domestic economy in the rural western part of China, as well as avoids dealing with Russian monopoly on the TSR. Therefore, new railway infrastructure projects and dedicated container block train services launched under BRI have greatly revived Eurasian rail freight. On the other hand, changes to global trading patterns and increasing demand for the speed to market also drive the development of intermodal logistics solutions both within Europe and along the New Silk Road (Davies, 2017).

Alternative to air for time-sensitive goods
Certainly, a pure transport cost comparison is not sufficient, as other costs occur during the transport process like inventory-holding and depreciation costs are worth taking into consideration. Therefore, in Section 4.2, they have been incorporated to compare the total logistics costs of rail, sea, air as well as sea/air where rail stands out as the most favourable transport solution when it comes on time-sensitive goods with a cargo value ranging from 1.23 USD/kg to 10.89 USD/kg. In the past, air used to be the only option when shipping high-value, time-sensitive goods. But as transit time shortened and transport service got more reliable, rail becomes a
perfect alternative for time-sensitive goods, especially for those with average cargo value not necessarily worth to be transported by air. Besides, rail freight with higher capacity than air can accommodate almost all kinds of containerised cargo, which again demonstrates higher service availability.

Alternative to sea for low-value goods
Again, our scenario analysis found that when shipping goods with low time sensitivity, rail would be the cheapest option for cargo ranging from 2.46 USD/kg to 21.78 USD/kg. Sea used to be the best option for low-value goods. However, present short-term flexibility tactics executed by liner shipping companies like slow steaming and re-routing of the vessel as well as blanking of sailings results in longer and less reliable transit times (Munim and Schramm, 2016; Finnsgård et al., 2018) and this cannot fulfil the requirement for today’s agile supply chains. In this case, rail with a speed advantage over sea can also cover a wide range of goods from low to high value. Instead of upgrading from sea to air (or sea/air), rail gives the customer a window of opportunity to meet deadlines without bearing the full expense of air.

Since the global economy continues to slow down, the world searches for new engines to drive trade growth, the BRI offers “a major development framework and opportunity for connectivity, international trade and economic development” (Davies, 2017). The momentum of Eurasian rail freight has already been witness to enhance connectivity and trade growth between China and Europe. Implications of this on supply chains can be summarised as follows:

Not competition, but another option
Our calculations in Section 4.1 demonstrate that Eurasian rail freight service is an emerging competitive solution - faster than sea and significantly cheaper than air. However, rather than being seen as a threat, it provides a potential alternative for companies that no longer like to consider air (or sea/air) as the only option when shipping high-value and/or more time-sensitive goods. This offers a cost-efficient option to tailor freight lead time relevant to production.

The value of short transit time
Matear and Gray (1993) suggested that when shipper and freight forwarders deciding on freight service choice, transit time is frequently considered as more important than a low freight rate. As shown in Section 4.2, a substantial amount of inventory holding and depreciation costs will add up to the total logistics costs during transport if the transit time of a shipment is too long. This is especially critical for perishable or time-sensitive goods with frequent changes in consumer preferences (U.S. Chamber of Commerce, 2006). Eurasian rail freight with shorter transit time than conventional sea and higher reliability can help shippers to reduce total logistics costs and gain more flexibility on cash flow and liquidity.

Bring agility to supply chains
Shorter and more reliable transit times give Eurasian rail freight advantage of higher accountability. On one hand, this will allow companies to have more control over their logistics operation and production forecasting; on the other hand, it will encourage companies to conduct “just-in-time” business practices with timely delivery to reduce production costs by minimising inventory (U.S. Chamber of Commerce, 2006). Besides, with more frequent scheduled container block trains and adding more terminals of origin and destination, the Eurasian rail freight service can offer a variety of end-to-end routing options, which again gives shippers more flexibility than sea and air. Moreover, high reliability of service delivery and flexibility of service
availability will bring agility to the company’s supply chains, which potentially offer companies a chance to tailor-made their supply chains based on different product categories.

5.2 Research Limitations and Future Research Directions
Reflecting research process and findings, some limitations have to be remarked. First, this paper intends to examine the service quality of Eurasian rail freight and compares it with other modes of transport. By doing this, firstly it focused on two quantifiable attributes – transport costs and transit time. Of course, other important attributes contribute to service quality as well, such as transit time reliability, service availability, environmental impact, etc., which are much harder to quantify.

Secondly, given that the Eurasian rail freight market is still in its infancy state (Sárvári and Szeidovitz, 2016), rail freight quotes collected by the authors may not fully reflect long-term competitive freight rates that companies get in the markets, as freight quotes obtained e.g. from freight forwarders might be already being bundled with other value-adding services on top of bare costs of rail transport. Moreover, Eurasian rail freight operations under BRI are still heavily subsidised as discussed in Section 2.2, which may to some degree hide real costs of transport service provision. Besides this, the costs of local cartage service at both origin and destination as well as other ancillary costs were not included in our calculations.

In sum, this study does not intend to provide a price list for individual business decisions, however, it does offer guidance for assessing transport options available for shippers. Last but not least, much larger data samples, specific cost models and detailed market inquiry are required to get the full picture.

Accordingly, further research should investigate traffic volume on the different rail routes as shown in Section 2.1 to capture the Eurasian rail freight market landscape, thus identifying market demand for rail and providing recommendations for further route optimisation. However, present scarcity and opaqueness of statistics available to the public make it almost impossible to determine the impact of BRI to the full extent (Bucsky, 2019).

Another direction would be to collect more detailed data of freight costs and transit time which enables to compare total logistics cost of shipping goods from specific origins to destinations by rail, sea, air, and sea/air respectively.

Finally, some other key attributes of service quality briefly outlined in Section 3.1 such as transit time reliability or service availability not explicitly included here in our analysis could be assessed. However, to raise representative data in this respect needs a tight collaboration by major market players engaged in Eurasian container block train operations alike the Clean Cargo Working Group (https://www.clean-cargo.org/) in liner shipping as yet, no public data like detailed train schedules or geolocations of block trains is available at all.
Reference

UIBE and IRU (2017), "TIR and the facilitation of unimpeded trade for China", International Road Transport Union (IRU), Geneva.

Wang, Y. (2015), "Status, problems and suggestions on development of Sino-Europe block trains", China Transportation Review 37(S1), pp.70-75.

Yang, D., Pan, K., Wang, S. (2018a), "On service network improvement for shipping lines under the one belt one road initiative of China", Transportation Research Part E: Logistics and Transportation Review, 117, pp.82-95.
Yang, D., Jiang, L., Ng, A.K. (2018b), "One Belt one Road, but several routes: A case study of new emerging trade corridors connecting the Far East to Europe", *Transportation Research Part A: Policy and Practice* 117, pp.190-204.

Comparative Research on Eurasian Rail Freight

<table>
<thead>
<tr>
<th>Author</th>
<th>Transport Mode Studied</th>
<th>Route Scenario</th>
<th>Modal Choice Considerations</th>
<th>Cargo Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodemann and Templar (2004)</td>
<td>Rail, sea, road</td>
<td>Hamburg - Beijing, Duisburg - Lanzhou</td>
<td>Freight rate per FEU, transit time, general enablers and inhibitors</td>
<td>General high vs. low-value cargo</td>
</tr>
<tr>
<td>Besharati et al. (2017)</td>
<td>Rail, sea</td>
<td>Different block train origin-destinations</td>
<td>Freight rate per FEU, government subsidies</td>
<td>Export goods from EU that benefit from rail</td>
</tr>
<tr>
<td>Chen et al. (2017)</td>
<td>Rail, sea</td>
<td>Hefei - Hamburg</td>
<td>Freight rate per FEU, transit time, general mode characteristics</td>
<td>N/A</td>
</tr>
<tr>
<td>Seo et al. (2017)</td>
<td>Rail, sea, air</td>
<td>Chongqing – Rotterdam</td>
<td>Freight rate per FEU, transit time, and transit time reliability</td>
<td>Laptops as high-value good object of case study</td>
</tr>
<tr>
<td>Yang et al. (2017)</td>
<td>Rail, sea, sea/rail via Piraeus</td>
<td>China - Central and Eastern Europe</td>
<td>Transport cost of operator per TEU</td>
<td>N/A</td>
</tr>
<tr>
<td>Yang et al. (2018)</td>
<td>Rail, sea, sea/rail via Piraeus</td>
<td>China- Central and Eastern Europe</td>
<td>Freight rate per FEU, trip time and frequency</td>
<td>Cargo value, time sensitivity, fragility</td>
</tr>
<tr>
<td>Wiegmans and Janis (2018)</td>
<td>Rail, sea</td>
<td>Shanghai - Rotterdam</td>
<td>Operational, economic, environmental and social performance</td>
<td>N/A</td>
</tr>
<tr>
<td>Jiang et al. (2018)</td>
<td>Rail, sea</td>
<td>China – EU, different origin-destinations</td>
<td>Total freight costs per FEU, government subsidy, transit time</td>
<td>Scenarios of IT products vs. products of other shippers</td>
</tr>
<tr>
<td>Jiang et al. (2019)</td>
<td>Rail, sea</td>
<td>Chongqing/Shanghai – Hamburg</td>
<td>Freight rate per FEU, transit time</td>
<td>N/A</td>
</tr>
<tr>
<td>Wen et al. (2019)</td>
<td>Rail, sea</td>
<td>Nanjing/Shanghai - Hamburg</td>
<td>Costs, transit time, reliability, security, environmental impact</td>
<td></td>
</tr>
<tr>
<td>Bucsky (2019)</td>
<td>Rail, sea</td>
<td>China -EU</td>
<td>Freight rate per TEU, transit time</td>
<td>Value and weight per product group</td>
</tr>
<tr>
<td>Dunmore et al. (2019)</td>
<td>Rail, sea, air</td>
<td>China - EU</td>
<td>Transport price per unit, transport time</td>
<td>General high vs. low-value cargo</td>
</tr>
<tr>
<td>Lu et al. (2019)</td>
<td>Rail, sea</td>
<td>Beijing/Tianjin – Berlin/Rotterdam</td>
<td>Location of origin-destination, freight costs, time costs</td>
<td>Cargo value included in time cost consi-de-rations</td>
</tr>
<tr>
<td>Kundu and Sheu (2019)</td>
<td>Rail, sea</td>
<td>China – Germany/Hamburg</td>
<td>Freight rate per FEU, government subsidy, transit time, and mode reliability</td>
<td>High- vs low-value shippers with different preset service level preferences</td>
</tr>
<tr>
<td>Feng et al. (2019)</td>
<td>Rail, sea, air</td>
<td>Wuhan–Hamburg</td>
<td>Operating costs and freight rate per FEU, government subsidy, transport time</td>
<td>N/A</td>
</tr>
<tr>
<td>Song et al. (2011)</td>
<td>Sea/rail, sea</td>
<td>Korea / Japan / China – EU, different routes</td>
<td>Freight rate per FEU, transit time</td>
<td>N/A</td>
</tr>
<tr>
<td>Song and Na (2012)</td>
<td>Sea/rail, sea</td>
<td>Korea / Japan / China – EU, different routes</td>
<td>Freight rate per FEU, transit time</td>
<td>N/A</td>
</tr>
<tr>
<td>Tsuji (2013)</td>
<td>Sea/rail, sea</td>
<td>Busan – Moscow via different routes</td>
<td>Freight rate per FEU or TEU, transit time</td>
<td>N/A</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Mode</td>
<td>Origin & Destination</td>
<td>Description</td>
<td>Value of Shipper Preference</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Kim et al. (2020)</td>
<td>Sea/rail, sea</td>
<td>Korea – EU via TSR</td>
<td>Diverse set of strengths, weaknesses, threats, and opportunities</td>
<td>N/A</td>
</tr>
<tr>
<td>Moon et al. (2015)</td>
<td>Rail, sea/rail, sea (NSR, SCR)</td>
<td>Korea – EU via TSR</td>
<td>Transport distance, time, costs, service, safety, route, and mode awareness</td>
<td>N/A</td>
</tr>
<tr>
<td>Zeng et al. (2020)</td>
<td>Rail, sea (NSR, SCR)</td>
<td>Shanghai / Shenzhen / Dalian - Hamburg</td>
<td>Freight rate per FEU, transit time, safety, convenience, frequency</td>
<td>Value of shipper preference</td>
</tr>
</tbody>
</table>

Source: Authors’ own