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Abstract

Background: Acyl-CoA thioesterases are enzymes that hydrolyze acyl-CoAs to

the free fatty acid and coenzyme A (CoASH). These enzymes have been

identified in several cellular compartments and are thought to regulate

intracellular levels of acyl-CoAs, free fatty acids and CoASH. However, to date

no patients deficient in acyl-CoA thioesterases have been identified.

Design: Acyl-CoA thioesterase activity was measured in human skin fibroblasts.

Western blot analysis was used to determine Type-II acyl-CoA thioesterase

protein levels in patients.

Results: Activity was found in human fibroblasts with all saturated acyl-CoAs

from C4:0- to C18:0-CoA, with highest activity detected with lauroyl-CoA and

myristoyl-CoA (C12:0 and C14:0-CoA). An antibody that recognizes all isoforms

of Type-II acyl-CoA thioesterases, precipitated the majority of acyl-CoA

thioesterase activity in fibroblasts, showing that the major activity in fibroblasts

is catalyzed by Type-II thioesterases. Measurement of acyl-CoA thioesterase

activity from fibroblasts of 40 patients with putative fatty acid oxidation

disorders resulted in the identification of 3 patients with lowered Type-II acyl-

CoA thioesterase activity in fibroblasts. These patients also had lowered

expression of Type-II acyl-CoA thioesterase protein in fibroblasts as judged by

Western blot analysis.  However, mutation analysis failed to identify any

mutation in the coding sequences for the mitochondrial acyl-CoA thioesterase II

(MTE-II) or the cytosolic acyl-CoA thioesterase II (CTE-II).

Conclusions: We have described 3 patients with lowered Type-II acyl-CoA

thioesterase protein and activity in human skin fibroblasts, which is the first

description of patients with a putative defect in acyl-CoA thioesterases.
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Introduction

Acyl-CoA thioesterases (EC 3.1.2.2) are a group of enzymes that hydrolyze acyl-

CoA esters to the free fatty acid and coenzyme A (CoASH). The activity has been

localized to cellular compartments such as endoplasmic reticulum, cytosol,

mitochondria, and peroxisomes. Several different families of acyl-CoA

thioesterases have been identified and characterized in detail (for review see [1]).

These enzymes are thought to be mainly involved in controlling levels of CoA

esters, free fatty acids and coenzyme A (CoA) within different compartments in

the cell. It has now become evident that both free fatty acids and the CoA-esters

of fatty acids are important in regulating different cellular processes and cell

signaling. Cellular processes involving acyl-CoAs are degradation of fatty acids

via b-oxidation, allosteric regulation of several enzymes [2], activation of

pancreatic beta-cell KATP channels [3], agonists/antagonists for nuclear receptors

peroxisome proliferator-activated receptors (PPARs) [4-7] and Hepatic Nuclear

Factor 4 alpha (HNF-4a) [8], together with numerous other cellular processes

reviewed in [9].

Several evolutionary unrelated families of acyl-CoA thioesterases have now been

identified and functionally linked to lipid metabolism. One family of acyl-CoA

thioesterases identified in the 1980’s was named Type-II acyl-CoA thioesterases.

This enzyme activity was first identified in cytosol by Miyazawa et al [10] and

two isoforms of these enzymes were later cloned from rat [11-13]. Subsequent

work identified several isoforms of these enzymes in human and mouse, which

are generated from a single gene as a result of alternative exon usage [14, 15].

These gene products contain an alternative first exon, with the remaining eight
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exons being identical in each gene product, resulting in four different isoforms

with different amino-terminal ends. The resultant gene products are localized in

both cytosol and mitochondria, and possibly nucleus [14]. Expression of these

enzymes is remarkably high in brain and testis, and in human brain they account

for over 75% of the thioesterase activity found in this tissue [16]. In human brain,

these proteins are expressed in neurons e.g pyramidal cells in the cerebral cortex

and Purkinje cells in the cerebellum [14]. In developing mouse brain, Type-II

acyl-CoA thioesterases were shown to be expressed during embryogenesis in

association with neuronal differentiation [17] and in adult mouse brain, these

enzymes are exclusively localized to neurons [15]. The Type-II acyl-CoA

thioesterases have a broad substrate specificity, and can hydrolyze acyl-CoAs

from C6-C20-CoA, together with C18:1-CoA, C18:2-CoA and C20:4-CoA [10, 11,

13, 16, 18].

Tremendous progress has been made in recent years regarding identification of

defective enzymes in fatty acid oxidation (FAO) disorders. These are a group of

inherited diseases that result from defects in enzymes involved in either

mitochondrial or peroxisomal b-oxidation, or alternatively in transport proteins

in these organelles [19, 20]. However, no work has been carried out on

identification of possible deficiencies/defects in acyl-CoA thioesterases, despite

their activity and presence in mitochondria and peroxisomes. This study was

therefore undertaken to screen patients for possible defects in acyl-CoA

thioesterases.

Materials and methods
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Culture of fibroblasts

Primary skin fibroblasts were obtained from healthy control subjects and

patients with an apparent but unknown defect in mitochondrial fatty acid

oxidation as concluded from the finding of an abnormal pamitate loading test

[21], showing elevated palmitoyl-carnitine levels, whereas measurement of

candidate enzymes like carnitine/acylcarnitine translocase (CACT), carnitine

palmitoyl transferase II, and very-long-chain acyl-CoA dehydrogenase (VLCAD)

showed normal activities. Fibroblasts were cultured in HAM F-10 medium

(Gibco BRL) containing 10% fetal calf serum and 1% penicillin/streptomycin at

37°C in a humidified atmosphere in 5% CO2. Ethical permission is held for use of

patient fibroblasts in this study.

Measurement of acyl-CoA thioesterase activity

Fibroblasts were harvested, sonicated 3 X 10 sec in phosphate buffered saline

(PBS) and centrifuged for 1 min at 14,000 X g. The supernatant was used for

measurement of acyl-CoA thioesterase activity. The medium contained 200 mM

potassium chloride, 10 mM Hepes and 0.05 mM 5,5’-dithiobis(2-nitrobenzoic)

acid (DTNB), pH 7.4. The medium was pre-incubated with fibroblast

homogenate for 5 min at 37ºC. The reaction was started with addition of 50 mM

of acyl-CoA substrate. Measurements were carried out spectrophotometrically in

a Cobas Fara II Centrifugal Analyzer (Hoffmann – La Roche, Basel, Switzerland)

at 412 nm. An E412=13,600 M-1cm-1 was used to calculate the activity.

Fractionation of human skin fibroblasts
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Fibroblasts from healthy controls were washed in 0.5 ml ice-cold SEM buffer

(containing 250 mM sucrose, 1 mM EDTA and 5 mM MOPS, pH 7.4) and

resuspended in fresh SEM buffer (0.5 ml). Cells were lysed using an 8,020 cell

cracker (EMBL, Heidelberg) and an 8.008 mm f ball (6 mm gap). The cells were

passed through the cell cracker 6 times and centrifuged at 2,000 X g for 5 min at

4ºC. The pellet was resuspended in 0.5 ml SEM and the procedure repeated. The

supernatants were combined, 0.5 mM PMSF was added and the sample

incubated on ice for several minutes. The supernatant was loaded onto a

continuous Nycodenz density gradient and centrifuged at 19,000 X g for 2.5 h at

4°C. Fractions (0.5 ml) were collected and marker enzyme activities were

measured for catalase (peroxisomes) [22], lactate dehydrogenase (cytosol) [23]

and glutamate dehydrogenase (mitochondria) [24]. Acyl-CoA thioesterase

activity was measured as above, using 50 mM palmitoyl-CoA.

Digitonin treatment of human skin fibroblasts

A pilot experiment to determine the optimal digitonin concentration to separate

cytosol and pellet fractions in skin fibroblasts was carried out, and was

determined to be 100 mg/ml digitonin. Fibroblast pellets were resuspended in

SEM to approximately 1 mg/ml protein. 100 mg/ml digitonin was added to each

cell pellet, mixed and incubated on ice for 30 min. Cells were centrifuged at 5,000

X g at 4ºC for 2 min. The supernatant was removed and 4 ml of 10% Triton X-100

was added. The pellet was resuspended in 400 ml SEM buffer and 4 ml 10% triton

was added. Marker enzymes LDH and GDH, and acyl-CoA thioesterase activity

were measured as outlined above.
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Antibody preparation and Western blot analysis

A peptide was synthesized based on the amino acid sequence of the COOH-

terminal end of the rat cytosolic acyl-CoA thioesterase II (CTE-II) cDNA [11] -

CKAKRQGHTEPQP-OH (with a cysteine added at the amino-terminal end for

coupling of the peptide), which differs only in one amino acid from the human

sequence and will recognize all human isoforms of the Type-II gene family.

Fibroblast protein concentration was determined using bicinchoninic acid (BCA)

and measured at 562 nm using ELISA. 50 mg of fibroblast protein was separated

on a 10% SDS/PAGE gel and transferred to a nitrocellulose membrane using a

semi-dry blotting system (Amersham). Western blot analysis was carried out as

described [25], using the rat anti-CTE-II antibody.

Immunoprecipitation using an antibody to Type-II acyl-CoA thioesterases

An experiment was carried out to determine the optimum concentration of anti-

CTE-II antibody required for immunoprecipitation of Type-II acyl-CoA

thioesterase activity in skin fibroblasts. Various volumes (5, 10, 20 and 40 ml) of

the affinity purified anti-Type-II antibody were incubated overnight in an orbital

shaker at 4ºC in 0.1% Triton X-100/PBS, together with Protein A Sepharose beads

(Sigma Corp).  A control reaction was carried out using pre-immune serum in

place of anti-CTE-II antibody. Fibroblast suspensions were incubated with

Protein A Sepharose/anti-CTE-II antibody for 2 h at 4°C. The samples were

centrifuged at 14,000 X g for 1 min at 4°C and acyl-CoA thioesterase activity was

determined in the supernatant.
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Ten ml of antibody was sufficient to precipitate the Type-II acyl-CoA thioesterase

activity. Both control and fibroblasts from patient No. 3 and No. 5 were

immunoprecipitated with 10 ml antibody and acyl-CoA thioesterase activity

determined.

Results

Acyl-CoA thioesterase activity in human skin fibroblasts

Acyl-CoA thioesterase activity was determined in fibroblast homogenates using

butyryl-CoA (C4:0), hexanoyl-CoA (C6:0), octanoyl-CoA (C8:0), decanoyl-CoA

(C10:0), lauroyl-CoA (C12:0), myristoyl-CoA (C14:0), palmitoyl-CoA (C16:0) and

stearoyl-CoA (C18:0). Fibroblasts showed acyl-CoA thioesterase activity with all

tested acyl-CoAs, however, the activity with short chain acyl-CoAs was

considerably lower than with medium or long-chain acyl-CoAs. Maximum

activity was measurable with myristoyl-CoA and palmitoyl-CoA (C14:0-CoA

and C16:0-CoA respectively) (Fig. 1).

To determine which cellular compartment contains the majority of acyl-CoA

thioesterase activity, human skin fibroblasts were fractionated and marker

enzymes for cytosol (lactate dehydrogenase - LDH), mitochondria (glutamate

dehydrogenase - GDH) and peroxisomes (catalase) were measured (Fig 2A-C).

LDH was found mainly in fractions 10-20 representing cytosol, whereas GDH

was mainly detected in fractions 7 and 8, representing mitochondrial-enriched

fractions. Two peaks of catalase were identified in fractions 4-8 (peroxisomes)
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and also in fractions 14-18 containing cytosol. Acyl-CoA thioesterase activity was

measured in the fractions using C16:0-CoA as substrate (Fig. 2D). The majority of

acyl-CoA thioesterase activity was found in the cytosolic fractions (fractions 15-

20), with some detectable activity in fractions 7 and 8 containing mitochondrial-

enriched fractions.

The major acyl-CoA thioesterase activity in fibroblasts is catalyzed by Type-II

acyl-CoA thioesterases

Type-II acyl-CoA thioesterases have been shown to hydrolyze a broad range of

acyl-CoAs, ranging from C6:0–C20:0-CoA [11-13, 15, 16]. This pattern was in line

with the thioesterase activity identified in fibroblasts. In order to determine if the

thioesterase activity in fibroblasts is due to the Type-II enzymes,

immunoprecipitation experiments were carried out using an antibody to the rat

CTE-II [11], which will recognize all human isoforms of the Type-II enzymes [14].

Immunoprecipitation with this antibody resulted in precipitation of almost all

acyl-CoA thioesterase activity in fibroblasts with C8:0-CoA, C12:0-CoA and

C14:0-CoA (Fig 3). However the butyryl-CoA (C4:0-CoA) activity, although

extremely low, was not precipitated even at the highest antibody concentration

(data not shown), suggesting that this activity is catalyzed by another short-chain

acyl-CoA thioesterase.

Detection of patients with lowered Type-II thioesterase activity and protein.

Approximately 40 patient cell lines were selected based on abnormal palmitoyl-

carnitine levels following palmitate-loading test [21]. Initial screening was
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carried out using frozen pellets of fibroblasts from these patients. From this

screening, 5 patient cell lines appeared to have lowered acyl-CoA thioesterase

activity with substrates ranging from C6:0-C18:0-CoA. These cell lines were then

cultured to obtain fresh fibroblasts for further experiments.

Western blot analysis was carried out on total fibroblast homogenates from these

5 patients to examine Type-II acyl-CoA thioesterase protein levels. The Type-II

antibody recognized one major band at approx 40 kDa, which represents both

cytosolic and mitochondrial isoforms of these thioesterases [14]. Of the 5 patients

identified, only 3 of these patients (patients 1, 3 and 5) had lowered Type-II

protein levels (Fig. 4A). The same blot was stripped and re-probed with an

antibody generated to the mitochondrial short chain 3-hydroxyacyl-CoA

dehydrogenase (SCHAD) [26], showing that this protein was unaffected in the

patients. Quantitation of the protein levels relative to control showed that

patients 1 and 3 retained approximately 25-30% Type-II protein, however patient

5 retained only 10% of Type-II protein (Fig. 4B).

Acyl-CoA thioesterase activity was then measured in fibroblasts from patients 1,

3 and 5, using acyl-CoAs of C4:0-C18:0-CoA (Fig. 5). These patients retained

approximately 30% residual acyl-CoA thioesterase activity with substrates from

C6:0-C18:0-CoA, with patient 5 showing the lowest activity for all substrates

tested. To determine if the residual thioesterase activity in these patients was

catalyzed by Type-II thioesterases, immunoprecipitation was carried out on

fibroblasts from a healthy control and 2 patients (No. 3 and No. 5).

Immunoprecipitation with the Type-II antibody resulted in precipitation of all
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the residual acyl-CoA thioesterase activity in both patients’ fibroblasts with

C14:0-CoA (Fig. 6A), C12:0-CoA (Fig. 6B) and C8:0-CoA (Fig. 6C).

As the major isoforms of Type-II acyl-CoA thioesterases are expressed in both

cytosol and mitochondria, digitonin treatment of human skin fibroblasts was

carried out to determine if the lowered acyl-CoA thioesterase activity identified

in patients was confined to a particular cellular compartment. Marker enzymes

for cytosol (LDH) and mitochondria (GDH) showed that the supernatant

(containing cytosol) was relatively devoid of the mitochonrial enzyme GDH and

that the pellet fraction (containing organelles) was almost devoid of the cytosolic

marker LDH (Fig. 7A). Measurement of acyl-CoA thioesterase activity for

controls and patient No. 5 showed that this patient had lowered thioesterase

activity towards C8:0-CoA, C10:0-CoA and C12:0-CoA in the supernatant

(representing the cytosol) (Fig. 7B). However, this patient also showed lowered

acyl-CoA thioesterase activity towards C10:0-CoA and C12:0-CoA in the pellet

fraction (mainly representing mitochondrial activity) (Fig. 7C).

Genetic analysis of cDNA from patients with lowered acyl-CoA thioesterase

activity.

cDNA was isolated from patients 1, 3 and 5 and both the CTE-II and

mitochondrial acyl-CoA thioesterase II (MTE-II) cDNAs were fully sequenced.

However, sequencing analysis failed to identify any mutation in the coding

region (data not shown).

Discussion



13

Several different families of acyl-CoA thioesterases have been identified in a

variety of species. Although many of these enzymes have been characterized in

detail, patients with possible deficiencies in acyl-CoA thioesterases have yet to be

identified. One thioesterase that has been associated with neurodegenerative

diseases is the palmitoyl protein thioesterase 1 (PPT) (for review see [27]).

Mutations in PPT1, a lysosomal enzyme that removes fatty acyl groups from

cysteine residues in modified proteins, causes the fatal infantile neuronal ceroid

lipofuscinosis (INCL). In an effort to address the question regarding

identification of patients defective in acyl-CoA thioesterases, we carried out

screening of 40 patients with suspected fatty acid oxidation deficiencies. These

patients presented with symptoms of fatty acid oxidation disorders and loading

of fibroblasts with palmitate led to the finding of increased palmitoyl carnitine

levels, whereas candidate enzymes such as carnitine/acylcarnitine translocase

(CACT), carnitine palmitoyl transferase II (CPTII), and very long chain acyl-CoA

dehydrogenase (VLCAD), showed normal activities. We established a screening

method for acyl-CoA thioesterase activity in these patient fibroblasts using a

spectrophotometric method. Measurement of acyl-CoA thioesterase activity was

variable in frozen fibroblast pellets, and therefore the use of freshly cultured

fibroblasts was optimal. The major acyl-CoA thioesterase activity measurable in

human skin fibroblasts results from Type-II thioesterases, as seen by the

immunoprecipitation assay. This limits the use of enzymatic activity analysis in

screening for patients deficient in other families of acyl-CoA thioesterases, such

as Type-I acyl-CoA thioesterases [28, 29]. A further complication is the

overlapping substrate specificities for these families of acyl-CoA thioesterases, as

both these Type-I [18, 30] and Type-II families hydrolyze long chain acyl-CoAs
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[10, 11, 13, 16, 18] and the high level of Type-II acyl-CoA thioesterase activity in

fibroblasts may mask any Type-I thioesterase activity.

The specific functions of Type-II acyl-CoA thioesterases have not been

elucidated, but given their very high expression in brain and testis, it has been

hypothesized that they could be involved in steroidogenic processes. It has

previously been shown that over-expression of CTE-II does not result in any

change in phospholipids synthesis in cultured cells [11, 31], however this over-

expression appeared to be toxic to cultured cells [31]. Given that Type-II acyl-

CoA thioesterases show very high expression in human brain, it may be

hypothesized that lowered Type-II thioesterase protein may affect brain function.

Patient 5, who showed the lowest acyl-CoA thioesterase protein level, has a

neurological syndrome with marked neurological deterioration including

cerebellar dysplasia. Notably, the three patients retained some residual protein

expression and activity of Type-II acyl-CoA thioesterases, which shows that they

do not have a complete deficiency of Type-II activity. Western blot confirmed

that the size of the Type-II protein in patients is identical to that of healthy

controls, suggesting that there may be a defective translational regulation of

Type-II proteins in patients, or alternatively that a promotor mutation may exist

which may impair proper transcription.

In human, four different isoforms of Type-II thioesterases have been identified,

which are a result of alternative exon usage from the same gene on chromosome

1p36.2 [14]. These isoforms are expressed in cytosol, mitochondria and possibly

also nucleus. Mutation analysis on the coding sequence for CTE-II and MTE-II of
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the patients identified in this study failed to identify any mutations, however, a

promotor mutation would result in altered transcription levels of all isoforms of

Type-II thioesteraes encoded by a single gene. The digitonin experiments (Fig. 7B

and 7C) support this hypothesis as patient 5 had lowered acyl-CoA thioesterase

activity in both supernatant (cytosol) and pellet (mitochondria) fraction. Two

further isoforms of Type-II thioesterases, which can be encoded from the same

gene, contain an additional exon (exon X), which results in a premature stop

codon and a truncated protein. It was speculated that expression of isoforms

containing exon X-derived sequences may reflect pathological conditions,

however, this remains to be determined.

In conclusion, we undertook to identify the first patients with deficiencies in

acyl-CoA thioesterases. We have identified 3 patients with lowered Type-II acyl-

CoA thioesterase protein and activity, however we did not detect any mutations

in the coding region of the MTE-II or CTE-II. Further work is required in this

regard, which is currently underway.
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Figure legends:

Fig. 1: Measurement of acyl-CoA thioesterase activity in human skin

fibroblasts. Acyl-CoA thioesterase activity was measured in human skin

fibroblast homogenates using 50 mM of various acyl-CoA substrates. C4:0,

butyryl-CoA; C6:0, hexanoyl-CoA; C8:0, octanoyl-CoA; C10:0, decanoyl-CoA;

C12:0, lauroyl-CoA; C14:0, myristoyl-CoA; C16:0, palmitoyl-CoA; C18:0,

stearoyl-CoA.

Fig. 2: Fractionation of human skin fibroblasts. Human skin fibroblasts were

fractionated as described in Materials and methods. Marker enzymes for (A)

cytosol (lactate dehydrogenase - LDH) (B) mitochondria (glutamate

dehydrogenase - GDH) and (C) peroxisomes (catalase) were measured in each

fraction. (D) Acyl-CoA thioesterase activity was measured in each fraction using

50 mM palmitoyl-CoA (C16-CoA).

Fig. 3: Type-II acyl-CoA thioesterases are the major thioesterase enzymes in

human skin fibroblasts. Immunoprecipitation of acyl-CoA thioesterase activity

was carried out by incubating human skin fibroblast homogenate with either

pre-immune serum or an affinity-purified antibody to CTE-II. The remaining

acyl-CoA thioesterase activity was measured in the supernatant with various

acyl-CoA substrates. C4:0, butyryl-CoA; C8:0, octanoyl-CoA; C12:0, lauroyl-CoA;

C14:0, myristoyl-CoA.



17

Fig. 4: Identification of 3 patients with lowered Type-II acyl-CoA thioesterase

protein. (A) Western blot analysis was carried out on 50 mg of fibroblast

homogenate protein from 3 controls and 5 patients. The filter was incubated with

an affinity purified Type-II antibody. Mouse testis was used as a positive control.

The filter was stripped and re-probed with an antibody to short chain 3-

hydroxyacyl-CoA dehydrogenase (SCHAD). (B) Quantitation of Western blot

analysis for Type-II acyl-CoA thioesterases. The mean of three individual control

values was set to 100% and patient protein levels are expressed as % of control.

Fig. 5: Acyl-CoA thioesterase activity in patients. Acyl-CoA thioesterase activity

was measured in freshly grown human skin fibroblasts, using 50 mM acyl-CoAs

from C4:0-CoA to C18:0-CoA (see Fig. 1 for abbreviations). Control is shown as a

mean of 3 individual controls ± S. E. M. Activities were measured in three

different experiments and a representative experiment is shown.

Fig. 6. The residual acyl-CoA thioesterase activity in patients is catalyzed by

Type-II thioesterases. Immunoprecipitation of acyl-CoA thioesterase activity

was carried out by incubating human skin fibroblast homogenate from a healthy

control or patient No. 3 and No. 5 with either pre-immune serum or an affinity-

purified antibody to CTE-II. The remaining acyl-CoA thioesterase activity was

measured in the supernatant with (A) myristoyl-CoA (C14:0), (B) lauroyl-CoA

(C12:0) and (C) octanoyl-CoA (C8:0).
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Fig. 7: Digitonin treatment of human skin fibroblasts. Human skin fibroblasts

were treated with 100 mg/ml digitonin as described in Materials and methods.

(A) Lactate dehydrogenase (LDH - cytosol) and glutamate dehydrogenase (GDH

- mitochondria) activities were measured in the supernatant and pellet fractions.

(B) Acyl-CoA thioesterase activity was measured in both control and patient No.

5 supernatant fractions using C8:0, octanoyl-CoA; C10:0, decanoyl-CoA and

C12:0, lauroyl-CoA. (C) Acyl-CoA thioesterase activity was measured in both

control and patient No 5 pellet fractions using C10:0, decanoyl-CoA and C12:0,

lauroyl-CoA. Control values are mean of 2 individual controls ± range

(supernatant) and 3 individual controls ± S. E. M. (pellet).
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