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Abstract. The ability to identify the behavior of people in a home is at the core of Smart Home functionality.  Such 
environments are equipped with sensors that unobtrusively capture information about the occupants.  Reasoning mechanisms 
transform the technical, frequently noisy data of sensors into meaningful interpretations of occupant activities.  Time is a 
natural human way to reason about activities. Peoples‟ activities in the home often have an identifiable routine; activities take 
place at distinct times throughout the day and last for predicable lengths of time.  However, the inclusion of temporal 
information is still limited in the domain of activity recognition.  Evidence theory is gaining increasing interest in the field of 
activity recognition, and is suited to the incorporation of time related domain knowledge into the reasoning process. In this 
paper, an evidential reasoning framework that incorporates temporal knowledge is presented. We evaluate the effectiveness of 

the framework using a third party published smart home dataset.  An improvement in activity recognition of 70% is achieved 
when time patterns and activity durations are included in activity recognition.  We also compare our approach with Naïve 
Bayes classifier and J48 Decision Tree, with temporal evidence theory achieving higher accuracies than both classifiers.  

Keywords:  context reasoning, activity recognition, evidence theory, dempster-shafer theory, temporal, smart home dataset, 
time
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1. Introduction 

The ability to recognize and monitor the behavior 

of occupants is a core premise of smart 

environments. Sensors embedded in these 
environments yield data about the occupants‟ 

behavior. To recognize activities, a reasoning 

process uses the sensor data to infer which activities 

are „occurring‟ at a particular point in time.  This 

involves matching sensor data, or a translated 

meaningful form of sensor data, against a pre-

defined model of activities for the environment.  

Such models may be learned from training data via 

learning techniques [14], [27], hand crafted using 

rule-based or ontological approaches [15], or 

derived from a combination of both [33].  Once 

matched, an algorithm appropriate to the reasoning 
technique(s) selects the activities that are occurring. 

Making sense of data is a complex task. Sensors 

are imprecise, the data is noisy, with missing values 

if sensor failures occur [5]. Learning approaches 

have been widely used for reasoning with activity 
information, because of their ability to automate the 

creation of the activity model from training data and 

to handle noisy sensor data.  On the downside, 

training data can be difficult and costly to acquire 

[26].  Like learning techniques, evidence theory 

manages uncertain information. It also reduces the 

reliance on training data because it incorporates 

domain knowledge for evidential reasoning.  It is 

widely used in the fields of medical diagnosis, risk 

management, robotics, image processing, speech 

recognition and engineering fault diagnosis [24]. It 

is recently gaining attention in the smart 
environment and general pervasive computing 

domain [9], [36]. 



At present, the use of temporal information in the 

reasoning process for activity recognition is still 
limited. Time is a natural human reasoning tool that 

provides knowledge about activities. For example, 

home-based activities often have a clear time pattern 

across separate days, such as „breakfast‟ in the 

morning, „sleeping‟ at night, and so forth.  People‟s 

activities can have predictable time durations such 

as typical time taken for „preparing a meal‟ or 

„showering‟. Activities may also have a sequential 

pattern, occurring in a particular order.  

Incorporating such temporal knowledge into activity 

recognition should allow activities to be more easily 

differentiated from each other, thus boosting 
recognition capabilities. 

Evidence theory [25] provides a mathematical 

basis for determining belief in hypotheses (such as 

activities) by combining evidence from separate 

sources. Unlike machine learning techniques such as 

Bayesian schemes, it specifically quantifies and 

preserves uncertainty encountered in the inference 

process. Evidence theory provides a theoretically 

sound basis for incorporating domain knowledge, so 

it is suited to incorporating temporal knowledge into 

the activity recognition process. 
This paper makes three contributions: (1) The 

extension of evidence theory to include temporal 

features. As part of this, a temporal version of 

Dempster‟s rule of combination is presented. The 

temporal version of the rule fuses evidence that is 

spread over time, as opposed to co-occurring. (2) An 

evidential reasoning framework that can be used to 

infer activities from sensor data is presented.  In 

addition to the basic function of inferring activities 

from sensor evidence, the framework addresses a 

number of issues that can occur in evidential 

approaches, such as single sensor dominance. (3) 
We evaluate our framework using a widely-used 

third-party dataset: VanKasteren et al.'s home 

activity dataset [27], described in more detail in 

Section 4. The effectiveness of temporal extensions 

is evaluated.  Results are also compared to Naïve 

Bayes classifier and J45 Decision Tree, and to 

published activity recognition results [31, 32] from 

other researchers using the same third-party dataset.  

This paper is structured as follows: Section 2 

explains the framework, covering each of the 

evidential operations that are used to recognize 
activities from sensor data. Section 3 covers the 

general use of the framework with an explanatory 

worked example. Section 4 contains the evaluation 

of the framework, where temporal evidence theory 

is used to infer activities in a smart home dataset. 

Section 5 discusses related work in activity 
recognition. Summary and future work are presented 

in Section 6. 

2. Evidence Theory for Activity Recognition 

Evidence theory is a mathematical theory of 

evidence [25] which is used to combine separate 

pieces of information (evidence) to calculate the 

probability of an event. The basic premise of using 

evidence theory for activity recognition is as 

follows: Sensor readings are used as evidence of 

higher level states within an activity model. These 

states are fused to determine more complex and 

higher level states until the level of belief in the 
activities of interest is determined.  For a specific 

domain such as a smart home, the structure of the 

activity model must be known in order to support 

the distribution and fusion of evidence.   In section 

2.1, situation directed acyclic graphs (DAGs) are 

explained as a tool for documenting activity models.  

This is followed in Section 2.2 by a description of 

the evidential operations that are used in activity 

reasoning.  

 

2.1. Situation directed acyclic graphs  

The situation DAG documents inference 

knowledge:  the evidence sources used, how their 

evidence is fused, and the hierarchy of activities in 

the environment.  Looking at Fig 1, sensors are the 

root nodes at the base of the diagram.  At the next 

level up, sensor information is abstracted to one or 

more context values.  Context values are human 

understandable descriptions of sensor states that are 

useful in the reasoning process.  For example, a 

binary fridge door sensor may generate two context 

values of „fridge used‟ or „fridge not used‟.   Moving 

up the hierarchy, activities are inferred from one or 
more context values. Higher level activities may 

also be inferred from lower level activities. 

Uncertainty of inference rules is captured 

numerically as a number between 0 and 1 against the 

inference path.  For example, if the freezer is used 7 

out of 10 times in dinner preparation, the inference 

path from the freezer context value to the „preparing 

dinner „activity will be annotated with 0.7.   



 

 

Fig 1 Situation directed acyclic graph 



 
 

Fig 2 Sample Situation DAG 

If an activity is determined from a choice of lower 

level states, the “is a type of” notation is used.  For 

example, a „leave home‟ activity might be detected 

from either of two observed states:  „Front Door 

used‟ OR „No sensors in use‟. A sample situation 

DAG for two sensors and three office situations is 

shown in Fig 2.  The location sensor is discounted 

by 30%.  The keyboard sensor being active is 

„usually‟ indicative that the user is busy at their 

desk, with 80% certainty. 

2.1.1. Temporal features on situation DAGS 

 Evidence that accumulates over time is 

represented by a time period enclosed in '< >' 

brackets within the time-distributed situation node. 

This number indicates the typical duration of the 

activity. Where the actual sequence of evidence 

occurrence is also relevant, the duration is enclosed 

by '> >' brackets. The time at which an activity 

occurs, termed absolute time [32] is documented 

above the activity title between the „: :‟ symbols.  

This can be a semantic description such as 

„morning‟ or a numeric specification such as „10-11‟ 
(occurs between the hours of 10 and 11 each day).   

Looking at Fig 2, the „informal break‟ situation has 

a typical duration of 5 minutes and the „coffee 

break‟ situation occurs between 10 and 11 in the 

morning. 

2.2. Evidential Concepts in the framework 

Once the situation DAG is defined, evidential 

operations are used to propagate and fuse evidence 

from sensor readings through to activity level.  A 

variety of evidential operations from evidence 

theory are involved in this process. The core 

concepts of evidence theory are the frame of 
discernment, mass functions and Dempster‟s 

combination rule. These are briefly described. The 

new temporal extensions to evidence theory 

presented in this paper are then explained. 

Additional operations such as evidence propagation 

that are used in the evidence framework and that are 

taken from the existing body of research on 

evidence theory are also included.   

  

2.3. Core Concepts 

2.3.1. Frames of Discernment 

An evidence source (e.g. sensor) assigns belief 
across a possible set of choices or hypotheses (e.g. 

context values).  This combined set of  hypotheses 

{  is called the Frame of Discernment, 

. This frame  has a power set, , allowing 
evidence to be applied to single hypotheses and sets. 

2.3.2. Mass functions 

Mass functions are used to assign belief from a 

sensor across its context values (the frame of 

discernment for the sensor). Each belief assignment 

is a number between 0 and 1, and total belief 

assigned across the Frame must sum to 1.  Formally, 

mass functions for evidence sources must satisfy the 

following conditions 

 

                 (1) 

 

          (2) 

 

An evidence source can quantify its ignorance or 

uncertainty by assigning belief to the full set of 

hypotheses.  For example, a door sensor detects 

whether the door is open or closed.  The frame of 

discernment for the door sensor is 

{open,closed, } where  represents uncertainty, 
(open or closed).  If the sensor has  a known 

accuracy of 80%, and is firing as open, the mass 

function will assign 0.8 mass to „door open‟ and 0.2 

mass to : {0.8,0,0.2}. 

2.3.3. Dempster’s rule of combination.  

Where multiple evidence sources assign belief 

across the same frame of discernment, their 

evidence is fused in order to get a collective picture 



of the evidence. For example, if five kitchen-based 

sensors are used to detect the „preparing breakfast‟ 
activity, their evidence will be combined to 

determine the belief that the „preparing breakfast‟ 

activity is occurring.  Dempster‟s rule of 

combination is the defacto fusion rule in evidence 

theory.  It fuses the evidence in agreement, and 

normalizes out evidence that is in conflict. and 

 represent mass functions from two separate 

independent evidence sources.  The fusion of   

and   is calculated as: 
           

 

                                                                            

Where  is the fused belief for a hypothesis 
A.                                                                   (3)   

 

2.4.  New temporal evidence theory extensions 

In the evidence framework, our aim is to include 

time in the reasoning process. The hypothesis is that 

inclusion of temporal features in the evidence 

framework will improve the accuracy of activity 

recognition. Two temporal features are incorporated 

into the framework to enhance reasoning: (1) The 

fusion of time-distributed evidence for activities that 

have a time duration.  This is evidence that is not 
necessarily happening at the same time, such as the 

step-by-step triggering of various kitchen sensors 

when preparing a meal. (2) Using the absolute time 

at which an activity usually takes place. 

 

 

 
 

Fig 3 Transitory evidence for an enduring activity „preparing 
dinner‟ 

2.4.1. Time-Distributed evidence 

Existing approaches in evidence theory for smart 
homes assume that all evidence is co-occurring. For 

example, the sensors used to infer kitchen activities 

in the framework of [9] are fused as if they are all 

triggered at the same time.  In reality, evidence may 

be spread out over time, co-occurring or not, and in 

with no particular sequence as shown in Fig 3 and 

Fig 4.  Looking at Fig 3, a „preparing dinner‟ 

activity may typically endure for about 40 minutes, 

with indicative evidence of „grocery cupboard used‟, 

„fridge used‟ and so on. None of this evidence is 

necessarily occurring at the same time. The events 

may occur in any sequence, with no particular order 
expected.  Events may co-occur and/or occur 

separately, with gaps between events, such as the 

example shown in Fig 4.  The user opens the plate 

cupboard and fridge in the same sampling period, 

then uses the pans cupboard and freezer, then 

retrieves groceries.  Such evidence for a higher level 

state that does not endure for the full time duration 

of the state is termed transitory evidence.   

 

 
Fig 4Transitory evidence with some evidence co-occurring 

 

Activities with duration that are inferred from 

transitory evidence are documented on the situation 

DAG, denoted using the „<>‟ identifier under the 

activity name.  During the inference process, the 

occurrence of any evidence for that activity will 

trigger the start of that activity duration. Looking at 

the „preparing dinner‟ example in Fig 5 (based on 

the Fig 3 example), if any of the groceries cupboard, 
fridge, freezer, pans cupboard or plates cupboard 

sensors are fired, the reasoning system will „start‟ 

the dinner activity. The lifetime of the triggered 

sensor evidence for that activity will be extended to 

last for the activity duration stored for that activity.  

As inference continues over time, the lifetime of any 

further evidence for the activity will be extended for 

the duration that is left of the activity (activity 



duration less elapsed time).  Once the full duration 

of the activity is reached, the evidence will expire.  
 

 

 

Fig 5 Time extension of transitory evidence: „preparing dinner‟ 

 
By extending the lifetime of the evidence, at any 

point in time, the evidence sources can be fused as if 

they are co-occurring.   

Sensors that provide transitory evidence for more 

than one activity will trigger more than one activity 

to start.  For example, „preparing breakfast‟ and 

„preparing drink‟ are also inferred from the fridge 

sensor.  If this fires, the duration will kick off for 

„preparing diner‟, „preparing breakfast‟ and 

„preparing drink‟. The „fridge used‟ context value 

lifetime for each of the three activities will be 
separately extended for the lifetime of each of the 

three durations. That is, it will expire after 3 minutes 

as evidence of „preparing drink‟, after 15 minutes 

for „preparing breakfast‟ and after 40 minutes for 

„preparing dinner‟.  

If multiple simultaneous sensor events happen at 

the same time, where the events are evidential of 

different activities, the evidence is allocated to the 

relevant activity as per the situation DAG.  For 

example, if a toaster sensor activates in the kitchen 

in the same sampling period as a sensor in the 

bathroom, evidence will be allocated to the 
„preparing breakfast‟ and „showering‟ activities 

respectively. The interpretation of these activities as 

co-occurring or not will be environment specific. If, 

for example, there are multiple inhabitants of the 

house, both „breakfast‟ and „showering may be 

recognized as co-occurring as it is possible that two 

activities happening at the same time. In this case, a 

belief threshold may be used to filter situations,   

with situations that have belief levels exceeding the 

threshold as „occurring‟. In an environment where 

activities can only occur one at a time, as in the case 
of the smart home dataset used in our evaluation, the 

activity with the greatest evidence (highest belief) is 

deemed occurring.  

To use time extension of transitory evidence in 

the evidence framework, definition of mass and the 

fusion rule for masses from multiple sources require 

this time extension. Formally, a frame of 

discernment,  contains one or more hypotheses, h, 

of time duration tdur,.. Belief from evidence sources 

that provide transitory evidence are assigned a 

lifetime of the duration of the enduring hypothesis. 
If the hypothesis has already been detected by 

earlier evidence, the lifetime of the mass is the 

remainder trem.  of the duration, where remainder is 

calculated as hypothesis duration less elapsed time, 

tdur- telapsed. .  When mass is assigned to hypothesis, h, 

of time duration, tdur  at time t, the mass assigned to 

h at time t,  will continue to exist for the 

remaining time  of the hypothesis duration.  

This „extended‟ mass,  for hypothesis h 

that exists during the remaining duration of h is 

represented as: 

 

  (4) 

Where 

   

–                                    

 
To fuse extended mass, the combination rule is used.  

To fuse evidence for two extended masses for 

enduring hypothesis,  during their lifetime 

  , fuse the evidence at each point in time, t, as 

if they are co-occurring.   Dempster‟s combination 

rule for two transitory extended evidence sources for 

a hypothesis,   is: 

 

 

 

Where  

–                                   (5) 

 



2.4.2. Using absolute time 

Activities in the home often have an identifiable 
absolute time, such as taking breakfast in the 

morning, sleeping at night time.  Evidential 

reasoning can easily incorporate domain knowledge, 

so is suited to the inclusion of absolute time as part 

of the inference process. This can be done by 

treating „time‟ as a virtual evidence source with its 

own mass function. A virtual time will be included 

on the situation DAG and inferences rules used to 

connect the time context values to activities. This 

will be useful if there is some uncertainty involved 

such as „breakfast usually takes place in the 

morning”. If no uncertainty is included, absolute 
time can be used directly to filter the set of possible 

activities that can be occurring for a particular point 

in time t.   For example, if “preparing breakfast” 

„always‟ takes place in the morning, the activity will 

only be considered as possible to occur outside of 

the times defined as within „morning‟. 

2.5. Additional Evidence Concepts for activity 

recognition 

For the evidence framework, the following 

additional evidence operations are used to support 

activity recognition: evidence propagation, 
Murphy‟s alternative rule of combination, 

alternative evidence combination and sensor 

discounting. 

2.5.1. Evidence propagation 

Evidence propagation is used to transfer evidence 

from context values through to higher level activity 

beliefs. Compatibility relations [16] define maps 

between frames of discernment, by defining which 

hypotheses in the frames are true simultaneously. 

Evidence propagation, as used by [9], is then used to 

transfer evidence along compatible paths defined 

using compatibility relations.  For example, in the 
smart home dataset used for our evaluation, a 

bathroom door sensor has a frame of discernment 

{opened,closed, }. The opening of the 
bathroom door indicates the „showering‟ activity 

which is part of a frame of discernment 

{showering,¬showering, }. Bathroom door 
„opened‟ is compatible with „showering‟ (i.e. they 

are both true simultaneously) and so on for the 

remaining elements in both frames. The mass of 

belief for bathroom door „opened‟ is propagated as 

belief to the „showering‟ activity.  
 

2.5.2. Murphy’s Alternative Combination Rule  

Using Dempster‟s rule of combination, a single 
contradictory sensor can overrule other agreeing 

sensors [20]. If the conflicting sensor assigns all of 

its belief to a contradictory hypothesis, the evidence 

from the others sensors is lost. Binary sensors are 

particularly affected by this because such sensors 

tend to assign all belief to a single hypothesis (i.e. 0 

or 1).  To overcome this, Murphy proposed an 

alternative rule of combination [20].  Evidence is 

averaged prior to combining it using Dempster‟s 

rule of combination.  This eliminates the dominance 

of a single sensor.  Use of Murphy‟s combination 

rule will also eliminate Zadeh‟s paradox [35].  This 
is a well documented problem with Dempster‟s rule 

of combination whereby a minority opinion can be 

selected from conflicting evidence sources.  

 

2.5.3. Alternative evidence combination 

For scenarios where evidence sources are 

combined in an „OR‟ scenario, the highest belief 

from the evidence sources will be selected. For 

example, a „leave home‟ activity may be detected as 

„front door used‟ OR „all sensors inactive‟.  The 

belief of „leave home‟ will be the maximum belief 
assigned to either „front door opened‟ or „all sensors 

inactive‟.  Formal representation of this 

maximization approach is described in [8]. 

 

2.5.4. Sensor discounting 

Evidence theory uses a discount factor to weight 

evidence sources [25]. Discounting is useful when 

quality information about a sensor is available.  A 

sensor discount is applied as a weight between 0 and 

1. For example, a door sensor that is 80% reliable 

will have a discount of 0.8 applied to its evidence.  

When a sensor is discounted, the uncertainty of its 
evidence increases. The formal representation of 

sensor discounting is explained in [25]. The 

combination of static and dynamic quality 

information via sensor discounts is explained in 

more detail in [18] 

3. Applying the Evidential Framework to 

Activity Recognition 

To apply the evidential framework to real-life smart 

environments, we need to capture the activity model 

in a Situation DAG. Given a set of sensor readings, 



an activity will be inferred in the following steps: (1) 

calculating sensor mass functions; (2) propagating 
evidence to activities; (3) fusing multiple pieces of 

evidence; and (4) determining the occurring 

activities according to their belief scores. 
 To document the situation DAG, knowledge is 

needed about which sensors are used and how 

sensors map to activities via inference rules.  This 

knowledge can be obtained from domain knowledge 

of experts and users. Training data, if available, can 

also be used to supplement the knowledge.  Sensors 

and interpretation of sensor readings is the domain 

of experts.  User interviews or observation may be 

used to glean information about how activities are 
conducted, time patterns of activities and typical 

durations.  Uncertainty in inference rules can be 

defined when users identify uncertainty such as “I 

sometimes use frozen food for making dinner”.  This 

can be quantified informally, or limited amounts of 

training data if available can be used to quantify the 

uncertainty of the inference rule.  For example, in 

the evaluation of the framework, a third of the 

dataset is used to generate mass functions, and two 

thirds held back for training.   

 

3.1. Activity Recognition Worked Example 

Using the evidential operations described, a 

simple worked example is provided from the smart 

home dataset used in our evaluation. For each 

activity, a frame of discernment 

{activity,¬activity, } is defined.  Table 1 
shows two timeslices from the dataset, during which 

the occupant is preparing a drink.   The fridge and 

dup sensors are used to detect the „preparing drink‟ 

activity. The fridge sensor has a frame of 

discernment {FridgeUsed,¬FridgeUsed, } and 

the cup sensor {CupUsed,¬CupUsed, }. The 
occupant always uses the fridge and „usually‟ uses a 

cup, with 80% frequency of using the cup for a 

drink.    Typical duration of the „preparing drink‟ 

activity is three minutes (obtained from user 

interviews, observation or training data), with both 

fridge and cup as transitory evidence sources. The 

inference steps for each timeslice are as follows: 

 
 

 

 

Table 1 Sample timeslice evidence for „preparing drink‟ activity 

Timeslice Sensor events 
Preparing Drink 
Evidence 

 
9:49 

 
Fridge, Cup 

 
Fridge, Cup (0.8) 

 
9:50 Fridge Fridge, Cup (0.8) 

 

 

At a time of 9:49, the fridge and cup sensors fire.  

Both of these events are indicative of the „preparing 

drink‟ activity, which is not currently in progress. 

The elapsed time of drink is set to 1 minute (length 

of timeslice). 

 

Step 1: Use sensor mass functions to obtain 

context value beliefs. Both the fridge and cup 

sensors fired: 
 
{FridgeUsed=1, ¬FridgeUsed=0} 

{CupUsed=1, ¬CupUsed=0, =0} 

 

Step 2: Transfer belief from context values to 

activities.  The fridge and cup sensor evidence is 

propagated to the „preparing drink‟ frame using 

compatibility relations and evidence propagation: 

  
{FridgeUsed=1,¬FridgeUsed=0} 

{PrepDrink=1,¬PrepDrink=0} 

 

A cup is used with certainty of 0.8 when 

preparing a drink, with the remainder classified as 

uncertainty. 
 

{CupUsed = 1,¬CupUsed=0, =0} 

{PrepDrink=0.8,¬PrepDrink=0, =.2 } 

 

Step 3: Combine evidence using Murphy’s 

combination rule to obtain belief for the „preparing 

drink‟ frame. As Murphy‟s version of the 
combination rule is being used, the evidence is 

averaged prior to combining: 

 

{PrepDrink=0.9,¬PrepDrink=0, =0.1}  

 

Then, the averaged evidence is fused using 

Dempster‟s rule of combination, to obtain belief for 
the „preparing drink‟ frame of discernment at time 

9:49 as: 

 

{PrepDrink=0.99,¬PrepDrink=0, =0.01}  

 

 



At the next timeslice 9:50, the fridge sensor 

fires again.  

{FridgeUsed=1,¬FridgeUsed=0} 

{PrepDrink=1,¬PrepDrink=0} 

The cup sensor does not fire, but the cup 

context values from the previous timeslice are 
extended as they are within the 3 minute duration of 

the „preparing drink‟ activity.  The lifetime, , of  

the cup context values  is calculated as the 

„preparing drink‟ time duration (3 minutes) less the 

elapsed time of „preparing drink‟ (1 minute), as per 

equation (4): 

{CupUsed=1,¬CupUsed=0, =0} 

{PrepDrink=0.8,¬PrepDrink=0, =.2} 

 

Using the extended evidence of the cup and the 

fridge sensor, the evidence is fused using the 

temporal version of Dempster‟s combination rule in 
equation (5). Evidence is averaged prior to fusion as 

per Murphys‟ variation on the combination rule, 

resulting in belief at time 9:50 for „preparing drink‟ 

as  

{PrepDrink=0.99,¬PrepDrink=0, =0.01}  

 

This inference process is also conducted for all 

other activities in the smart space.  At time t, the 

activity with the highest belief is selected (assuming 

that only one activity can be happening at one time).  

If more than one activity can be occurring at the 

same time, a belief threshold approach can be used 
to establish which activities are occurring. 

4. Evaluation 

Evidence theory with temporal extensions for 

activity recognition is evaluated with the use of a 

third party smart home dataset, captured in a real-

life home environment. The main purpose of our 

evaluation is check whether accuracy of activity 

recognition is improved using temporal features of 

evidence theory, when compared to not using 

temporal features. Another aim is to compare 

inference results using evidence based inference to 

those using established learning techniques. To meet 
these aims, three experiments are run.  In the first 

experiment, activity recognition accuracy using 

evidence theory with absolute time, versus not using 

time is conducted. Results will show an 

improvement in accuracy with the use of absolute 

time.  Secondly, activity recognition accuracy using 

time-extended evidence (and absolute time) versus 

absolute time only is compared.  Results will 
demonstrate that the time-extended evidence 

approach recognizes activities that are derived from 

transitory evidence more accurately than without use 

of time extension.  Finally, evidential reasoning 

using both time-extended evidence and absolute 

time will be compared to two classic machine 

learning techniques, Naïve Bayes and J48 Decision 

Tree.  Absolute time is added to the training and test 

sets for both learning techniques to allow a more 

direct comparison.  Results will show that the 

temporal evidential framework outperforms these 

two techniques when limited training data is used.  

4.1. Dataset 

In order to evaluate our temporal extensions, we 

required a smart home dataset that contains 

situations with discernible time durations over a 

time period.  Our requirement was to use a real-life 

smart home dataset rather than one captured in a 

laboratory environment. We also wanted to use a 

dataset that has been used by other researchers to 

test activity recognition techniques, so that we can 

compare our evidential approach with existing 

published results.  Availability of published smart 
home datasets is still a challenge in the pervasive 

computing field, particularly where published results 

are desirable, using transparent, repeatable 

methodologies [34]. The Placelab dataset [10] has 

been used extensively by researchers for testing 

recognition techniques.  However, researchers 

typically use subsets of the dataset, making it 

difficult to compare results when a full cycle, such 

as a month, is under examination as in our temporal 

evidence theory evaluation. 

 VanKasteren‟s dataset [27] is a public third party 

dataset that originates from the intelligent 
autonomous systems group in the University of 

Amsterdam.  It has been widely used by other 

researchers for smart home experimental evaluations 

[31], [13], [27], [37], [28]. The data is recorded in 

the home of a 26 year old man over 28 days in his 

apartment.  Annotation was done by the occupant 

via voice recognition from a headset.  Over the 28 

days, 2120 activities were annotated, resulting in 

245 activity instances.  Seven different activities 

were recorded: „sleeping‟, „leave home‟ „toileting‟, 

„showering‟, „sleeping‟, „preparing breakfast‟, 
„preparing dinner‟ and „preparing a drink‟. Only one 

activity is defined as occurring at any point in time. 



14 state change digital sensors were installed in 

doors, kitchen cupboards and kitchen appliances.  
Each sensor transmits binary values only.  A „0‟ 

indicates the sensor is not in use, a „1‟ indicates that 

the sensor is firing, such as a cupboard sensor 

indicating that the cupboard is open.   

Clearly Van Kasteren's data set provides only a 

small and limited view onto the activities occurring 

in the home, and a larger sample would be desirable. 

It does, however, provide a common and widely-

used reference for comparing different approaches 

to activity recognition. We note in passing that there 

are very few data sets available for such 

comparative study: a point to which we return in 
section 6. 

 

4.2.  Set up 

Inference knowledge is used to establish the 

situation DAG. In a real-life environment, the 

relationship between sensors and activities can 

involve user interviews.  Questions such as “what do 

you do when preparing breakfast” will establish 

which sensors are being triggered for each activity. 

As we are using a generated dataset, we use a 

limited amount of training data, combined with 
common sense domain knowledge to establish our 

situation DAG. A common practice in machine 

learning is to use two thirds for training with a third 

for testing. These proportions are reversed to 

illustrate the limited dependence on training data. 
Using a third of the dataset, the sensors that are 

triggered for each activity are identified.  

In addition, common sense domain knowledge of 

home activities enables the following assumptions: 

activities in the kitchen (breakfast, dinner, drink) 

only involve sensors in the kitchen; No occupant 

activated sensors will be firing when „leave home‟ 

and „sleeping‟ are happening‟; door sensors are of 

interest when their state is changing, but a door left 

open (with an ongoing value of „1‟) is not useful for 

inference.   A situation DAG is established for each 

activity. The situation DAGs for „preparing 
breakfast‟ and „preparing a drink‟ are shown in Fig 

6.  Inference rule uncertainty is annotated on the 

DAG, but actual values will depend upon which 

portion of the dataset is used for training so will be 

assigned during experiment runs. No sensor 

discounting is used because there are no known 

quality issues with the sensors for the dataset.  

To use the time series data, it is first divided into 

timeslices of equal duration. This timeslice duration 

is long enough to be discriminative and short 

enough to provide high accuracy labeling results 
[27].  Timeslices where no activity is annotated are 

excluded.  A total of 25,680 annotated timeslices of 

data are generated, where each slice captures the 

sensor values and annotated activity that occurred 

during that minute.  

 

 

 
 

Fig 6 Situation DAG for 'preparing drink' and 'preparing breakfast‟ 

 
 

 

 



Once the situation DAG has been established, the 

inference process analyses sensor readings for each 
timeslice as follows: 

 

At time t: 

 

 Sensor mass functions define belief in 

context values based on available sensor 

readings for time t. 

 Evidence for any activities with time 

duration and transitory evidence is 

extended by the remaining lifetime of the 

activity.  

 Evidence from context values are 
propagated to higher level activity states 

 Evidence is fused where multiple context 

values or activities are used to detect 

higher level states.  

 The activity with the highest belief is 

deemed to be occurring, assuming only 

one activity is happening at any one time.   

 The durations of all activities „in progress‟ 

is reduced by the timeslice length so that 

time-extended lifetimes are updated.  

 
This process continues for the next time: t + 

timeslice, to produce continual activity recognition 

spread over time. 

4.2.1. Methodology 

The timesliced dataset is divided into thirds. 

Using cross validation, each third is used for 

generating mass functions and inference rule 

uncertainty, with the remaining two thirds of the 

data held back for testing as explained in Section 

4.1.  Table 2 shows the inference rule uncertainties 

generated for the „preparing breakfast‟ activity for 
one of the dataset thirds.  Looking at the table, the 

pan cupboard sensor triggering is 0.3 indicative of 

the „preparing breakfast‟ and 0.7 of uncertainty. 

 
Table 2 Sample inference rule certainties for 'preparing breakfast‟ 

Context Value Inference Rule 

certainty 

Microwave 01 

Cups 0.1 

Fridge 1.0 

Plates 1.0 

Pans 0.3 

Freezer 0.4 

Groceries 0.6 

In the dataset, only one activity is occurring at 

any point in time.  Therefore, the activity with the 
highest belief is deemed to be occurring (subject to 

absolute time filtering). If two or more activities 

have equal belief, the activity with the least 

uncertainty is selected.  

 
Table 3 Absolute Times for Dataset Activities 

Activity Absolute time 

Breakfast Morning 

Dinner Evening 

Showering Morning 

Leave home Daytime 

Sleeping Nighttime 

 

For experiments where we compare with other 

learning techniques, we divide the data in two ways 

(1) Cross validation, holding back one third of the 

data for testing, two thirds for training. This is to 
illustrate the use of „limited‟ training data for 

evidence theory (2) The commonly used „leave one 

day out‟ technique for time series data [29], where 

one day is used for testing, and the remaining 27 

days for training.  

 

  Three measures are used to identify the 

performance of activity recognition (1) Precision is 

the ratio of the times that an activity is correctly 

inferred   to the times that it is inferred  

(2) Recall is the ratio of the times that a situation is 

correctly inferred  to the times that is 

actually occurs in the dataset : 

 

 

 

 

(3) F-measure is the weighted mean of precision 

and recall and is used to summarize inference 

accuracy. 

 

4.3. Experiment 1 – Absolute Time of Day 

In this experiment, the impact of using absolute 

time in the inference process is examined.  The 

absolute times for activities are shown in Table 3. 

„Preparing drink‟ occurs at various times during the 
day and night so no particular time pattern is 

evident. Fig 7 shows the inference results comparing 

evidence theory used without absolute time, and 

with absolute time. The use of absolute time 

improves the inference accuracy for all activities 



that have an absolute time, as listed in Table 3. 

„Preparing drink‟, for which absolute time is not 
used is slightly lower. „Leave home‟ and „sleeping‟ 

activities are derived from the same evidence (no 

sensors active), so cannot be distinguished unless 

time is used (i.e. nighttime for „sleeping‟, daytime 

for „leave house‟.  Therefore, when absolute time is 

not is used in inference, both „leave house‟ and 

„sleeping‟ have equal belief and certainty and are 

indistinguishable.  „Leave house‟ is selected by 

default and „sleeping‟ activity is never recognized.  

When absolute time is included, „sleeping‟ activity 

can be inferred.   

 

4.4. Experiment 2 – Time extension of Evidence 

In this experiment, the impact of time-extended 
evidence for the duration of the higher level activity 

is examined. Durations are used for „breakfast‟, 

„dinner‟, „drink‟, „showering‟ and „toileting‟ as each 

of their context events can be spread over time.  No 

sensor is usually fired during „leave home‟ and 

„sleeping‟ activities so no time extension of 

evidence is used for these activities. Activity 

durations are calculated as the average of the

 

 

Fig 7 F-measure Using „No Time‟ versus „Absolute Time‟ 

 

 

 
 

Fig 8 Comparison of F-measure using time-extended evidence versus no time extension 



 activity duration from the training data sample.   

Alternatively, a user interview might include 
questions such as “how long does it typically take 

you to prepare breakfast?”  

 Fig 8 compares the inference results of using 

extended evidence against not.  Absolute time is 

included in both.   The result was that recognition 

accuracy improved for four out of the five enduring 

activities.  Time extension is not used for „leave 

house‟ and „sleeping‟ activities, and as expected, 

their inference accuracy is almost identical. For the 

remaining five time-extended activities, the biggest 

improvements is shown in „showering‟, „preparing 

breakfast‟ and „preparing dinner‟.  These activities 
are longer in duration than the „preparing drink‟ and 

„toileting‟ activities, so their evidence is sparser 

throughout the duration.  Therefore, they benefit 

more from the extension of their transitory evidence.  

The „toileting‟ activity recognition actually 

decreases very slightly with the use of time-

extended evidence. This is because the sensors used 

in „toileting‟ overlap with those for „showering‟ and 

the two activities were often performed sequentially.  

 

 
Table 4 Comparison of average F-measure for evidence theory 

with no time, absolute time and extended time 

 No 

Time 

Absolute 

time 

Time 

Extension 

(and 

Absolute) 

F-measure 0.40 0.56 0.68 

 

The impact of time on evidential reasoning is 

summarized in Table 4.  This shows average F-
measure for all activities when no time is used in 

reasoning, when absolute time is used, and when 

both time extension and absolute time are used.  F-

measure improves by 70% with the use of both time 

reasoning techniques.   

4.5. Experiment 3 – Comparison with other 

inference techniques 

In this experiment, temporal evidence theory 

(using absolute time and time-extended evidence) is 

compared to two machine learning techniques: 

Naïve Bayes and J48 Decision Tree). Absolute time 
is incorporated as an attribute into the datasets for 

Naïve Bayes and Decision Tree to make the 

comparison as equal as possible. The comparisons 

are done in two ways (1) using limited training data 

(one third) with the remainder held back for testing 

(2) Using a „leave one day out‟ cross validation 
approach as described in the methodology.  As 

shown in Table 5 and Fig 9, with the use of one 

third training, time-extended evidence theory 

outperforms both Naïve Bayes and J48 Decision 

Tree.  The gap is greatest for activities with longer 

duration: „preparing dinner‟, „preparing breakfast‟ 

and „showering‟.  Minimal difference is shown for 

„preparing drink‟ which is just 3 minutes long, so 

benefits less from time extension of evidence than 

the longer activities.  

 
Table 5 Average F-Measure for time-extended evidence, Naïve 

Bayes and J48 decision tree using one third training data 

 Average F-measure 

Time -extended  
Evidence 

0.68 

Naïve Bayes 0.49 

J48 Decision Tree 0.34 

 

For the second approach, using „leave one day 

out‟, the results as shown in Fig 10 from the three 

techniques are much closer than when one third 

training data is used. Time-extended evidence 

outperforms or matches the two learning 

approaches, with greater performance shown on two 

of the enduring activities, „showering‟ and 

„preparing dinner‟. The average F-Measure 

distributions differ to those from the one third 

training data results because there are days on which 
some activities do not occur, recording a zero F-

Measure for the activity for that day.  This effect 

applies equally to all three techniques so does not 

affect the relative performance of the techniques. 

 

4.6. Discussion 

 This section shares the experience of using our 

evidence theory with temporal features, and 

discusses its strength and limitation. 

4.6.1. Impact of absolute time 

Greater time patterns will yield greater activity 
recognition.  Our first experiment shows that the use 

of absolute time in our evidence theory inference 

improves the accuracy of activity inference.  In the 

smart home dataset, five of the seven activities had 

an identifiable time pattern. Inference accuracy 

improved for all five activities when absolute time 

was used, with an improvement of average F-



measure of 40% overall. The usefulness of absolute 

time depends on how much activities follow an 
identifiable time pattern. Activities in 

VanKasteren‟s dataset occur at regular times 

throughout the day so using absolute time is 

beneficial. Greater time patterns will yield greater 

activity recognition. Time patterns will be applicable 

in home environments where people have an 

identifiable pattern of when they take their meals, 

shower, and so forth. 

 

4.6.2. Impact of time-extended evidence 

Longer duration activities have more sparsely spread 

out evidence, so they will benefit from extension of 
evidence to cover „gaps‟ in evidence during the 

activity. Our second experiment tested the impact on 

activity recognition accuracy when time extension 

of transitory evidence was used.  Average F-

measure improved by 28% when extended time 

evidence was used in addition to absolute time, 

when compared to using absolute time only.  

Recognition accuracy improved for four out of the 

five enduring activities, with the greatest 

improvement seen for the longer duration activities.  

4.6.3. Temporal evidence theory versus other 
inference techniques 

With the incorporation of temporal knowledge, 

evidence theory outperforms the classic machine 

learning techniques when they are purely training-

based.  In our third experiment, the temporal 

evidence approach was compared with two classic 

machine learning techniques, Naïve Bayes and J48 

decision tree.  The experiments were run using 

limited training data (one third, cross validated) and 

then using a „leave one day out‟ cross validation 

approach. Absolute time was included in the data for 

both Naïve Bayes and J48 Decision Tree.  Looking 
at Fig 9, our results showed that temporal evidence 

theory clearly performed better than the other two 

techniques when limited training data was used. 

This improvement was much less marked when 

using the „leave one day out‟ approach as shown in 

Fig 10, although evidence theory is still the best 

performing of the three techniques.  

 

Since evidence theory is suited to the incorporation 

of domain knowledge, this result is encouraging.  

Evidence theory will be useful when training data is 
not easily available and where domain knowledge 

can be gleaned from expert knowledge and user 

knowledge.  These sources can be used to obtain 

inference knowledge in a piecemeal approach, with 
users providing information on absolute times, 

activity descriptions and durations, and experts 

providing knowledge of sensor mass functions and 

sensor quality.   

 

4.6.4. Comparison with published results 

Temporal evidence theory inference results were 

also compared to those published by VanKasteren et 

al. in [27].  They use Hidden Markov Models, to 

recognize occurring activities. The evaluation 

method is the „leave one day out‟ technique. They 

use a class accuracy measure calculated as average 
percentage of correctly recognized timeslices per 

activity.  Using VanKasteren et al.‟s class accuracy 

measure calculation and „leave one day out‟ 

evaluation technique, time-extended evidence 

achieves an average class accuracy of 69% against 

VanKasteren‟s HMM class accuracy of 49.2%.  This 

comparison is made using the raw sensor 

representation published with the VanKasteren  

dataset.  VanKasteren et al.‟s work also uses three 

other more informative sensor representations that 

encode temporal information.   The highest accuracy 
achieved is a class accuracy of 79.4% using a 

„changepoint plus last‟ sensor representation as 

described in [27].   However, since raw sensor 

representations are published in the dataset, this 

evaluation compares directly with results from raw 

sensor representation only. 

Ye [31] uses situation lattices to infer activities in 

the VanKasteren dataset.  Ye‟s results yield a class 

accuracy of 88.3% using raw sensor representations 

and the „leave one day out‟ cross validation 

technique.  This is higher than the results from the 

temporal evidence framework (69%) and 
VanKasteren et al.‟s HMM results (49.2%).  Ye‟s 

lattice method includes absolute time in the 

inference method, and combines both training and 

domain knowledge. However, timeslices in which 

no sensor changes take place are excluded.  These 

timeslices are hard to infer because  of the lack of 

sensor information so the dataset is likely to yield 

improved results to some degree.  



 

 
Fig 9 F-measure by activity for time-extended evidence, Naïve Bayes and J48 Decision Tree using one third training 

 

 
Fig 10 F-measure by activity for time-extended Evidence, Naïve Bayes and J48 using Leave One Day Out 

4.6.5. Summary, 

The temporal aspect of evidence theory is 

useful for data where there is a discernable 

time pattern of activities (absolute time) or 

where transitory evidence is used to determine 

enduring activities (time-extended evidence). 

Evidence theory, in general, is good for 
scenarios where training data is at a premium, 

and where domain knowledge is available from 

experts and users. It is less suitable for 

scenarios where mapping of sensors to 

activities cannot be hand crafted or easily 

observed.   

5. Related work 

Related work in the field of activity 

recognition is covered in two parts (1) the 

application of temporal reasoning to activity 

recognition and (2) general activity recognition 
techniques, including evidential approaches.   

5.1. Temporal reasoning for activity 

recognition 

In recent years, the use of temporal 

knowledge has been employed in both learning 

and rules-based approaches to enhance activity 

recognition.   

Looking firstly at learning approaches, 
Hidden Markov Model (HMM) is a statistical 

learning technique that has been widely 

applied to activity recognition [27], [19], [4]. 

HMMs take account of sequences of states.  

The system is assumed to be a Markov chain 

that is a sequence of events. The probability of 

each event is dependent on the event 

immediately preceding it.   Modayil et al. [10] 

use an interleaved HMM to better predict 

transition probabilities by recording the last 

object observed in each activity. This approach 
achieves very low error rates, though it 

requires an approximation for the inference 



process.  Clarkson et al. [4] used HMMs for 

context recognition methods for wearable 

computers with the means of a wearable 

camera, and environmental audio signal 

processing. For a simple set of situations, they 

achieved recognition rates between 85 and 
99%. They conclude that their results are not 

exposed to any drift from the trained models 

and that the contexts used are simple. As 

discussed in this work, VanKasteren et al. [27] 

use HMM for activity recognition of smart 

home activities.  Their recognition accuracies 

ranged from a class accuracy of 49.2% using 

raw sensor representations to 79.4% using a 

sensor representation that contains more 

temporal information than the raw sensor state.  

HMMs are usable where training data is 

available to build a statistical model of the 
activity model for the environment, and where 

state sequences have a discernible pattern.  

HMMs consider short term sequences only, 

based on the previous state. Choujaa and 

Dulay [3] observe that long term sequences 

(such as activities from an earlier part of the 

day) are also useful, and employ both short 

term and long term sequences in their activity 

inference approach, using a probabilistic 

framework obtained from training data. Their 

approach also caters for gaps in the data. They 
evaluate on a mobile phone dataset. With eight 

weeks of training, user activities can be 

inferred with over 70% accuracy when every 

other hour is missing in the day.  

Jakkula and Cook [11] apply temporal 

knowledge about activities in order to detect 

anomalies in real time in a smart home, as a 

precursor to monitoring resident safety. They 

use training data to discover frequent 

sequences of sensor patterns, and temporal 

relations between sequences.  Their approach 

supported the detection of anomalies occurring 
over a day, using 59 training days from their 

MavHome smart home environment.  

Palmes et al. [21] use an object data mining 

approach to activity discovery that does not 

assume any particular sequence of activities.  

They note that activities may have a distinct 

series of steps but with no particular sequence. 

They note that in such cases, relying on 

sequence of events for activity recognition may 

significantly limit the accuracy and 

applicability of models that rely particularly on 
object sequence. 

Ye et al. [32] use a situation lattice as a 

classifier method for activity data.  The lattice 

can utilize both training data to establish the 

lattice and domain knowledge to tune the 

lattice.  They use both absolute time and 

activity sequences in inference.  Preliminary 

experiments show that more accurate 

classifiers are produced when absolute and 

relative time is used.   

In additional to using temporal knowledge 

with learning approaches as described, 

temporal operators have been incorporated into 

rule-based approaches, such as the work of 
Augusto et al. [2].  In their reasoning approach, 

they use time dependent rules that consider the 

sequence and co-occurrence of events.  Jakkula 

and Cook [12] use Allen‟s temporal logic 

relations [1] as the basis for defining temporal 

rules across activities.  They then compare the 

predictive accuracy of activities with and 

without the temporal rules, noting an 

improvement when temporal rules are applied. 

Time has been used directly or indirectly to 

treat the certainty of sensor readings. Sensor 

readings are usually time-stamped so time can 
be applied as part of a decay function, as done 

by [23] and [17].  For an evidence based 

model, use of decay for sensor readings can be 

done via the sensor mass functions as 

described in [17].  

Interestingly, Partridge et al. [22] study the 

applicability of time-use study data for 

ubiquitous activity-inference systems. The 

time-use study covers all the human activities 

performed by the participants over a certain 

period, which could be a day or weeks. 
Partridge et al. analyse how well the time-use 

study predicts activities using time, location, 

demographics, and previous activity. They 

argue that the study data are useful in the sense 

that they enable cheap and comprehensive 

classifiers. One of their results is that, when 

combined with absolute time, the accuracy of 

activity prediction is increased up to 70%.   

5.2. General approaches to activity 

recognition 

Bayesian classifiers recognize higher level 

context states, based on the probabilities of 
lower level causal contexts in the network, and 

there are various examples in the literature of 

their use for inference [23] [14].  Ranganathan 

et al. [23] used a Bayesian network to 

determine the activity of a room, based on 

detecting contexts such as lighting level and 

presence of people. They achieve almost 84% 

true positives although they point out that their 

set up follows easily learnable and distinct 

patterns. They do not explain the 16% false 

readings. Korpipaa et al. [14] developed a 
multi-layer context-processing framework for 

mobile 

devices which uses a Bayesian classifier for 

activity identification. Their results indicate 

that situations were extracted with 96% true 

positives in restricted scenarios of 9 situations. 



However, in real-world situations where they 

encountered context transitions, situation 

transitions and undefined phenomena, the 

recognition accuracy fell to 87% true positives. 

Bayesian networks are useful for capturing 

discrete higher level contexts. The 
disadvantage of this approach is that they do 

not explicitly support knowledge about state 

(i.e. situation) transition. Also, they require 

training data to deduce prior and conditional 

probabilities, so they are not suitable in 

scenarios where training data is too difficult or 

expensive to obtain. 

Fuzzy decision trees are used by Guan et al. [7] 

to deduce contexts from uncertain sensor data.  

Decision trees require advance knowledge of 

rules, similar to evidential networks.  In 

contrast to learning techniques such as 
Bayesian and HMMs, they can reveal 

intelligible decision paths to the user if 

required.  

Evidence theory has been applied to context 

or activity recognition, but no temporal 

knowledge is included in current approaches.  

Hong et al. [9] define an evidence based 

activity model, and apply a set of evidential 

operations to derive activity belief from sensor 

mass functions.  Their work does not include 

temporal factors, assuming evidence of 
activities to be co-occurring.  Wu [30] used 

Dempster-Shafer theory for sensor fusion of 

context. This work included a dynamic 

discount factor for sensors that changes over 

time.  However, the weighting is reliant on 

ground truth availability shortly after fusion 

takes place which is not a workable 

assumption for activity recognition. Zhang et 

al. [36] use evidence theory for reasoning 

about activities. Alternative fusion rules are 

tested, and conflict resolution strategy for 

Zadeh‟s paradox is proposed. Similar to [9] 
and the work in this paper, an evidence model 

(CRET) that propagates evidence from sensor 

level to activity level is described. Temporal 

knowledge is not included in the CRET model.  

6. Conclusion and Future Work 

This paper presents an evidential framework 

with extension of temporal knowledge for 

reasoning about activities.  The framework 

achieved 70% improvement of recognition 

accuracy with temporal information in the 

evaluation on a real-life smart home dataset, 
which outperformed classical machine learning 

techniques.  

As future work, further temporal 

information on activity transitions will be 

incorporated into the framework. This will aim 

to provide a similar capability to that of 

Hidden Markov Models in allowing activity 

sequence patterns to improve recognition.  As 

part of this, we would like to use our approach 

on a dataset captured over a longer period, 

with longer term temporal patterns.  
A second aim is to investigate the 

intelligibility of using the evidential 

framework. One of the challenges in pervasive 

computing is the user‟s need to understand the 

decision making process of the system.  

Intelligibility is a crucial usability requirement 

in smart environments [6]. The reasoning 

process using evidence theory is quite 

transparent, and indeed, is illustrated via the 

situation DAG.  Therefore, it should be 

possible to generate explanations for 

reasoning.   
A final aim is to investigate the use of 

transferrable activity models from one 

environment to another.  With machine 

learning approaches, training data must be 

collected for any change in environment.  With 

the evidential framework, the situation DAG 

from one environment may be used as the 

basis for another similar environment.  

Adjustments to the situation DAGs for known 

changes in sensors, or activity definitions can 

be applied and the framework re-used 
Studies of the kind reported here rely on the 

public availability of high-quality annotated 

data sets from real-world smart environments, 

something that is notably lacking in the field. 

Our own experience has been that collecting 

such data sets is enormously time-consuming 

and expensive, requiring access to a highly 

instrumented, populated facility - and even 

then often yields only low-quality data. The 

collection and publication of data sets is 

something that needs to be prioritized within 

the pervasive research community in order to 
support standardized evaluation of techniques 

for data interpretation. 
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