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Abstract

A Unified Power Quality Conditioner (UPQC) is relatively a new member of the
custom power device family. It is a comprehensive custom power device, with
integrated shunt and series active filters. The cost of the device, which is higher than
other custom power/FACTS devices, because of twin inverter structure and control
complexity, will have to be justified by exploring new areas of application where the
cost of saving power quality events outweighs the initial cost of installation. Distributed
generation (such as wind generation) is one field where the UPQC can find its potential
application. There has been a considerable increase in the power generation from wind
farms. This has created the necessity for wind farms connectivity with the grid during
power system faults, voltage sags and frequency variations. The application of active
filters/custom power devices in the field of wind generation to provide reactive power
compensation, additional fault ride through capability and to maintain Power Quality
(PQ) at the point of common coupling is gaining popularity. Wind generation like other
forms of distributed generation often relies on power electronics technology for flexible
interconnection to the power grid. The application of power electronics in wind
generation has resulted in improved power quality and increased energy capture. The
rapid development in power electronics, which has resulted in high kVA rating of the
devices and low price per kVA, encourages the application of such devices at
distribution level. This work focuses on development of a laboratory prototype of a
UPQC, and investigation of its application for the flexible grid integration of fixed and
variable speed wind generators through dynamic simulation studies.

A DSP based fully digital controller and interfacing hardware has been developed

for a 24 kVA (12 kVA-shunt compensator and 12 kVA-series compensator) laboratory
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prototype of UPQC. The modular control approach facilitates the operation of the
device either as individual series or shunt compensator or as a UPQC. Different
laboratory tests have been carried out to demonstrate the effectiveness of developed
control schemes.

A simulation-based analysis is carried out to investigate the suitability of application
of a UPQC to achieve Irish grid code compliance of a 2 MW Fixed Speed Induction
Generator (FSIG). The rating requirement of the UPQC for the wind generation
application has been investigated. A general principle is proposed to choose the
practical and economical rating of the UPQC for this type of application.

A concept of UPQC integrated Wind Generator (UPQC-WG) has been proposed.
The UPQC-WG is a doubly fed induction machine with converters integrated in the
stator and rotor circuits and is capable of adjustable speed operation. The operation of
UPQC-WG under sub and super-synchronous speed range has been demonstrated. The
Irish grid code compliance of the same has been demonstrated with a detailed dynamic

simulation.
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1. Introduction

1.1 General introduction

Today, both power suppliers and consumers are obliged to comply with various
Power Quality (PQ) standards proposed by international bodies such as IEEE and IEC
worldwide. The number of vulnerable loads which are very sensitive to PQ problems
have increased in the modern power system and at the same time the number of PQ
polluting factors has also escalated. The increased penetration of distributed generation
sources in to the power system has further contributed to existing PQ complexities.
These distributed generation sites are often fuelled by renewable energy sources such as
wind and solar. The random nature of these energy sources poses a reliability threat to

the power system [1-4].

1.2 Research motivations and objectives

Generators driven by renewable sources such as wind that are connected to the
power system at distribution level rely on a healthy power grid for proper operation.
Some PQ events like voltage sag which can occur due to any fault occurring upstream
of the Point of Common Coupling (PCC) can lead to mal-function and hence
disconnection of these distributed generators. The disconnection of such small scale
generators can lead to a deficiency in generation capacity and possibly system
instability. This potential problem becomes more significant as more such generators
are connected at a distribution level. Therefore, the existing grid codes for renewable

sources such as wind have been revised and disconnection of generation during certain
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PQ events is to be avoided. Grid integration of this type of generation requires some
special measures to be taken to achieve grid code compliance and for better operational
reliability

The challenges posed by modern power systems and the search for better PQ has
attracted more and more researchers into this field. Technologies such as Flexible AC
Transmission Systems devices (FACTS) and custom power devices emerged as a result
of continuous improvement of PQ. FACTS devices are applied in transmission level for
reactive power compensation and power flow control. Therefore they improve the
reliability and quality of power transmission systems. The application of power
electronics to power distribution system for the benefit of a customer or group of
customers is categorized under generic name-custom power devices. Though both
FACTS and custom power devices are power electronics based compensators their
control and operational philosophy is different. Since FACTS devices are applied in
power transmission level their power ratings are higher and switching frequency is
lower than custom power devices applied in distribution systems. FACTS devices are
assumed to work under balanced sinusoidal conditions.

The application of power electronics devices in the field of wind generation to
provide reactive power compensation, additional fault ride through capability and to
maintain PQ at the PCC is gaining popularity [5,6]. A Unified Power Quality
Conditioner (UPQC) is an up-to-date PQ conditioning device of the custom power
device family [7-9]. The concept being relatively new is still being researched. It is
speculated that this will be a universal solution to all power quality issues because of its
voltage and current compensating capability.

This research work focuses on the development of a laboratory prototype of a UPQC

for application to problems of power quality in electrical networks. These problems
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may include unwanted harmonic current propagation from the load side into
distribution networks, excessive VAR demand, voltage unbalance, or voltage
fluctuation (sag/swell) in the utility. The UPQC installed as an interface between
consumer and utility, aims to mitigate the VAR demand appropriately and provide
additional fault ride through capability to its consumer. Therefore in addition to
application at the service entry point of PQ sensitive facilities the UPQC also has a
potential application in connecting distributed generation sources (such as wind) to
conventional grids. The research work focuses on the following objectives:

e Development of 24 kVA (12kVA shunt compensator, 12kVA series
compensator) laboratory prototype of a UPQC for various applications in power
systems

2 Design and development of measurement circuitry and interfacing
circuitry for Digital Signal Processor (DSP) and power circuit of the
UPQC

2 Design and implementation of control strategies for the UPQC
prototype.

> Testing of the UPQC prototype under different load and supply
conditions.

¢ Investigations on the scope of application of a UPQC to facilitate reliable grid
integration of fixed speed wind generators

> Development of a dynamic simulation model of the UPQC applied to
fixed speed wind generator.

> Investigations on the rating requirements of the UPQC applied to aid
fault ride through of a fixed speed generator and to achieve grid code

compliance.
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2 Performance comparison with a Static Compensator (STATCOM)
applied in a corresponding application.

> Rating optimisation of the UPQC for economical installation of the
same.

e Application of a UPQC to variable speed wind generators.

2 A new concept of UPQC integrated Wind Generator (UPQC-WG)
capable of variable speed operation.

2 Modelling of the generator and design of control strategies for the
converters of the generator.

2 Investigations on its performance and application in power system

through dynamic simulations.

1.3 Organization of the thesis

The research work of this thesis is divided into eight chapters. In Chapter 2 a
literature survey is carried out on the control and application of a UPQC. Different
control strategies developed in the past for the series and shunt compensators of the
UPQC, including their advantages, disadvantages and implementation issues are
discussed. The application of this versatile device for power conditioning in distribution
systems is reviewed. The various issues involved in the grid integration of fixed and
variable speed wind generators at the distribution level and the solutions available
today are also discussed.

Chapter 3 reports the development of the laboratory prototype of the UPQC. The

hardware specifications, design and development of various measurement interface
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cards, choice of DSP for the control of the hardware and software zero crossing based
grid synchronization are discussed in detail.

Chapter 4 reports on the design and implementation of control strategies for the
hardware prototype. Different experiments are carried out to demonstrate the capability
of the prototype UPQC to mitigate various PQ issues originating from both the supply
and the load side.

Chapter 5 reports on the simulation based analysis carried out on the application of
a UPQC to a 2 MW wind generator to achieve Irish grid code compliance. It is shown
that a UPQC provides superior support than that of a STATCOM, which is commonly
applied today for the same purpose [83].

In Chapter 6 a realistic estimation of the rating requirements of a UPQC for a fixed
speed generator application is carried out. A general principle is proposed to enable the
selection of the most economical rating of the UPQC for this purpose. Also application
of two configurations (left-shunt and right- shunt UPQCs ) of the UPQC are compared
in relation to rating of the devices for the wind generator application.

In Chapter 7 a new concept of UPQC-WG is proposed. A UPQC-WG is a UPQC
integrated wind generator capable of variable speed operation. The performance of the
same under steady state and grid side balanced/unbalanced fault are investigated
through dynamic simulations. The Irish grid code compliance of the UPQC-WG is also
investigated.

In Chapter 8 a summary of the contribution of the research is presented along with a

discussion of possible future research.
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2. Unified Power Quality Conditioner- Control and New

Areas of Application

2.1 Introduction

A Unified Power Quality Conditioner (UPQC) is a relatively new member of the
custom power device family. It is a combination of shunt and series compensators. The
concept of UPQC was first introduced in 1996 by authors of [7,8]. It is speculated that
almost any Power Quality (PQ) issues can be tackled with this device. Generally PQ
problems arise either because of supply voltage distortion or because of load current
distortion. Since a UPQC has both series and shunt compensators, it can handle supply
voltage and load current problems simultaneously when installed at the point of
common coupling. It can protect sensitive loads from power quality events arising from
the utility side and at the same time can stop the disturbance being injected in to the
utility from load side. This chapter explores the structure, different control techniques

and potential new applications of the UPQC.

2.2 The structure and working principle of a UPQC

The UPQC is a power electronics based compensator which works on the principle
of active filtering. It is a combination of Shunt (SHUC) and Series (SERC)
Compensators, cascaded via a DC link capacitor. Based on the position of the SHUC
and the SERC two configurations of a UPQC are possible. Schematic diagrams of the
two configurations are presented in Figure 2.1 and Figure 2.2. Each compensator of the

UPQC consists of an IGBT based full bridge inverter, which may be operated in a
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voltage or a current controlled mode depending on the control scheme. Inverter I
(Series Compensator, SERC) is connected in series with the supply voltage through a
low pass LC filter and a transformer. Inverter II (Shunt Compensator, SHUC) is
connected in parallel to the load through a smoothing link inductor. The SERC operates
as a controlled voltage source and compensates for any voltage disturbance in the
network. The SHUC operates as a controlled current source and compensates for
reactive or harmonic elements in the load. It also acts as a real power path and

maintains the DC link voltage at a constant value by charging the DC link capacitor

continuously.
Ving is i_load
g |
5 Lo Injection Load
Transformer
Utility
Supply F:;wm . Inverter-I Inverter-IT
DC

% }‘ T ﬁ@x

Series Shunt

Compensator Compensator

(SERC) (SHUC)

Fig. 2. 1 Right shunt UPQC configuration

The SHUC responsible for reactive power and load current harmonic compensation is
placed closer to the load side in right shunt configuration of the UPQC. The left shunt
configuration can be achieved by swapping the position of the SHUC and the SERC
(Figure 2.2). The majority of the work reported on a UPQC is on application of the
right shunt UPQC, as its characteristics are more favorable than those of the left shunt
UPQC in typical applications when the SHUC has to compensate for load reactive
power and harmonics and the SERC has to compensate for voltage disturbances from

the source side [9]. When the application of UPQC is considered for a distribution
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system as in [10], where UPQC has to cater for two different loads, one of which is
voltage sensitive and the other generates harmonics, the left shunt configuration of

UPQC is preferred.

iy Viru' i_load
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- Transformer (")
ISIu]ny . ow Pass
upply i, InverterI ( Inverter-IT Filier
DC
Link |‘ ﬂ{
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Shunt Series
Compensator Compensator
(SHUC) (SERC)

Fig. 2. 2 Left shunt UPQC configuration

2.3 Control of a UPQC

The UPQC system is inherently complex and requires sophisticated control systems
to achieve the satisfactory performance. A fast DSP or a microprocessor is often
utilised to carry out the complex control. It is typically controlled in a modular fashion.
Separate control loops are designed for the SHUC and the SERC, which work
independently. The only interaction between the compensators is through the DC link,
which can be controlled by regulating the DC link voltage. Different compensating
techniques in the literature are discussed in the following section. They utilize one or
the other form of three basic theories, namely Instantaneous Reactive Power theory
(IRP or p-q theory), Synchronous Reference Frame (SRF) theory and Symmetrical

Component theory. A brief explanation for each technique is provided here.
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2.3.1 1IRP or p-q theory

This theory was introduced by the authors of [11]. The method offers the technique to
calculate the real and reactive power requirements of the load instantaneously. The
method is mostly applied to calculate the reference current of the SHUC or shunt
active filter. The transformations involved are given in equations (2.1)-(2.8). Three-
phase to two-phase transformation is applied on measured voltages and currents using
equations (2.1) and (2.2) where T is the transformation matrix. The instantaneous real
and reactive power can be calculated by transformed voltages and currents using
equation (2.3). The calculated instantaneous power has both DC and AC components
(2.4 and 2.5). The AC components of the powers originate from harmonics and
negative sequence components. Therefore a high pass filter can be applied to separate
the AC components and the compensator reference current can be calculated using

equations (2.6), (2.7) and (2.8). T' is the reverse transformation matrix.

. I,V
L, a
{ }:T i,vb 2.1

I,v
C
T 2[1 -1/2  —1/2 2.2)
“V3[o0 V372 =372 '
|:p:|_ Vo vﬂ ia
- . (2.3)
q __Vﬂ Va lﬁ
p=p+p (2.4)
qg=q+4q (2.5)
irefa _ 1 Vo _vﬁ ﬁ
. - 2.6
lrefﬁ vza +V2ﬁ vﬂ va q (2:0)
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2.3.2 SRF theory

The method was introduced by R. H. Park in 1920s. The currents and voltages which
are represented in a-f form as given in (2.1) and (2.2) are transformed to d-q form as

given in equation (2.9) for a three-phase, three-wire system [12].

,v,| |cosax sinax |i,v,
=] . (2.9)
LV, SIn@¥  Cosax || L,Vg

Here, o is the synchronous frequency of the system and is typically obtained by a Phase
Locked Loop (PLL). Depending on the fundamental, harmonics and negative sequence
components in voltages and currents, the d-q components can have ripple of different
frequencies. The analysis of the d-q components and appropriate filtering can support
the generation of the current and voltage references as required by the control. An
inverse transformation can be applied as given in (2.10) to get the three phase quantities

from d-q quantities. 7" has been given in (2.8).
I,v

e Jcosax —sinax | i,v,
L, |=T1 | . (2.10)
_ sinax  cosax | i,v,

LV,
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2.3.3 Symmetrical Component theory

The technique was introduced by C. L. Fortescue in 1918. It is applied to resolve an
unbalanced three-phase system of voltages and currents into three balanced systems of

voltages and currents. The transformation that can be applied is given in (2.11)[13].

i,V | 1 1 1 |li,v,
I,V =§ 1 a a° IV, (2.11)
i,v, 1 a®> a i,v,

. 1200
where a is ¢

and terms with 0,1,2 subscripts are zero, positive and negative sequence
components. The sequence components can be utilized to generate three phase balanced

current and voltage references.

2.3.4 SHUC control

The SHUC of the UPQC acts as a controlled current source, which supplies the
necessary current component at the PCC such that the source current at that point is
sinusoidal and at unity power factor. Different control techniques for a SHUC or shunt
active filter are discussed in [14-25]. The source or compensator current reference
generation, and achieving the generated reference through some appropriate current
control are two identified tasks under any type of control. In [14] the reference
compensator current which compensates for load harmonics is synthesized by
application of instantaneous reactive power theory (p-q theory). The drawbacks of the

control scheme are uncompensated load reactive power and failure of control during
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supply voltage unbalance. A DSP is applied to generate the compensator reference
current. An external current controller is applied to generate switching pulses. Haque
M.T. et al in [15] also apply an extended form of p-q theory along with symmetrical
components extraction. Therefore the control can be applied even during source side
voltage unbalance. Prieto J. et al in [16] calculate the instantaneous real power of the
load and generate compensator current as a difference between the measured load
current and the calculated active power component of current. The principle behind the
control is based on p-q theory. The control implementation can be very lengthy as it
includes a number of transformations and filtering. During a load change, the
adaptation speed of the active current generating control loop depends on the dynamic
response of the filters and integrators involved in the control scheme. A hardware based
compensator current reference generation is implemented in [17]. The analog circuit
implemented determines the source current requirement to cater for the real power
requirement of the load and real power required to maintain a constant DC link voltage.
The compensator current reference is calculated by subtracting the measured load
current from the source current. A digital hysteresis current controller is applied to
generate switching pulses. The source voltages are utilized to generate unit sine
reference templates. Therefore the control can fail if a phase unbalance of the source
voltages at PCC exists. In [18], as in [16], the instantaneous real power component of
the load is calculated. The compensator current reference is generated by subtracting
the calculated load active current from the measured load current. A hysteresis current
controller is applied to regulate the compensator current. The several steps involved in
the control, including source voltage magnitude calculation, positive sequence
calculation, real power component calculation of the load current, DC link voltage

control and low pass filters makes the whole control process quite lengthy. In [19] the
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voltage at the point of common coupling is measured and converted to d-q components.
The fundamental frequency components, which appear as DC when transformed to d-q,
are filtered out. The harmonic components of voltage are multiplied with a suitable gain
to obtain reference harmonic compensating current. This damps the propagation of
voltage harmonics in the distribution line. A sine-PWM technique is used to generate
the switching for the voltage source inverter. But the load reactive power compensation
is not considered in the control application. In [20-22] the average DC link capacitor
voltage is maintained at a reference value. Any variation in the DC link capacitor
voltage is the direct measure of the real power requirement of the load. Therefore the
output of the PI controller applied to maintain the average DC link voltage constant, is
the reference magnitude of the real power component of the source current. The current
magnitude is multiplied by a sine template, which is in phase with the utility voltage to
generate the reference source current. A hysteresis current controller is applied to
control the source current. The harmonic components and reactive component of the
load is supplied by the compensator, since the source current is sinusoidal and in phase
with the supply voltage. The compactness of the control and its flexibility to work
under all load current and source voltage circumstances makes it a very attractive
choice to implement in a DSP. The control does not need the load current information
and can work for both single phase and three phase cases. However in [21,22] the
control utilizes the source voltages directly to generate the unit reference sine wave,
which will fail under unbalance conditions of the source voltages. In [23] the source
current reference is generated as an in-phase component of the fundamental positive
sequence component of the source voltage, calculated by applying synchronous
reference frame transformations. In [24] four different control techniques (based on p-q

theory and Fourier transform based selective harmonic compensation) are compared at
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a lower switching frequency of IGBTs. S. George and V. Agarwal in [25] have
developed a novel controller based on the Lagrange multiplier optimization technique
to generate compensator current reference in the DSP controller. In [21], [23] and [25]
an external analog hysteresis controller is applied to regulate the generated reference

current.

2.3.5 SERC Control

The SERC of the UPQC acts as a controlled voltage source. The voltage at the PCC is
regulated at a predetermined value. Therefore the SERC injects the necessary voltage in
the event of a deviation of the PCC voltage from the predetermined value. The
predetermined PCC voltage reference can be chosen as one of the following: pre-fault
voltage at the PCC, post-fault voltage at the PCC or post-fault positive sequence
voltage at the PCC. For sensitive load bus voltage regulation, either a pre-fault
compensation or a smooth phase transition from pre-fault to post fault compensation is
preferred to avoid the tripping of the load due to the occurrence of phase jump of the
voltage during a fault. However the rating requirements of the switching devices can be
high for pre-fault type of compensation compared to positive sequence and post-fault
type of compensation. Different control strategies implemented for the SERC are
discussed in [26-34]. A Software-PLL (S-PLL) is applied to extract the d-q components
of source voltages in [26-29]. The source voltage vectors are compared with reference
vectors to generate the switching pulses. The PLL helps in the smooth transition of the
voltage reference during the pre- and post-fault period. When the SERC is applied to
regulate the voltage of a phase-jump sensitive load, the pre-fault reference can even be

saved in a memory location by application of S-PLL and applied during a fault in order
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to avoid the effect of a phase jump [28]. In [30-33], a sequence analysis based voltage
reference extraction is carried out. In [30] three methods of compensation (pre-fault,
post-fault and post-fault positive sequence) are compared and it has been concluded
that post-fault positive sequence as the reference method is the most economical
compensation for all practical cases of SERC application. In [31] a modified delta rule
is applied to extract the sequence components. Here also the post-fault positive
sequence component is considered as the reference. In [32] positive and negative
sequence components are extracted without application of a low pass filter, which
makes the control response faster. In [33] voltage is injected in quadrature to load
current to eliminate the real power transfer between the SERC and the power system.
The positive sequence of the source voltage is the reference in this case. The method
requires a bigger rating of the converter when a deep voltage sag has to be addressed by
the SERC. In [34] the reference generation is based on minimizing the VA loading on
the device. This increases the efficiency of the device by reducing the losses. However
it results in a bigger rating of the converter compared to the post-fault positive sequence

compensation method.

2.4 Applications of UPQC

Due to the power conditioning capability of the UPQC, it can find numerous
applications in the modern power systems. It is worth exploring the new areas of
application of this versatile device. P. Li et al in [35] have designed a customer quality
control center as a part of a flexible distribution system. Different users can choose
different quality of electricity in this system. The key part of the customer quality
control center is a UPQC, which assures high quality power to important users. Correa

J.M. et al in [36] report the application of a UPQC in a high frequency AC micro-grid.
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The micro-grid consists of small generators with local loads. The UPQC, when
connected at the high frequency common bus, compensates for reactive power, load
current harmonics and voltage distortions. The high frequency micro-grid proposed in

[36] is shown in Fig. 2.3.
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Fig. 2. 3 High frequency AC micro-grid concept [36]

M.-C. Wong et al in [37] report the application of a UPQC-like structure with a battery
storage system at the common DC bus in a distribution system preferably near a
sensitive load in the feeder. In this paper the device is called as ‘Distribution System
Unified Conditioner’ (DS-UniCon). This device acts as an uninterruptible power supply
when the power interruption happens. Han B. et al in [38] have proposed a combined
operation system of the UPQC and a distributed generation site. The distributed
generation is connected to the common DC link through a rectifier. This scheme allows
the UPQC to act as a power source during voltage interruptions in the source. Thus
power transfer from distributed generation is either to both the load and the grid or only

to the load during an islanding operation. The scheme proposed in [38] can be seen in
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Fig. 2.4. S.-W. Park et al and Cavalcanti M.C. et al in [39,40] have also reported the

similar application of the UPQC in distributed generation.
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Fig. 2. 4 UPQC system with DG [38]

The application of a UPQC in the area of wind generation is not reported anywhere
in the literature. In recent years there has been a rapid increase in the installed capacity
of wind-driven generation all over the world. This increase in wind capacity has raised
a number of issues in relation to relatively high levels of wind penetration. These issues
have included voltage control, reactive power control, fault ride through capability and
frequency control. Moreover, the revised grid code for wind generation all over the
world requires the generator to remain connected to the grid even during the fault
condition and to assist the power system to ride through the fault. Wind turbine
generator systems predominantly use induction generators, which are generally
consumers of reactive power. Under grid code specifications worldwide, it is required

for a wind generator to be largely self sufficient in reactive power. Grid codes generally
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require the power factor to lie closely to unity, so that the wind power installations do
not burden the power system with reactive power demand. If wind power installations
absorb reactive power, the thermal capacity of conductors connecting to the grid, which
is available for the active power transfer, is reduced. The voltage at the generator
terminal will be suppressed due to the voltage drop caused by the reactive current flow
to wind power installations. It also adds to the voltage instability during abnormal
power system conditions as the reactive power consumption increases with increase in
the slip of the induction generator. The grid code requirements pose the greatest
challenge to the grid integration of wind generators. The suitability of the application of
a UPQC to assist the grid integration of the wind generators is a field worth exploring.
Different type of wind generators and their grid integration issues are discussed in

following sections.

2.5 Wind Generator (WG) technologies

Wind turbines can either operate at a fixed speed or adjustable speed. Currently
there are three main wind turbine-generator technologies, namely Fixed Speed
Induction Generator, Doubly Fed Induction Generator and Direct Drive Synchronous
Generator [41,42]. The mechanical power captured by a wind turbine in the steady state

is given by 2.12 [43]
1 23
P, :Eper u Cp(0,/1) (2.12)

where p is the air density, R is the turbine radius, u is the wind speed and C,(6,4) is the
aerodynamic power coefficient, which for pitch controlled wind turbines depends on
both the pitch angle 8 and tip speed ratio 4. The tip speed ratio 1 is given by

R
2= Lralt 2.13)
u
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where w,,, denotes the turbine rotor speed

2.5.1 Fixed Speed Induction Generator (FSIG)

This is the most conventional wind turbine-generator. A squirrel cage induction
machine is run at a super-synchronous speed to deliver the power to the grid. The rotor
speed in this type of system is nearly constant. Therefore it is called as Fixed Speed
Induction Generator (FSIG). The generator rotor is tied to the wind turbine through a
gear box. A power factor correction capacitor is connected at the grid connection point

of the generator. A typical fixed speed wind turbine generator system can be seen in

Fig. 2.5.
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Fig. 2. 5 Grid connected fixed speed wind generator

The generator system is simple, rugged and based on the well-established induction
machine concept. But the greatest disadvantage of the generator is uncontrollability of
real and reactive power flow and over-speeding during occurrence of power system
faults and hence poor fault ride through capability. The fluctuation in the real power
output is unavoidable due to variability of wind in this type of generator. The generator
needs an additional reactive power compensator and very often a power factor

capacitor, which is a cost effective solution for the reactive power compensation is
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applied at the grid connection. However VAR demand of the generator varies
continuously. Capacitor banks have to be switched according to the VAR demand. This
leads to increased maintenance cost and failure of capacitor switches. Another major
problem is excessive stress on the gearbox due to step voltage changes [44]. The
performance of a Static VAR Compensator (SVC) based reactive power compensation
is better than a fixed capacitor, but is limited by its rating and must be sized
appropriately if it is to address transient events adequately. In addition, since SVC’s are
capacitor based, the ability to supply reactive power declines by the square of the
voltage, which can reduce the ability of a SVC to provide benefit in the case of deep
voltage dips. The application of a Static Synchronous Compensator (STATCOM) for
wind generation is discussed in [45-48]. The rating of the STATCOM device is based
on the available mechanically switched capacitor at the terminal of the FSIG, the
strength of the transmission network, the generator rating and the time limit of the
minimum voltage requirement at the high voltage terminal of the connection
transformer as set by different grid codes. In [49] a fast pitching blade angle control
strategy is proposed to provide power system fault ride through capability for fixed
speed induction generators. It is performed by controlling the mechanical power input
to the system to match the mechanical torque and the electromagnetic torque by fast
pitching of blades during the disturbance. This avoids the over-speeding of the
generator and assists the terminal voltage to return to the original value. However,
authors also mention that the proposed method of achieving fault ride through is not
acceptable under some grid codes, including that of the United Kingdom. In [50] the
application of a Unified Power Flow Controller (UPFC) for a wind energy conversion

system with a fixed speed induction generator is discussed. The real and reactive power
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variation due to variability of wind is controlled. However the performance under a grid

side fault is not reported.

2.5.2 Doubly Fed Induction Generator (DFIG)

This is a modern wind turbine-generator and is based on the wound rotor induction
machine and embedded power electronics. The generator rotor is connected to the wind
turbine through a gear box. The rotor circuit is grid connected through back-to-back
voltage source converters, which makes it capable of bi-directional power flow and
adjustable speed operation. A DFIG is fed from the stator and the rotor side. The
schematic diagram of a DFIG can be seen in Fig. 2.6.
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Fig. 2. 6 Grid connected doubly fed induction generator

A DFIG is capable of generating power both from the stator and the rotor side. During
sub-synchronous operation, the rotor consumes part of the stator power and during the
super-synchronous operation the power is delivered to the grid both from the stator and
the rotor. The rotor power is proportional to the slip and the stator power. Therefore the
rating of the converters depends on the speed range of the machine. For example if the
speed should be controllable between +/- 30% of the synchronous speed, the converters

must have a rating of approximately 30% of the generator rating. Lower converter
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A.2. 2 PCB layout of current measurement card
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A.3 Photographs of PCBs

Voltage card - % Current card

A.3. 1 Current and voltage PCBs
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Measurement cards
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A.3. 2 Measurement card integrated with Protection card and DSP
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A.4 Results of the PCB test

4 different tests are carried out on 4 individual channels on PCB. They are:

(1) Differential mode test

LG
L
_ ST Vout
amplitude:variabtle switch PCB
frequency:50
N
NG O G L gnd
A.4. 1 Differential mode test
(2) Common mode test
LG 9]
L
oF—oVout
, , switch PCB
amplitude:variable
frequency:50
N
NC— — &
gnd gnd

A.4. 2 Common mode test

(3) Common mode frequency test

>—Vout

N
NG 2IRE
lgnd lgnd

amplitude:constant
frequency:variable

A.4. 3 Common mode frequency test
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(4) Differential mode frequency test

ampl'rtuda:cunslal.'r'l"'_" g

frequency variable
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switch PCB
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A 4. 4 Differential mode frequency test

Following are the results recorded

(1) 700V (pk) voltage measurement channel

Table A.4. 1 Differential mode test (700V pk)

Voltage input AC voltage AC gain DC offset Peak value of
(r.m.s.) output (r.m.s.) output
200 0.393 0.00196 1.501 2.0567
250 0.49 0.00196 1.501 2.1515
300 0.59 0.00196 1.501 2.3353
350 0.69 0.00197 1.501 2.4768
420 0.83 0.00197 1.501 2.6747

Table A.4. 2 Common mode test (700V pk)

Voltage input AC voltage

(r.m.s.) output (r.m.s.)
150 0.00
200 0.001
300 0.001
400 0.002
450 0.002

Table A.4. 3 Common mode frequency test (700V pk)

Input voltage = 200V r.m.s.

Frequency (Hz) | AC voltage
output (r.m.s.)

50 0.001

250 0.001

550 0.003

850 0.005

1000 0.006
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Table A.4. 4 Differential mode frequency test (700V pk)

Input voltage=200V r.m.s.

Frequency (Hz) | AC voltage Phase shift
output (r.m.s.) (Degrees)
50 0.393 0
250 0.391 0
550 0.390 0
850 0.386 3
1000 0.383 3

(2) 400V (pk) voltage measurement channel

Table A.4. 5 Differential mode test (400V pk)

Voltage input AC voltage AC gain DC offset Peak value of
(r.m.s.) output (r.m.s.) output
107 0.374 0.003495 1.492 2.02
150 0.525 0.0035 1.492 2.234
200 0.700 0.0035 1.492 2481
250 0.877 0.003508 1.492 2.732
280 0.982 0.003507 1.492 2.88

Table A.4. 6 Common mode test (400V pk)

Voltage input AC voltage

(r.m.s.) output (r.m.s.)
50 0.00
100 0.001
150 0.001
200 0.002
250 0.002

Table A.4. 7 Common mode frequency test (400V pk)

Input voltage=100V r.m.s.

Frequency (Hz) | AC voltage
output (r.m.s.)

50 0.001

250 0.001

550 0.002

850 0.002

1000 0.002
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Table A.4. 8 Differential mode frequency test (400V pk)

Input voltage=150V r.m.s.

Frequency (Hz) | AC voltage Phase shift
output (r.m.s.) (Degrees)
50 0.525 0
250 0.521 0
550 0.518 0
850 0.514 2
1000 0.511 2

(3) 500V DC voltage measurement channel

Table A.4. 9 Differential mode test (500V DC)

Voltage input voltage output DC gain
135.5 0.822 0.006
210.9 1.276 0.006

327 1.971 0.006
417 2.51 0.006
487 2.937 0.006

Table A.4. 10 Common mode test (500V DC)

Voltage input Voltage output
99.3 0.001
209 0.001
313 0.002
381.2 0.002
478.8 0.003

Table A.4. 11 Common mode frequency test (S00V DC)

Input voltage =150Vr.m.s.

Frequency (Hz) | AC voltage
output (r.m.s.)

50 0.001

250 0.002

550 0.003

850 0.005

1000 0.005
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Table A.4. 12 Differential mode frequency test (500V DC)

Input voltage=150Vr.m.s.

Frequency (Hz) | AC voltage Phase shift
output (r.m.s.) (Degrees)
50 0.603 0
250 0.602 0
550 0.597 0
850 0.593 2
1000 0.589 2

(4) AC Current measurement channel

Different scaling can be achieved by deciding number of turns on Current
Transducer (CT). (Example- primary to secondary ratio of current transducer is
1:2000. by putting 2 turns on transducer, ratio can be reduced to 1:1000). The
ration has to be decided keeping in mind that the voltage input to the measurement
channel should not exceed 1.65V (r.m.s.)

Table A.4. 13 Differential mode test (AC current)
Number of turns on CT=10

Iprimary Isec=Iprimary Output voltage from AC output | AC gain | DC Peak
(r.m.s.) *10/2000 voltage offset value
(r.m.s.) % from card of
CT (Isec*33)(r.m.s.) (r.ms.) output
Actua | Reading
1
2 0.01 0.33 0.318 0.205 0.6445 1.497 1.786
3 0.015 0.495 | 0.486 0.315 0.6481 1.497 1.942
4 0.02 0.66 0.651 0.422 0.6482 1.497 2.093
5 0.025 0.825 | 0.814 0.528 0.6486 1.497 2.243
6 0.03 0.99 0.977 0.63 0.6448 1.497 2.387

Table A.4. 14 Common mode test (AC current)

Voltage input AC Voltage
(r.m.s.) output (r.m.s.)
1.6 0.001
222 0.002
2.883 0.002
4.38 0.004
5.36 0.005
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Table A.4. 15 Common mode frequency test (AC current)

Input voltage =1.987 r.m.s.

Frequency (Hz) | AC voltage
output (r.m.s.)

50 0.002

500 0.002

1000 0.002

2500 0.002

7500 0.002

Table A.4. 16 Differential mode frequency test

Input voltage=1.39 r.m.s.

Frequency (Hz) | AC voltage Phase shift
output (r.m.s.) (Degrees)
50 0.9 0
500 0.9 0
1000 0.89 0

2500 0.87 54
7500 0.84 14
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A.5 Overview of TMS320F2812

Features

1

Features

High-Performance Static CMOS Technology

- 150 MHz (6.67-ns Cycle Time)

- Low-Power (1.8-V Core @135 MHz, 1.9-V
Core @150 MHz, 3.3-V 1/0) Design

JTAG Boundary Scan Supportt

High-Performance 32-Bit CPU

(TMS320C28x)

- 16 x 16 and 32 x 32 MAC Operations

- 16 x 16 Dual MAC

- Harvard Bus Architecture

- Atomic Operations

- Fast Interrupt Response and Processing

- Unified Memory Programming Model

- 4M Linear Program/Data Address Reach

- Code-Efficient (in C/C++ and Assembly)

- TMS320F24x/LF240x Processor Source
Code Compatible

On-Chip Memory

- Flash Devices: Up to 128K x 16 Flash
(Four 8K x 16 and Six 16K x 16 Sectors)

- ROM Devices: Up to 128K x 16 ROM

- 1K x 16 OTP ROM

- L0 and L1: 2 Blocks of 4K x 16 Each
Single-Access RAM (SARAM)

- HO: 1 Block of 8K x 16 SARAM

- MO and M1: 2 Blocks of 1K x 16 Each
SARAM

Boot ROM (4K x 16)
- With Software Boot Modes
- Standard Math Tables

External Interface (2812)

- Up to 1M Total Memory

- Programmable Wait States

- Programmable Read/Write Strobe Timing
- Three Individual Chip Selects

Clock and System Control

- Dynamic PLL Ratio Changes Supported
- On-Chip Oscillator

- Watchdog Timer Module

Three External Interrupts

Peripheral Interrupt Expansion (PIE) Block
That Supports 45 Peripheral Interrupts
Three 32-Bit CPU-Timers

128-Bit Security Key/Lock

- Protects Flash/ROM/OTP and LO/L1
SARAM

- Prevents Firmware Reverse Engineering

Motor Control Peripherals
- Two Event Managers (EVA, EVB)
- Compatible to 240xA Devices

Serial Port Peripherals

— Serial Peripheral Interface (SPI)

— Two Serial Communications Interfaces
(SCls), Standard UART

- Enhanced Controller Area Network
(eCAN)

- Multichannel Buffered Serial Port
(McBSP)

12-Bit ADC, 16 Channels

= 2 x 8 Channel Input Multiplexer

- Two Sample-and-Hold

- Single/Simultaneous Conversions

- Fast Conversion Rate: 80 ns/12.5 MSPS

Up to 56 General Purpose I/O (GPIO) Pins

Advanced Emulation Features
- Analysis and Breakpoint Functions
- Real-Time Debug via Hardware

Development Tools Include

- ANSI C/C++ Compiler/Assembler/Linker
- Code Composer Studio™ IDE

- DSP/BIOS™

- JTAG Scan Controllerst

Low-Power Modes and Power Savings
- IDLE, STANDBY, HALT Modes Supported
- Disable Individual Peripheral Clocks

Package Options

- 179-Ball MicroStar BGA™ With External
Memory Interface (GHH), (ZHH) (2812)

- 176-Pin Low-Profile Quad Flatpack
(LQFP) With External Memory Interface
(PGF) (2812)

- 128-Pin LQFP Without External Memory
Interface (PBK) (2810, 2811)

Temperature Options:

- A:-40°C to 85°C (GHH, ZHH, PGF, PBK)
- §: -40°C to 125°C (GHH, ZHH, PGF, PBK)
- Q: -40°C to 125°C (PGF, PBK)

TMS320C24x, Code Composer Studio, DSP/BIOS, and MicroStar BGA are trademarks of Texas Instruments.

T IEEE Standard 1149.1-1990, |EEE Standard Test-Access Port

April 2001 — Revised July 2007 Q’ Texas SPRS1740 "

INSTRUMENTS
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A.6 Photographs of laboratory prototype of UPQC
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A.6. 1 Photograph of UPQC cabinet
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A.6. 2 UPQC Experimental setup
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A.6. 3 UPQC cabinet
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A.7 Simulation model of wind driven FSIG and UPQC with the power system
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A.7. 1 Simulation model of UPQC application to FSIG
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A.7. 2 UPQC subsystem (simulation model)
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A.7. 3 SERC subsystem (simulation model)
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SHUC Subsystem
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A.7. 4 SHUC subsystem (simulation model)
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A.8 Simulation model of the UPQC-WG and the power system
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A.8. 1 Simulation model of the UPQC-WG and the power system
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A.8. 2 UPQC-WG subsystem (simulation model)
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A.8. 3 Flux linkage equations (simulation model)
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Currents
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si_md

A.8. 4 Current equations (simulation model)
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Electromagnetic torque
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A.8. 5 Electromagnetic torque equation (simulation model)
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A.8. 6 Rotor speed equation (simulation model)
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Grid side Corverter
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A.8. 7 Grid side converter model (simulation model)
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Rotor side orwverter (vgr)
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A.8. 8 Rotor side converter model, Vgr calculation (simulation model)
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Rotor side converter {Vdr)
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A.8. 9 Rotor side converter model, Vdr calculation (simulation model)
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DC Link model
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A.8. 10 DC link model (simulation model)
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Stator and grid v,
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A.8. 11 Measurement subsystem (Simulation model)
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