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Abstract: 

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have 

shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated 

contraction. The overall aim of the present study was to develop and characterise a 

reinforced natural scaffold using fibrin, collagen and glycosaminoglycan (FCG), and to 

examine the cell-mediated contraction of this scaffold in comparison to fibrin gels. Through 

the use of an injection loading technique, a homogenous FCG scaffold was developed. 

Mechanical testing showed a six-fold increase in compressive modulus and a thirty-fold 

increase in tensile modulus of fibrin when reinforced with a collagen-glycosaminoglycan 

backbone structure. Human vascular smooth muscle cells (vSMCs) were successfully 

incorporated into the FCG scaffold and demonstrated excellent viability over 7 days, while 

proliferation of these cells also increased significantly. VSMCs were seeded into both FCG 

and fibrin-only gels at the same seeding density for 7 days and while FCG scaffolds did not 

demonstrate a reduction in size, fibrin-only gels contracted to 10% of their original 

diameter. The FCG scaffold, which is composed of natural biomaterials, shows potential for 

use in applications where dimensional stability is crucial to the functionality of the tissue.  

 

 

 

 

Keywords: 
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Tissue Engineering 

Cardiovascular scaffold 

Heart valve 
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1. Introduction 

 

Scaffolds for tissue engineering (TE) provide a template for cells to lay down extracellular 

matrix (ECM). Biocompatibility and ease of sterilisation are basic scaffold requirements, 

while scaffold geometry, degradation kinetics and mechanical properties each play a key 

role in the generation of the tissue construct in vitro (Jana et al. 2014; Li et al. 2014). There 

are unique challenges associated with the design of scaffolds for applications where the 

shape and dimensional stability of the scaffold is critical to its function. For example, heart 

valve constructs that have undergone a period of in vitro remodelling must be able to 

withstand the challenging haemodynamic environment at the donor site from the moment 

of implantation. If the construct does not function correctly, i.e. with full coaptation of the 

leaflets, it will not be able to sustain its role as a valve over the long term. To date, a variety 

of scaffolds have been proposed for heart valve TE, using both synthetic (Hoerstrup et al. 

2002; Ramaswamy et al. 2010; Sodian et al. 2000; Sant et al. 2013; Kalfa et al. 2010; Schmidt 

et al. 2010; Mol et al. 2006) and biological (Flanagan et al. 2009; Yamanami et al. 2010; 

Weber et al. 2013; Syedain et al. 2013) materials and these have demonstrated varying 

degrees of success once implanted in vivo. Of these options, we believe that fully biological 

heart valves hold greater promise than synthetic or decellularised valves for the 

development of long-term heart valve replacements which will have the ability to grow and 

remodel with the patient.  

 

Fibrin, due to its inherent biocompatibility and plasmin-controlled remodelling (Collen 

2001), shows particular promise. Fibrin is a naturally-occurring polymer involved in the 

wound-healing response. It can be extracted from the blood of a potential patient, creating 

a biocompatible, autologous material, whose peptide chains and integrin binding sites 

encourage cell adhesion, migration, proliferation, and angiogenesis (Haisch et al. 2000; 

Jockenhoevel et al. 2001; Weinandy et al. 2014). Fibrin can be used to encapsulate cells, 

creating a construct with a homogenous cell distribution and has been used in a range of 

applications including neural regeneration, wound healing, bone grafts, cartilage repair and 

cardiovascular applications (Ahmed et al. 2008). The rate of fibrin degradation can be 

controlled through the use of protease inhibitors (Cholewinski et al. 2009; Eyrich et al. 2007; 

Collen 2001) and fibrin also encourages ECM deposition and retention by the cells that it 

encapsulates (Ahmann et al. 2010; Ameer et al. 2002; Ye, Zünd, Benedikt, et al. 2000). 

Conversely, the weak mechanical properties of fibrin and susceptibility to cell-mediated 

contraction mean that sustaining dimensional stability is very difficult when using fibrin as a 

lone scaffold material. Many in vivo studies have shown a reduction in function resulting 

from this cell-mediated contraction (Flanagan et al. 2009; Syedain et al. 2011; Weber et al. 

2013). In light of this, fibrin has been incorporated in combination with biomaterials such as 

hyaluronic acid (Lee & Kurisawa 2013), polyethylene oxide (Akpalo et al. 2011) and alginate 
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(Shikanov et al. 2009) in interpenetrating networks. Fibrin has also been combined with 

collagen in mixed gels (Cummings et al. 2004), with a limited increase in mechanical 

properties reported. Additionally, fibrin has been used with porous, synthetic scaffolds 

(Gundy et al. 2008; Lesman et al. 2011; Mol et al. 2005; Moreira et al. 2014) and while this 

approach has improved the structural integrity of fibrin, acidic by-products are released 

during the subsequent degradation of the synthetic scaffold (Sung et al. 2004; Monfoulet et 

al. 2014; Busa & Nuccitelli 1984). 

 

The use of natural materials to reinforce a fibrin gel, with the aim of minimising cell-

mediated contraction of the fibrin gel, has not been examined in detail. Moreover, the 

literature shows that a stiffer scaffold has a greater resistance to cell-mediated contraction 

(Sheu et al. 2001; Keogh et al. 2010). Our research group has developed a range of collagen-

based structures, with interconnected, homogenous pores and a dehydrated 

macrostructure for a variety of applications, from bone grafts to gene delivery (O’Brien et al. 

2005; O’Brien et al. 2004; Keogh et al. 2010; Cunniffe et al. 2010; Roche et al. 2014; Tierney 

et al. 2012). The mechanical properties of the freeze-dried collagen can be customised using 

different manufacturing methods and constituents, for example, the addition of 

glycosaminoglycans (GAGs) has been shown to increase the stiffness of the collagen matrix 

(Gleeson et al. 2010; Haugh et al. 2011; O’Brien et al. 2004). Consequently, the present 

study hypothesises that a fibrin gel that is reinforced with a freeze-dried, collagen 

glycosaminoglycan (CG) structure will provide a more dimensionally stable scaffold for 

tissue engineering applications, by resisting cell-mediated contraction.  

 

Hence, the overall aim of this study was to develop a fibrin-collagen-glycosaminoglycan 

(FCG) scaffold that could resist cell-mediated contraction and provide a dimensionally stable 

structure for tissue engineering applications. The specific objectives were (i) to develop 

methods of combining a fibrin gel and a CG matrix and to characterise the microstructure of 

the resultant FCG scaffolds; (ii) to investigate the tensile and compressive moduli of fibrin 

when reinforced with a CG matrix; (iii) to investigate the response of human vascular 

smooth muscle cells (vSMCs) to the FCG scaffold, and (iv) to examine the cell-mediated 

contraction of FCG scaffolds in comparison to fibrin gels alone.  

 

2 Materials and Methods 

 

2.1 Scaffold Fabrication 

2.1.1 Fabrication and crosslinking of CG structure 

CG sheets were fabricated, as previously described, using a lyophilisation process (O’Brien et 

al. 2005) with a collagen (type 1 bovine) (Integra Life Science, Plainsboro, NJ, USA) 

concentration of 0.75% w/v solution and a GAG (chondroitin sulphate) (Sigma-Aldrich, 

Arklow, Ireland) concentration of 0.044% w/v (Tierney et al. 2009). The concentrations used 

were based on previous characterisation work performed within the laboratory. The CG 
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suspension was freeze-dried to a final freezing temperature of -10°C using a freezing rate of 

1°/min, followed by subsequent drying, to produce a homogenous structure with an 

average pore size of 150µm and porosity of 99% (Haugh et al. 2010). Dehydrothermal 

treatment using a vacuum oven (Vacucell, MMM Group, Munich, Germany) at 0.05 bar and 

105°C, over 24 hours, was used to physically crosslink and sterilise the CG matrix (Haugh et 

al. 2009). Discs (15.8mm diameter, 2mm high) of the sterile CG matrix were cut using a 

biopsy punch. These were chemically crosslinked using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDAC) in combination with N-hydroxysuccinimide 

(NHS) as described previously (Haugh et al. 2011), with the difference of using ethanol as 

the solvent to further increase stiffness (Barnes et al. 2007). Discs were washed in 

decreasing concentrations of ethanol and stored in phosphate buffered saline (PBS) (Sigma-

Aldrich) prior to use, which was always within 12 hours.  

 

2.1.2 Incorporation of fibrin into CG matrix 

Fibrin gels were fabricated as previously described (Jockenhoevel et al. 2001). Briefly, bovine 

fibrinogen (Sigma-Aldrich) was dissolved in PBS and dialysed against 4L of tris-buffered 

saline (TBS) in 6,000- 8,000MW dialysis tubing (Spectrum Labs, Breda, The Netherlands) 

overnight. After sterile filtration, the fibrinogen concentration was quantified by measuring 

the absorbance at 280nm using a spectrophotometer (Nanodrop 2000; Thermo Fisher 

Scientific, Delaware, USA). The final concentration of fibrinogen solution was adjusted to 

10mg/ml with PBS. To make fibrin gels of 1000µl, 75µl of 0.05M CaCl2, 350µl TBS and 75µl of 

40IU/ml of thrombin (Sigma-Aldrich), were pipetted into a 24-well plate into which 500µl of 

the 10mg/ml fibrinogen solution was added for subsequent polymerisation. After 

transferring the fibrin to an incubator at 37°C for 60 minutes, polymerisation was complete. 

To fabricate gels of different sizes, these ratios were maintained and the volume changed.  

 

In order to fabricate the fibrin-collagen-GAG (FCG) scaffolds, two methods of fibrin 

incorporation into the CG matrix were investigated, drop-loading and injection loading, in 

order to assess the effect of each method on the resulting FCG microstructure (Fig. 1). 

Regardless of method, the crosslinked CG matrix was firstly soak-loaded with CaCl2, TBS and 

thrombin in the same concentrations and ratios as described above for the fibrin gels. Using 

the drop-loading technique, the fibrinogen was added on top of the CG matrix in a drop-

wise fashion using a pipette. For the injection loading technique, the fibrinogen was injected 

into the matrix in a repeatable circular pattern using a 27 gauge needle. All scaffolds were 

left to polymerise at 37°C for 60 minutes. For the injection-loaded scaffolds, the optimum 

volume of fibrin to incorporate into the CG matrix was also assessed. Total volumes fibrin of 

250µl, 300µl, 350µl and 400µl were injected into CG matrix (diameter 15.8mm, thickness 

2mm). These volumes were based on preliminary experimental work that showed that 

volumes of greater than 400µl could not be maintained within each matrix. 

 

2.2 Characterisation of Fibrin-Collagen-Glycosaminoglycan Scaffold 
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2.2.1 Histological staining of the FCG scaffold 

Histological analysis was used to investigate fibrin infiltration into the CG matrix. Samples 

were formalin-fixed, embedded in Jung Tissue freezing medium (Laboratory Instruments 

and Supplies, Ashbourne, Ireland) and cryosectioned (Leica CM 1950, Wetzlar,  Germany) 

to a thickness of 10µm, in both the transverse and longitudinal planes. Masson’s Trichrome 

(Sigma-Aldrich) staining was performed using standard protocols by immersing in Bouin’s 

solution, Biebrich scarlet-acid fuchsin, phosphotungstic/phosphomolybdic acid solution and 

aniline blue with the exclusion of haemotoxylin as no cells were present in these scaffolds. 

This process stained fibrin (red) and collagen (blue), allowing visualisation of both 

components in single sections. Samples were observed using a light microscope (ECLIPSE 

90i; Nikon, Tokyo, Japan) and digital images were captured using the DS Ri camera and NIS 

elements software (Nikon).  

 

2.2.2 Microstructure of the FCG scaffold 

The microstructure of the FCG scaffolds was examined using scanning electron microscopy 

(SEM) (Hitachi SU6600 VP-SEM; Hitachi High Technologies America Inc., Clarksburg, USA). To 

examine the infiltration of fibrin throughout the CG matrix, cross sections at different 

positions within the FCG scaffolds were formalin-fixed and critical point dried (Quorum 

E3000 CPD; Quorum Technologies, East Sussex, UK), fixed to an adhesive carbon stub, and 

then sputter coated with palladium/gold using a Polaron sputter coater (Quorum 

Technologies). CG matrix and fibrin gels prepared in an identical manner were used as 

references to compare structural features. SEM imaging was performed at an accelerating 

voltage of 15kV, utilising the secondary electron detector. 

 

2.2.3 Mechanical Characterisation of the FCG scaffold 

Uniaxial compressive and tensile tests were performed to assess the effect of reinforcing 

fibrin with a crosslinked, acellular CG matrix. All samples were tested using a mechanical 

testing machine (Zwick/Roell, Ulm, Germany) fitted with a 5N load cell and were hydrated in 

PBS throughout the testing. Samples for compressive testing were as described in Section 

2.1.2. For tensile testing, FCG scaffolds were produced in a dog-bone shape which were 

63.5mm long with a narrowed centre of 3mm as per ASTM D638 (specimen type V)(ASTM 

D638 2014).. CG matrices and fibrin gels were also produced in this dog-bone shape as 

controls.  

 

Compressive and tensile tests were conducted at a strain rate of 10% per minute as 

described by Haugh et al (Haugh et al. 2009). The modulus was defined as the slope of a 

linear fit to the stress–strain curve over 2–5% strain (Harley et al. 2007). Compressive and 

tensile testing was performed on three samples per scaffold type, each of which was tested 

in triplicate.  
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2.3 Bioactivity Analysis  

2.3.1 Cell culture and seeding into the FCG scaffold 

A human vSMC cell line was purchased from ATCC (CRL-1999; LGC Standards, Middlesex, 

UK). VSMCs are a contractile cell type, which allowed an appropriate assessment of the 

ability of the FCG scaffold to resist cellular-induced contraction. VSMCs were cultured using 

the recommended complete growth media consisting of Ham’s F-12K (ATCC 30-2004, LGC 

Standards), supplemented with: 10% foetal bovine serum (Sigma-Aldrich), 2% 

penicillin/streptomycin (Sigma-Aldrich), 50μg/mL ascorbic acid (Sigma-Aldrich), 16μl/ml 1x 

ITS (Insulin, Transferrin, Selenium) (BD Biosciences, Oxford, UK), 10mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (Sigma-Aldrich), 10mM TES (N-

Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid) (Sigma-Aldrich) and 0.03mg/ml 

endothelial cell growth supplement (Sigma-Aldrich). Subculturing procedures were as per 

the manufacturer’s instructions, using trypsin-EDTA solution (Sigma-Aldrich) for cell 

detachment. The culture medium was changed every 2 days and cell number was calculated 

using a haemocytometer.  

 

For all tests, cells were seeded at a density of 1,000 cells/mm
3
 per scaffold for both FCG and 

fibrin-only gels (Murphy & O’Brien 2010). Cells were initially suspended in the fibrinogen 

component of the fibrin and following injection, the FCG scaffolds were left to fully 

polymerise for 60 minutes at 37°C. To prevent adhesion to the cell culture plastic, scaffolds 

were then transferred to sterile 6 well plates and 4ml of media were added per well, 

together with 20μg/ml of aprotinin (Sigma-Aldrich), a protease inhibitor (Ahmed et al. 

2007). The culture medium was changed every 2-3 days and scaffolds were cultured for up 

to 7 days.  

 

2.3.2 Histological analysis of the cell distribution through the FCG scaffold over time 

Histological analysis was performed to investigate cell dispersal in the FCG scaffold. Cell-

seeded scaffolds were analysed at 3, 5 and 7 days in both the transverse and longitudinal 

planes. Samples were sectioned as described earlier, and stained using Masson’s Trichrome 

(Sigma-Aldrich) with the addition of Weigert’s hematoxylin to counterstain the vSMCs 

(black). Digital images were captured using a light microscope (ECLIPSE 90i; Nikon) and the 

DS Ri camera and NIS elements software (Nikon). 

 

2.3.3 Cell Viability Analysis 

To assess the cellular viability within scaffolds, staining was performed using a Live/Dead kit 

(Molecular Probes, Eugene, OR, USA) according to the manufacturer’s protocol at 3, 5 and 7 

days post-cell seeding. Calcein was used to stain viable cells green and Ethd-1 was used to 

stain dead cells red. Fluorescence microscopy was used to observe cell viability using the 

Leica DMIL Fluorescence microscope (Leica, Wetzlar, Germany). 

 

2.3.4 Cell Number Quantification 
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The Quant-iT PicoGreen dsDNA kit (BD BioSciences) was utilised according to the 

manufacturer’s protocol to assess cell number within the FCG scaffold at days 0, 3, 5, and 7. 

Briefly, 100μl of the PicoGreen reagent solution was added to samples containing the 0.2M 

carbonate 1% TritonX (Fisher, Dublin, Ireland) cell lysate buffer and fluorescence was read at 

538nm using a Varioskan Flash plate reader (ThermoScientific, Dreieich, Germany) and 

SkanIt RE for Varioskan software. Sample fluorescence was compared to a standard curve to 

determine cell number. 

 

2.4 Cell-mediated Contraction Analysis 

The cell-mediated contraction of the fibrin and FCG scaffolds by the vSMCs was compared. 

The dimensions of both scaffold types were measured daily using Vernier callipers 

(Krunstoffwerke, Radionics, Dublin, Ireland) to assess scaffold contraction and graphed as 

percentage contraction versus day 0 (n=9). Thickness was also measured on day 0, 3, 5 and 

7 using a micrometre. Scaffolds were unconstrained, and media was changed every 2-3 

days.  

 

2.5 Statistical analysis 

Results are expressed as mean ± standard deviation. Statistical significance was assessed 

using one-way analysis of variance (ANOVA), followed by Tukey post-hoc analysis. The 

sample size was n=3, except for the contraction assessment study, where n=9. P < 0.05 

values were considered statistically significant throughout. 
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3. Results 

3.1 Scaffold Fabrication and Characterisation 

3.1.1 Analysis of FCG scaffold microstructure  

Histological analysis of the FCG scaffolds fabricated using drop-loading and injection loading 

techniques revealed that fibrin was not evenly dispersed throughout the CG scaffold in the 

drop-loaded FCG scaffolds. Instead, it was concentrated on the loaded side of the CG 

scaffold, as shown in Fig. 2A. This inconsistent incorporation in the drop-loaded group was 

also evident in the SEM images, as shown in Fig. 2B & C. In contrast, histological analysis of 

the scaffolds formed by injecting the fibrinogen component, showed excellent infiltration of 

fibrin throughout the CG matrix (Fig. 2D). Once more, the SEM images confirmed this, with a 

homogenous distribution of fibrin observed both in the transverse and longitudinal plane 

(Fig. 2E, F). The optimal FCG scaffold contained an infiltration ratio of 300μl of fibrin, loaded 

within a 15.8mm diameter, 2mm high CG scaffold (Fig. 2D). At this volume ratio, the fibrin 

component is seen throughout the thickness of the CG scaffold, unlike at the lower volumes, 

where insufficient incorporation was observed. Interestingly, with a larger volume above 

this level, the CG and fibrin were found to separate from each other (Fig. 2G where 350μl of 

fibrin was added).  

 

3.1.2 Mechanical Characterisation of the FCG scaffold 

The compressive and tensile moduli of the FCG scaffold were found to be significantly higher 

than those of the fibrin-only gel (Fig. 3). Compressive testing of fibrin-only gels showed a 

compressive modulus of 0.49kPa ± 0.1, and when reinforced with the CG matrix this 

increased to 2.97kPa ± 0.5, demonstrating a six-fold increase in compressive modulus (Fig. 

3A). The compressive modulus of the FCG scaffold was significantly lower (22% lower) than 

for the CG matrix (3.83kPa ± 0.4). The CG compressive modulus of elasticity presented here 

was stiffer than previously published CG data from this laboratory (Haugh et al. 2009), as a 

higher concentration of collagen was used. Tensile testing of fibrin-only gels showed a 

tensile modulus of 0.02MPa ± 0.01, and when reinforced with the CG matrix this increased 

to 0.6MPa ± 0.1, demonstrating a 30-fold increase in tensile modulus (Fig. 3B). The tensile 

modulus of the FCG scaffold was not significantly different to the CG-only matrix (0.59MPa ± 

0.04).  

 

3.2 Bioactivity 

3.2.1 Histological analysis of cell distribution 

VSMCs were successfully incorporated into the FCG scaffold, using the injection technique, 

with fibrin itself acting as the carrier material. To assess the distribution of cells throughout 

the FCG scaffold, Masson’s Trichrome staining was completed on transverse and 

longitudinal sections at day 3 (Fig. 4A, B), day 5 and day 7 (Fig. 4C, D). This analysis showed 

cells to be distributed evenly both transversely and longitudinally throughout the FCG 
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scaffolds. No clumping of cells was observed, with cells contacting areas of both fibrin and 

collagen.  

 

3.2.2 Cell Viability Assessment 

Having successfully infiltrated the FCG scaffold with cells, the viability of the cells was 

assessed using live/dead staining, which demonstrated that a high number of viable cells 

were observed at each time point (Fig. 5). No differences in viability were observed between 

cells in fibrin gels and in FCG scaffolds. Large numbers of live cells (green) were evident 

throughout all images and there were only a very small number of dead cells (red) (Fig. 5). 

Interestingly, there was also a noticeable increase in total live cell numbers over time, 

demonstrating the proliferation of the cells throughout the scaffold. At higher 

magnifications, a normal vSMC morphology was observed by day 7 and cells were seen to 

stretch around the CG pores (Fig. 5E). These results illustrate that the incorporation of fibrin 

into a CG matrix to form a FCG scaffold leads to an environment that supports cell viability 

and proliferation.  

 

Cell proliferation over the 7 day culture period was quantified using a dsDNA PicoGreen 

assay (Fig. 6). A significant increase in dsDNA was observed at day 7 (compared to days 0 

and 3 but not day 5) which confirmed the qualitative results seen in Fig. 5.  

 

3.3 Cell-mediated Contraction Study 

Diameter and thickness was directly measured each day revealing unchanged dimensions in 

the FCG scaffold (Fig. 7) over the 7 day period. On the other hand, fibrin-only gels which 

were seeded using the same seeding density, and containing the same fibrinogen 

concentration, contracted to 30% of their original diameter after day 1 and to 10% by day 3 

(Fig. 7A).  
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4. Discussion 

The overall aim of this study was to develop a fibrin-collagen-glycosaminoglycan (FCG) 

scaffold which would provide a dimensionally stable substrate for tissue engineering 

applications, by resisting cellular-induced contraction. Using an injection method to 

incorporate fibrin into a CG matrix ensured that a homogenous distribution of fibrin was 

achieved throughout the CG structure. Fibrin alone has a low tensile and compressive 

modulus; however, when reinforced with a CG matrix, the tensile and compressive moduli 

increased 6-fold and 30-fold, respectively. VSMCs remained viable and proliferated within 

the FCG scaffold, which provided 100% resistance to cellular–induced contraction over 7 

days. This resistance to offers convincing evidence that the FCG scaffold can provide a 

dimensionally stable system for tissue engineering applications. This fully natural scaffold 

containing fibrin, collagen and GAG offers many biological advantages for tissue engineering 

applications such as cartilage development and cardiovascular applications. The greatest 

potential for this material is perhaps in the cardiovascular field, with a particular focus on 

heart valves, where cell-mediated contraction of tissue-engineered devices has proven to be 

a problem in achieving functional repair tissue.  

 

The use of an injection technique proved to be a suitable methodology for achieving a 

homogenous distribution of fibrin throughout the CG matrix, and this was demonstrated 

through histological analysis and SEM imaging. Uniformly infiltrating a porous natural 

polymer matrix with fibrin, before the fibrin polymerised posed a major challenge and drop-

loading of fibrin onto the CG matrix proved unsuccessful, as a barrier of polymerised fibrin 

blocked the passage of the remaining fibrin through the CG structure. The volume ratio of 

fibrin to CG matrix was also assessed and a volume of 300µl of fibrin per 15.8mm diameter, 

2mm high CG matrix, was found to be optimal. This represented approximately 0.8µl of 

fibrin per mm
3
 of CG matrix. Interestingly, a higher volume ratio of fibrin to CG was more 

difficult to physically integrate into the CG matrix in the time prior to polymerisation.  

 

Reinforcing fibrin with a CG matrix resulted in an increase in mechanical properties of the 

FCG scaffold. This increase in compressive and tensile moduli is explained by the framework 

of the CG struts within the FCG scaffold which reinforced the fibrin gel. The CG struts resist 

the applied load and result in a higher modulus for the FCG scaffold, than for fibrin gels. This 

was most obvious with regards to the tensile modulus, which increased 30-fold. There was 

no significant difference between the tensile moduli of the CG matrix and the FCG scaffolds. 

We propose that as fibrin gel has a low tensile modulus in comparison to the CG tensile 

modulus, it adds no resistance to alignment of the CG pores at under tension (Harley et al. 

2007). However, the realignment of CG pores under compression was hindered by the 

presence of the fibrin, thus resulting in a 22% reduction of compressive modulus for FCG 

than for CG matrix alone. The tensile strength of fibrin is difficult to measure due to its gel-

like properties, thus it is not widely reported in the literature. In this study, all materials 
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were polymerised in the dogbone shape enabling the measurement of their tensile 

properties. Fibrin has previously been combined with polyglycolic acid, hyaluronic acid–

tyramine and collagen (van Vlimmeren et al. 2013; Lee & Kurisawa 2013; Cummings et al. 

2004; Rowe et al. 2007; Hokugo et al. 2006) and while these combinations increased the 

mechanical properties of fibrin, the resistance to cell-mediated contraction remained 

minimal. This was due perhaps to the bonding between the materials. However, it is not 

necessarily the case that the stiffer the scaffold the better, as matrix stiffness also has the 

ability to regulate cell motility, proliferation and differentiation in various cell types (Discher 

et al. 2005; Pho et al. 2008; Yip et al. 2009; Engler et al. 2006; Haugh et al. 2011). 

Additionally, many of these studies (van Vlimmeren et al. 2013; Lee & Kurisawa 2013; 

Cummings et al. 2004; Rowe et al. 2007; Hokugo et al. 2006) did not report strong cell 

viability.  

 

Using collagen and GAG as reinforcement materials for a fibrin gel in this study has many 

advantages. Firstly, fibrin, collagen and GAGs are all natural materials which degrade 

enzymatically and the rate of degradation can be controlled through the use of protease 

inhibitors unlike synthetic materials which degrade in bulk (Shah et al. 2008). This 

correlation between degradation and tissue formation is important to ensure that the newly 

formed tissue does not contract. The Masson’s Trichrome images here (Fig. 4) show that 

after 7 days in culture, both fibrin and CG are still present within the scaffold. As collagen is 

the building block for many biological tissues, it is advantageous to include it in a scaffold 

due to its ability to encourage normal biological functions in cells. Fibrin promotes ECM 

synthesis in the cells that it houses while also retaining deposited ECM due to the gel-like 

nature of the biomaterial. Fibrin, collagen and GAGs together have proven to be a suitable 

environment for both cardiovascular (Flanagan et al. 2006; van Vlimmeren et al. 2013; 

Alfonso et al. 2013; Neidert & Tranquillo 2006) and cartilage applications (Eyrich et al. 2007; 

Deponti et al. 2014). GAGs such as chondroitin sulphate and hyaluronic acid are found 

abundantly in the cardiac cushion, from which valvulogenesis occurs, and studies have 

shown that the signalling molecules contained within these GAGs, regulate further heart 

valve development (Armstrong & Bischoff 2004; Person et al. 2005; Eckert et al. 2012). 

When designing a scaffold for heart valve applications where the ability to repair and grow 

the tissue in vivo may be required, this can only be advantageous. GAGs are also present 

within the cartilage ECM, with chondroitin sulphate being the main component and 

hyaluronic acid, keratan sulphate and dermatan sulfate also present. Chondroitin sulphate 

has been shown to stimulate chondrogenesis in vitro and to promote cellular ingrowth and 

cartilaginous tissue formation in vivo (van Susante JLC et al. 2001; Buma et al. 2003). 

 

When vSMCs were incorporated within the fibrin, an even distribution of cells throughout 

the FCG scaffold was achieved, as the fibrin polymerised quickly, securing the cells in 

position. This seeding process proved very efficient, demonstrated by the high cell retention 

levels seen. Notably, an initial homogenous cell distribution, as shown in this study, has 
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been linked with strong ECM production (Kim et al. 1998). In contrast, distribution and 

attachment of cells in many scaffolds require cells to migrate through from one side, which 

exposes the risk of low cell attachment, making the scaffolds unsuitable for tissue 

development (Zund et al. 1999; Ye, Zünd, Jockenhoevel, et al. 2000). As demonstrated 

through live/dead staining and DNA quantification, the increase in cell numbers over the 7 

days showed proliferation within the scaffold, leading to a high cell density.  The reduction 

in cell number between days 5 and 7 in this scaffold is not statistically significant, and should 

be viewed as normal experimental variation. While there are some dead cells observed by 

day 7 in Fig. 5(D and E), overall cell viability is high (Fig. 5) with a statistical increase in cell 

number overall (Fig. 6). Together, these findings have positive clinical implications, as the 

efficient seeding process, and the ability of the FCG scaffold to support proliferation, would 

ensure fewer donor cells were required prior to the construction of regenerated tissue.  

 

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have 

shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated 

contraction. Over seven days in culture, the FCG scaffold developed in this study resisted 

contraction by vSMCs, thereby achieving the primary aim of the study. Three separate 

factors may have influenced the ability of the FCG scaffold to resist contraction. Firstly, 

increased stiffness of the substrate, due to crosslinking, has been reported to reduce cell-

mediated contraction (Syedain et al. 2009; Sheu et al. 2001). FCG is a stiffer material than 

fibrin alone and so its resistance to deformation and bending is higher. The crosslinking of 

the CG matrix ensures that this stiffness is representative of the microstructure of the 

matrix and not a bulk material property. This ensures that at a size scale relevant to the cells 

encapsulated, the microstructure of CG struts resists the cell–mediated contraction. 

Valvular interstitial cells (VICs) have demonstrated the ability to sense their biomechanical 

environment resulting in pathological differentiation in vitro to osteoblast lineages. This has 

been attributed to a combination of both culturing on matrices with a compressive stiffness 

of higher than ~110kPa and biochemical changes resulting in an increase in cell stiffness 

(Wyss et al. 2012; Yip et al. 2009; Merryman et al. 2007). This suggests that while the FCG 

scaffold is stiff enough to resist cellular-induced contraction, this stiffness will not cause 

calcification of cells. In fact, native porcine aortic heart valves have a reported stiffness of 

703kPa and have an ultimate tensile strength of 1450kPa (Merryman, Huang, et al. 2006; 

Merryman, Engelmayr, et al. 2006). Secondly, an increase in collagen density has been 

reported to reduce cell-mediated contraction (Legant et al. 2009). The concentrations of 

both collagen and GAG utilised in this study were optimised to provide the most stable 

combination of each macromolecule. 0.75% collagen w/v is a higher concentration than 

used for orthopaedic applications in our lab (Tierney et al. 2009; Keogh et al. 2010), 

however, once infiltrated with fibrin, other concentrations did not have the inherent 

structural stability, even when crosslinked, to endure handling and manipulation when 

infiltrated with fibrin during experiments. Thirdly, GAGs have also been shown to reduce 

cell-mediated contraction (van Vlimmeren et al. 2013). In studies where minimising 
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contraction of fibrin was examined, the amount of GAGs available to the tissue had a direct 

impact on the level of cell contraction that occurred, with greater amounts of GAG leading 

to lower cell contraction. This was hypothesised to be due to the damping effect of the 

GAGs, however the types of GAG in the study were not determined (van Vlimmeren et al. 

2013). From a heart valve perspective, the spongiosa layer of the heart valve, which is 

comprised primarily of GAGs, works as a cushion allowing the spongiosa and ventricularis to 

shear relative to each other and the water retained by the GAGs also provides a damping 

effect to the tissue (Misfeld & Sievers 2007). Findings from the static analysis suggest that 

when exposed to a dynamic environment, these materials will continue to demonstrate 

appropriate dimensional stability and resistance to proteolytic activity and haemodynamic 

forces. This clearly warrants further investigation. 

 

Taken together, the results herein provide compelling evidence that the FCG scaffold 

developed here provides a natural scaffold which can resist cell-mediated contraction 

normally seen in fibrin scaffolds. The structure of the FCG scaffold is homogenous and 

provides higher compressive and tensile moduli than fibrin alone. Cells can be incorporated 

efficiently providing an excellent cell distribution of viable cells which proliferate over time. 

Over 7 days in unconstrained culture, the dimensions of the FCG scaffold did not change, 

showing an ability to resist cellular-induced contraction, while still maintaining cell viability. 

As collagen also forms the main component of a range of other tissue types within the body, 

the FCG scaffold presented has potential for applications in areas such as cartilage repair, 

wound healing and in applications where angiogenesis is important (Weinandy et al. 2014) 

due to its mechanical properties and unique biological framework. We are currently 

focussing on cardiovascular applications for this material, specifically as a heart valve 

scaffold.  

 

5. Conclusion 

This study presents the development of a natural fibrin-collagen-glycosaminoglycan scaffold 

with unique mechanical and biological properties. Using a technique where fibrin is injected 

into a collagen-glycosaminoglycan porous matrix, an effective manufacturing process that 

ensured excellent integration of all scaffold constituents was established. The compressive 

and tensile moduli of this FCG scaffold were significantly increased, in comparison to fibrin 

alone. Consistent cell viability, with an increase in VSMC proliferation over 7 days, was also 

demonstrated. Crucially, the ability of this FCG scaffold to resist cell-mediated contraction 

was demonstrated, with no change in scaffold dimensions over 7 days. These results show 

the potential of this material for use in applications where dimensional stability is crucial to 

the functionality of the tissue and also where a solution comprised of all natural materials 

makes a more attractive option than currently available materials.  
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Figure Captions 
Figure 1: Methods of producing fibrin-collagen-glycosaminoglycan (FCG) scaffolds. The CG 

structure is a freeze-dried crosslinked matrix to which fibrin is added. For both the drop-loading or 

injection method the first three fibrin ingredients (CaCl2, thrombin and TBS) are first added to the CG 

matrix. For the drop-loading method, fibrinogen is added in a second step by being dropped on top 

of the matrix. For the injection method, fibrinogen (& cells) is injected using a 27 gauge syringe into 

the CG matrix, in a circular pattern. The injection method produced more consistent FCG scaffolds.  

 

Figure 2: The injection method of fibrin incorporation showed a more homogenous fibrin 

distribution through the Collagen-Glycosaminoglycan (CG) matrix than the drop loading method.  

(A) Masson’s Trichrome (MT) staining of drop-loaded scaffolds showed uneven infiltration of fibrin 

(red) through the collagen glycosaminoglycan (CG) matrix (blue). (B) Scanning Electron Microscopy 

(SEM) confirmed this, revealing little fibrin evident within the CG matrix. (C) MT staining of injection 

loaded FCG scaffolds show fibrin (300µl) throughout the CG matrix. (D) SEM images of injection 

loaded scaffolds show fibrin and CG intermingled. (E) MT image where 350µl of fibrin was injection 

loaded through the CG structure resulting in overloading of the CG structure with fibrin as seen by 

the large amount of fibrin which remained on top of the CG structure. (N=3 in all cases). 

 

Figure 3: The compressive and tensile moduli of fibrin were significantly increased when fibrin was 

reinforced with a crosslinked collagen glycosaminoglycan (CG) matrix. (A) Compressive modulus of 

fibrin is significantly increased when incorporated into a CG structure. The compressive modulus of 

CG is significantly decreased when fibrin is incorporated. (B) The tensile modulus of CG and FCG 

were not significantly different from each other, but both were independently significant to fibrin 

alone. N=3, for significant difference, p<0.05 (*).  

 

Figure 4: Masson’s Trichrome staining of fibrin-collagen-glycosaminoglycan (FCG) scaffolds, taken 

at day 3 (A & B) and day 7 (C & D) that show fibrin (red) , collagen (blue) and cells (black) 

throughout the entire scaffold in both the longitudinal (A & C) and transverse (B & D) planes. 

Images taken at day 5 are not shown here, but show the same detail. Scale bar represents 100µm. 

N=3. 

 

Figure 5: Live/dead staining of vascular smooth muscle cells (vSMC) in a fibrin-collagen-

glycosaminoglycan (FCG) scaffold over 7 days, show excellent viability with very few dead cells 

(red) present. Live cells fluoresce green and are seen to increase in number from day 3 (A & B) to 

days 5 (C & D) and 7 (E & F). All samples were seeded at the same seeding density of 1,000 cells per 



  

26 

 

mm3 of scaffold.  On day 3, excellent viability is seen with space remaining within the scaffold 

structure. By Day 5 the cell number has increased, with very few dead cells evident. Day 7 showed 

scaffolds with confluent cell populations. As these samples were 2mm deep, the images are picking 

up cells, both on the surface of the scaffold and cells within the scaffold. The deeper cells are out of 

focus in the images. N=3 at each time point.  

 

Figure 6: An increase in dsDNA is seen over the timepoints using PicoGreen assay, indicating that 

the vascular smooth muscle cells are proliferating in the fibrin-collagen-glycosaminoglycan (FCG) 

scaffold. Based on p<0.05 cell number was shown to be significantly higher at Day 5 than Day 0 and 

Day 3, and higher at Day 7 than Day 0 (***). These results indicate that proliferation of the cells was 

occurring in the FCG scaffold. Results represent three independent samples tested in triplicate. 

 

Figure 7: Fibrin-collagen-glycosaminoglycan (FCG) scaffolds resisted cell-mediated contraction in 

vitro, by vascular smooth muscle cells up to 7 days. As shown in (A), fibrin gels with the same 

seeding density had contracted to approximately 10% of their original diameter after 3 days. Graph 

shows mean ± standard deviation. N=9 for these tests. (B) Macro image of cell seeded fibrin gels at 

day 0 and subsequently following contraction, at day 7. (C) Macro image of FCG scaffold at day 0, 

and (D) at day 7 where no contraction of the FCG scaffold had occurred.  

 

 

 



  

Figure 1: Methods of producing fibrin-collagen-glycosaminoglycan (FCG) scaffolds. The CG structure is a freeze-dried crosslinked matrix 
to which fibrin is added. For both the drop-loading or injection method the first three fibrin ingredients (CaCl2, thrombin and TBS) are first 
added to the CG matrix. For the drop-loading method, fibrinogen is added in a second step by being dropped on top of the matrix. For the 
injection method, fibrinogen (& cells) is injected using a 27 gauge syringe into the CG matrix, in a circular pattern. The injection method 
produced more consistent FCG scaffolds.  
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Figure 2: The injection method of fibrin incorporation showed a more 
homogenous fibrin distribution through the Collagen-Glycosaminoglycan (CG) 
matrix than the drop loading method.  (A) Masson’s Trichrome (MT) staining of 
drop-loaded scaffolds showed uneven infiltration of fibrin (red) through the 
collagen glycosaminoglycan (CG) matrix (blue). (B) Scanning Electron Microscopy 
(SEM) confirmed this, revealing little fibrin evident within the CG matrix. (C) MT 
staining of injection loaded FCG scaffolds show fibrin (300µl) throughout the CG 
matrix. (D) SEM images of injection loaded scaffolds show fibrin and CG 
intermingled. (E) MT image where 350µl of fibrin was injection loaded through 
the CG structure resulting in overloading of the CG structure with fibrin as seen by 
the large amount of fibrin which remained on top of the CG structure. (N=3 in all 
cases). 
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Figure 3: The compressive and tensile moduli of fibrin were significantly increased when fibrin was reinforced with a crosslinked 
collagen glycosaminoglycan (CG) matrix. (A) Compressive modulus of fibrin is significantly increased when incorporated into a CG 
structure. The compressive modulus of CG is significantly decreased when fibrin is incorporated. (B) The tensile modulus of CG and 
FCG were not significantly different from each other, but both were independently significant to fibrin alone. N=3, for significant 
difference, p<0.05 (*).  
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Figure 4: Masson’s Trichrome staining of fibrin-collagen-glycosaminoglycan (FCG) 
scaffolds, taken at day 3 (A & B) and day 7 (C & D) that show fibrin (red) , 
collagen (blue) and cells (black) throughout the entire scaffold in both the 
longitudinal (A & C) and transverse (B & D) planes. Images taken at day 5 are not 
shown here, but show the same detail. Scale bar represents 100µm. N=3. 
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Figure 5: Live/dead staining of vascular smooth 
muscle cells (vSMC) in a fibrin-collagen-
glycosaminoglycan (FCG) scaffold over 7 days, show 
excellent viability with very few dead cells (red) 
present. Live cells fluoresce green and are seen to 
increase in number from day 3 (A & B) to days 5 (C & 
D) and 7 (E & F). All samples were seeded at the same 
seeding density of 1,000 cells per mm3 of scaffold.  
On day 3, excellent viability is seen with space 
remaining within the scaffold structure. By Day 5 the 
cell number has increased, with very few dead cells 
evident. Day 7 showed scaffolds with confluent cell 
populations. As these samples were 2mm deep, the 
images are picking up cells, both on the surface of the 
scaffold and cells within the scaffold. The deeper cells 
are out of focus in the images. N=3 at each time 
point.  
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Figure 6: An increase in dsDNA is seen over the timepoints using PicoGreen assay, indicating that the vascular smooth muscle cells 
are proliferating in the fibrin-collagen-glycosaminoglycan (FCG) scaffold. Based on p<0.05 cell number was shown to be significantly 
higher at Day 5 than Day 0 and Day 3, and higher at Day 7 than Day 0 (***). These results indicate that proliferation of the cells was 
occurring in the FCG scaffold. Results represent three independent samples tested in triplicate. 
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Figure 7: Fibrin-collagen-glycosaminoglycan (FCG) scaffolds resisted cell-mediated 
contraction in vitro, by vascular smooth muscle cells up to 7 days. As shown in (A), fibrin 
gels with the same seeding density had contracted to approximately 10% of their original 
diameter after 3 days. Graph shows mean ± standard deviation. N=9 for these tests. (B) 
Macro image of cell seeded fibrin gels at day 0 and subsequently following contraction, at 
day 7. (C) Macro image of FCG scaffold at day 0, and (D) at day 7 where no contraction of 
the FCG scaffold had occurred.  
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