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__________________________________________________________________________________________ 
 

Recently, Non-negative Matrix Factor 2D Deconvolution was 
developed as a means of separating harmonic instruments from 
single channel mixtures. This technique uses a model which is 
convolutive in both time and frequency, and so can capture 
instruments which have both time-varying spectra and time-
varying fundamental frequencies simultaneously. However, in many 
cases two or more channels are available, in which case it would be 
advantageous to have a multi-channel version of the algorithm. To 
this end, a shifted 2D Non-negative Tensor Factorisation algorithm 
is derived, which extends Non-negative Matrix Factor 2D 
Deconvolution to the multi-channel case. The use of this algorithm 
for multi-channel sound source separation of pitched instruments is 
demonstrated. 
 
Keywords – Non-negative tensor factorisation, sound source 
separation 

__________________________________________________________________________________________

I   INTRODUCTION 
In recent years, matrix factorisation techniques such 
as non-negative matrix factorisation (NMF) [1] have 
been used to attempt single channel sound source 
separation [2]. These techniques attempt to 
approximate a magnitude spectrogram X as the 
product of low rank matrices A and S, i.e. X ≈ AS. 
The columns of A contain frequency basis functions, 
while the associated rows of S contain corresponding 
amplitude envelopes for the frequency basis 
functions. Individual elements of A and S can then 
be used to attempt resynthesis of individual 
components or sources in the input data. Using a cost 
function which encourages sparseness in A and S 
results in a factorisation where the basis functions in 
A  and S correspond to perceptually meaningful 
features, such as the frequency spectra of individual 
notes and their associated amplitude envelopes. 
Ensuring non-negativity is useful in obtaining the 
factorisation as a magnitude spectrogram is by 
definition non-negative, and it also reflects the 
intuition that sound sources add together. 
 
However, these techniques are limited in that the 
decomposition is linear, and so each basis function 
pair typically corresponds to a single note played by 
a given pitched instrument. Therefore, to use these 

techniques for sound source separation, the basis 
functions must be grouped by instrument or source. 
While grouping techniques have been developed, it 
has proved difficult to obtain good clustering in 
many situations [3]. To overcome this problem 
shifted non-negative matrix factorisation was 
developed, which models notes played by an 
instrument as translations of a single instrument basis 
function [4]. This necessitates the use of a time-
frequency resolution with log-frequency resolution, 
such as the Constant Q transform [5]. If the centre 
frequencies are set so that fi = fi-121/12 where fi is the 
centre frequency of band i, then the spacing between 
centre frequencies matches that of the even-tempered 
tuning system. Therefore, translating a frequency 
basis function of a note up by one bin is equivalent to 
a rise in pitch of one semitone. 
 
A further problem with matrix factorisation 
techniques is that they return fixed spectra for each 
note, whereas the spectra of real instruments evolve 
over time. To this end, convolutive forms of NMF 
have been developed which model sources as a 
sequence of successive spectra and a corresponding 
amplitude envelope which is translated across time to 
activate each successive spectrum [6]. 
 



Recently, these methods have been combined in an 
attempt to model a source or  pitched instrument as 
translations of successive spectra in both frequency 
and time, thereby allowing time-varying spectra and 
fundamental frequencies. This leads to a more 
realistic model of the sources present. This 
technique, called Non-negative Matrix Factor 2D 
Deconvolution (NM2D) has been used to separate 
mixtures of single channel instruments [7]. 
  
All of the above techniques work on single channel 
mixtures, however, most recordings of popular music 
from the past 40 years are stereo or two channel 
recordings. These two channel recordings are 
typically created by linear mixing of single channel 
recordings of individual instruments, with the only 
difference between each channel for a given 
instrument lying in the gain of the instrument in each 
channel. Therefore, the same model or set of basis 
functions can be used to describe a given instrument 
in either channel. Further, this gain difference is a 
source of extra information which can be used to aid 
the separation process. It can be seen then that 
extending NMF-based techniques to the multi-
channel case would be advantageous, firstly due to 
the widespread use of 2 channel recordings, and 
secondly, as it provides extra information to aid the 
sound source separation process. To this end, 
techniques such as non-negative tensor factorisation 
(NTF) and shifted NTF have been proposed to deal 
with the multi-channel case [8],[9]. For sound source 
separation of multi-channel recordings, the NTF 
model can be written as: 
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where X is a r x n x m tensor containing the 
spectrograms of the r channels, containing n 
frequency bins and m time frames. X̂  is an 
approximation to X, G is a r x K matrix containing 
the gains of each factor in each channel, A is an n x 
K matrix containing the frequency basis functions, 
and S is an m x K matrix containing the amplitude 
basis functions, o  denotes outer product 
multiplication, and :k denotes the kth column of a 
given matrix. The tensor factorisation is obtained by 
minimising the generalised Kullback-Liebler 
divergence between X and X̂ . This is defined as: 
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where l, i, and j index over channel, frequency bin 
and time frame respectively.  
 
For the rest of the paper, the following conventions, 
in line with those adapted by Bader and Kolda in 
[10] are used. Tensors are denoted by upper case 
letters such as X, and contracted tensor product 
multiplication is defined as follows. If W is a tensor 

of size I1 x ··· x IN  x J1 x ··· x JM and Y  is a tensor of  
size I1 x ··· x IN  x K1 x ··· x KP then contracted tensor 
multiplication along the first N modes is given as: 
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where element indexing occurs within ( ) brackets, 
and where the modes to be multiplied are specified in 
the subscripts within the angle brackets.  

II   SHIFTED 2D NON-NEGATIVE 
TENSOR FACTORISATION 

This research aims to extend NM2D to the multi-
channel case. To do so requires the extension of the 
basic NTF model to allow for translations of the 
underlying sources in both frequency, and time. 
Where NM2D carries out translations by means of a 
shift operator, in line with our previous work, we 
carry out shifting by means of translation tensors. 
For an n x 1 vector, an n by n translation matrix is 
required. This translation matrix can be easily 
obtained by permuting the columns of the identity 
matrix. For example, in order to shift a vector by one 
position, the required matrix is I(:,[n, 1:n-1]), where 
I  is the identity matrix and the ordering of the 
columns is defined in the square brackets. For z 
translations, each of the z translation matrices can 
then be grouped into a translation tensor, Q of size n 
x z x n. 
 
Separate translation tensors are defined to deal with 
shifts in frequency and across time respectively, 
resulting in the following model for shifted 2D Non-
negative Tensor Factorisation (SNTF): 
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where X̂  is a tensor of size r x n x m which is an 
approximation to X,  and G is a tensor of size r x K, 
containing the gains of each of the k sources in each 
of the r channels. T is an n x z x n translation tensor, 
which translates the frequency basis functions in A 
up or down in frequency, thereby approximating 
different notes played by a given source. A is a tensor 
of size n x K x p, where p is the number of 
translations across time. S is a tensor of size z x K x 
m and P is a translation tensor of size m x p x m, 
which translates the amplitude envelopes contained 
in S across time, thereby allowing time-varying 
source spectra. For simplicity of notation, we adopt 
the convention that :k denotes the tensor slice 
associated with the kth source, with the singleton 
dimension included in the size of the slice. 
 



A(:, d):k can then be interpreted as the frequency 
spectrum associated with the dth translation in time of 
the kth  source. Similarly S(e , : ):k can be interpreted 
as the amplitude envelope or time basis function 
associated with the eth translation in frequency of the 
kth source. 
 
The required tensor factorisation is obtained again 
using Eqn. (2) as a cost function. By eliminating 
terms in X which are constant, this reduces to: 
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Substituting for Eqn. (4) and taking the gradient with 
respect to G:k yields the following update equation: 
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where XXD ˆ/.= , O is an all-ones tensor of size 
equal to X, and ./ denotes elementwise division. This 
can be converted to a multiplicative update rule by 
setting λ equal to: 
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Similarly, update rules can be derived for A:k and S:k. 
These are given by:  
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Once G,A, and S are randomly initialised to positive 
values, non-negativity of the factorisation is 
guaranteed through the use of multiplicative updates. 
The algorithm was implemented in Matlab, using the 
tensor classes for Matlab available at [11]. 

III   SOUND SOURCE SEPARATION 
USING SNTF 

To demonstrate the use of SNTF for the purposes of 
sound source separation, a 2 channel mixture of 
flute, piano and trumpet was made using sampled 
instruments. A separate sample was used for each 
note of each instrument to make the test as realistic 
as possible. The flute was panned to mid-left, the 
piano to the centre and the trumpet to mid-right. 
Figures 1 to 3 show the Constant Q spectrograms of 
the flute, piano and trumpet signals respectively, 
while Figures 4 and 5 show the left channel and right 
channel mixtures respectively. 
 

 
Figure 1: Spectrogram of flute signal 

 

 
Figure 2: Spectrogram of piano signal 



 
Figure 3: Spectrogram of trumpet signal 

 
Figure 4: Left channel mixture spectrogram of flute, 

piano and trumpet. 

 
Figure 5: Right channel mixture spectrogram of 

flute, piano and trumpet. 

 
Figure 6: Separated spectrogram of flute. 

 
Figures 6, 7 and 8 show the separated spectrograms 
of flute, piano and trumpet obtained by applying 
SNTF to the mixture spectrograms. The range of 
frequency translations was set to 7 frequency bins, 
corresponding to a pitch range of 7 semitones and the 
range of time translations set to 15 time frames, 
which corresponds to a maximum allowable shift in 
time of 0.18 seconds when using a hopsize of 512 
samples at a sample rate of 44.1 kHz. The number of 
sources set to 3. Using these parameters, the SNTF 
algorithm succeeded in separating the instruments. 
This can be seen in the spectrograms of the separated 
instruments, with only the notes of each instrument 
visible in the separated spectrograms. The harmonic 
structure of the instruments has been successfully 
recovered, though some of the finer detail has been 
lost in the temporal evolution of the sources. This 
demonstrates that the SNTF algorithm is capable of 
separating mixtures of pitched instruments. 
 
On listening to the separated waveforms, the 
separated instruments clearly predominate, with little 
or no traces of the other instruments to be heard in 
the separated signals. Indeed, the principal artefacts 
in the resynthesis is as a result of the approximate 
nature of mapping the log-frequency spectrograms 
back to linear-frequency spectrograms to allow for 
resynthesis. Methods of overcoming this problem are 
currently being researched [12]. A further 
shortcoming, inherent in all matrix factorisation and 
tensor factorisation algorithms, is that the algorithm 
is sensitive to the choices of shift ranges for both 
frequency and time, though we have observed that 
this is less of a problem for time shifts than for 
frequency shifts. 



 
Figure 7: Separated spectrogram of piano. 

 
Figure 8: Separated spectrogram of trumpet. 

IV   CONCLUSIONS 
A shifted 2D non-negative tensor factorisation 
algorithm has been derived, which extends non-
negative matrix factor 2D deconvolution to the 
multi-channel case. The resultant algorithm is 
capable of modelling shifts in both time and 
frequency, thereby modelling sources as a group of 
successive spectra which can be shifted in frequency 
to approximate different notes played by the sources. 
The algorithm takes advantage of the spatial 
information available when dealing with multi-
channel mixtures to improve source separation. The 
algorithm is demonstrated to be capable of separating 
simple mixtures of pitched instruments. Future work 
will concentrate on improving the separation 
capabilities of the algorithm by incorporating models 
of the instruments to be separated. 
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