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Vibrational spectroscopy is an attractive modality for the analysis of biological 

samples, providing a complete non-invasive acquisition of the biochemical 

fingerprint of the sample. It has been demonstrated that this data provides the means 

to assay multiple functional responses of a biological system at a spatial resolution as 

low as a micron within the sample. As the interaction of ionizing radiation with 

biological systems involves chemical reactions between the products of radiation 

induced damage and various structural and functional units within the cell, the 

vibrational spectroscopic modalities have received attention as potential 

measurement platforms for the in-situ examination of the chemistry of biological 

species in radiobiology. This presents challenges in relation to sample preparation 

and the construction of suitable analytical methodologies. In this work protocols for 

sample preparation and approaches to multivariate analysis of vibrational spectra in 

radiobiological analysis are detailed and the utility of the methodology in analyzing 

the evolution of biochemical responses to radiobiological damage are highlighted. 

 



Keywords: Vibrational spectroscopy, radiobiology, chemometric modelling, 

multivariate statistics. 

 

1. Introduction 

 

Ionizing radiation interacts with the cell inducing a complex series of biochemical 

responses that are dependent on radiation LET, dose, dose rate, and cell type [1-3]. It 

is thought that the ultimate target for ionizing radiation in the cell is the cellular DNA 

[1,3]. Direct radiation damage, as a result of interactions between a charged particle or 

high energy photon and DNA, is reflected in DNA base cleavage reactions, the 

formation of base adducts, and the creation of single and double strand breaks in 

addition to sites of clustered damage [4]. It is thought that DNA damage may also be 

mediated through the generation of free radicals (such as superoxides (•O2
-), 

hydroxides (•OH) and nitrous oxides (•NO) etc.) in the water rich cell nucleus, which 

subsequently react with the DNA [4,5], and may also subsequently be involved in 

intracellular signalling processes [5]. Damage may also be mediated though cell to 

cell signalling [6] and membrane-dependent signalling. The damage to DNA is 

subsequently reflected in the initiation of multiple transduction pathways that attempt 

to repair the damage [7], resulting in the production of mediatory and regulatory 

proteins and lipids that are specific to each pathway [1,8,9]. The repair response may 

subsequently be overwhelmed resulting in apoptosis [2,10], oncosis or mitotic death 

of the cell [11], or the damage may be repaired with the cell continuing on its cycle, 

albeit with potential mutations to its DNA that can result in mutagenesis [12]. 

 



Much of the radiation damage occurring in biological media after exposure to ionizing 

radiation is mediated through chemical interactions between the ionization products 

and sensitive molecular structures within cells [13-15]. Methodologies that examine 

the total concentration of metabolic species within the cell after exposure to ionising 

radiation have recently been described [16-18]. Vibrational spectroscopy is a global 

term that is applied to the complementary techniques of infrared and Raman 

spectroscopy, modalities that allow the measurement of the concentration and nature 

of the organic species within a sample. Due to vibrational selection rules biological 

molecules may contain individual bonds or moieties that will be either infrared or 

Raman active, and consequently measurement of both spectra assesses the total 

content of organic chemical species within a biological specimen [19]. Both 

modalities have in the last decade seen an acceleration of their use in and application 

to biological research as a result of the development of microscope systems and solid 

state detection systems that now allow the rapid measurement of the chemical content 

in cellular and tissue species [20] within laboratory benchtop devices. The spatial 

resolution of both Fourier Transform Infrared microspectroscopy (FTIRM) and 

Confocal Raman Microscopy (CRM) is diffraction limited to ~3µm to 10µm in 

FTIRM and ~0.5µm to 1.5µm in CRM depending on the measurement wavelengths 

and detector characteristics in a given system [21]. The higher signal levels 

achievable with FTIRM result in increased speed of measurement and consequently 

higher sample throughput over CRM [21]. The strengths of both are now well 

established in hyperspectral imaging for non-invasive and label-free histopathology 

[22-30], while the capabilities of CRM to detect tissue abnormalities in-vivo without 

the complication of contamination of spectral measurements by water and 



atmospheric features has resulted in a move to the development of clinical devices 

[31]. 

 

A significant degree of attention now focusses on the diagnostic and analytical 

capabilities of FTIRM and CRM for cytometry and functional analysis in biological 

media. Quantitative spectral changes attributable to the biochemical processes 

occurring during cell culture and mitosis [32,33], proliferation [34], differentiation, 

[35,36], adhesion [37], death [38-42], and invasion [43] have previously been 

observed with FTIRM and CRM. The increased resolution in CRM imaging has also 

been exploited to enable the detection of cellular mitochondrial distribution [44] and 

phagosomes [45]. Early applications of both techniques in radiobiology had focussed 

on studies with Raman spectroscopy of radiation-induced peroxidation in model 

phospholipid and membrane systems [46,47], structural changes in protein [48] and in 

nucleic acids [49]. Such studies continue to contribute to the understanding of the 

interaction mechanisms between radiation and key molecular species and structures 

within the cell [48-51]. These investigations have since evolved to Raman 

spectroscopic studies of the effects of in-vitro proton irradiation of excised tissues 

[52], and radiotherapeutically irradiated (γ-radiation) tissue specimens [53-55]. Other 

studies with bacteria have investigated the effects of γ-radiation on Deinococcus 

radiodurans [56], Kocuria rosea [57]and Micrococcus luteus [58] with FTIR 

spectroscopy. Recently Gault et al have demonstrated the sensitivity of FTIR 

spectroscopy to apoptotic effects in γ-irradiated lymphocytes [59] and to molecular 

changes in HaCaT cells exposed to both γ-radiation and hydrogen peroxide [60], 

together with its sensitivity to biochemical alterations in HaCaT cells irradiated with 

α-particles delivered by micro-beams [61]. These studies represent proof of the 



detection of biochemical effects in irradiated biological species with spectroscopic 

methods. However, the utility of the technique in the analysis of biochemical changes 

occurring with radiobiological effect has yet to be established. The present work 

outlines sample preparation techniques, analytical methodologies and modelling 

techniques that may be used with FTIRM spectra in the analysis of biochemical 

changes occurring with dose and time after γ-irradiation of HaCaT keratinocytes. 

 

2. Sample Preparation and Spectral Treatment 

 

2.1 Sample Preparation Considerations 

 

Various cytological sample preparation techniques exist that often involve the 

centrifugal deposition of cells onto spectroscopic mounting substrates [62], or their 

culture in-situ on the substrate. Cell culture on such substrates has been demonstrated 

to be toxic to the cell, although use of molecular biochemical coatings (such as 

gelatin) have been shown to ameliorate such effects [37]. Cells may be studied in their 

live form with CRM, but may also be preserved with chemical fixation for both CRM 

and FTIRM (which will also require sample dessication), and this has been 

demonstrated to adjust both sets of spectra such that experimental controls preserved 

in the same manner are generally required [63]. 

 

2.2 Spectral Preprocessing Considerations 

 

As FTIRM in cytometry requires the transmission of the IR radiation through the cell, 

mounting substrates such as zinc-selenide (ZnSe) and calcium-fluoride (CaF2) disks 



are commonly used for ‘transmission mode’ measurements and glasses coated with 

materials reflecting in the IR are commonly used for ‘transflection mode’ 

measurements (such as MirrIR (Kevley Technologies)) [64]. Spectra may, due to 

optical transmission effects exhibit a broad oscillating baseline that is attributable to 

Mie scattering [62,65]. This effect arises since the nucleus and subcellular organelles 

may act as non-absorbing dielectric spheres and scatter, in a wavelength and 

organelle-size dependent manner, the incident IR radiation. However, this fails to 

account for the derivative-like line shapes (termed a ‘dispersion artefact’) seen in 

various positions in the spectrum, which contribute to both a background oscillation, 

and a shifting of certain peak positions. The resonant behaviour of this phenomenon 

(where scattering and absorption by structures within the cell) has recently been 

shown to produce these effects simultaneously [66]. Corrections for this effect may be 

provided with the extended multiplicative scatter correction (EMSC) [67,68]. Other 

contaminating effects in FTIRM spectra occur due to aborptions of water vapour and 

CO2, which may also be removed by existing embedded machine-dependent software 

corrections or machine-dependent in-house correction algorithms [69], while simple 

filtering and normalization procedures may correct for spectral noise and remove 

point-to-point variations in sample concentration. 

 

Raman spectra from cellular species are also characterized by baseline variability that 

originates in interactions of the excitation laser with the complex chemistry and 

optical characteristics of the sample. These include resonant effects that may 

dominate the spectrum with excitation wavelengths in the visible and UV regions, and 

a highly variable background that has its origin in sample fluorescence with visible 

and UV excitation, but not with near IR excitation. The utilisation of excitation 



wavelengths in the near IR removes the potential for photobleaching effects [70] and 

with short exposure times is also non-cytotoxic and therefore suitable for use in 

studies on live cells or in-vivo [71]. Raman spectra may be corrected for the presence 

of known contaminants, and the broad background signal may be removed using 

EMSC or subtraction of fitted polynomials. As the optical window used as a sample 

support during CRM is itself Raman active (in the case of ZnSe and quartz) this signal 

is generally measured as part of the acquisition protocol, and is often combined with 

other instrumental corrections in preprocessing [72]. 

 

3. Quantitative Multivariate Analytical Methodologies 

 

Multivariate statistical models and chemometric techniques for relating spectral 

signatures to analyte or agents of interest through multivariate regression have been 

developed extensively for the past three decades, and have seen a wide range of 

applications in fields from proteomics to the petroleum industry [73]. With the 

increased proliferation of powerful computational facilities, these algorithms have 

also been coupled with feature selection techniques that allow the decomposition of 

an optimal set of variables (spectral features) from the spectral data which maximize 

the predictive capacity and speed of implementation of the modelling algorithms, 

together with simplifying them and rendering them more interpretable scientifically 

[74]. All of the algorithms seek to calibrate a model that relates the spectral dataset 

(X-matrix) to a target of interest (Y-matrix, eg. concentration of reaction product or 

analyte) [73]. The most extensively applied multivariate regression algorithm is the 

partial least squares regression (PLSR) technique, which involves the decomposition 

of the X-matrix and Y-matrix into their eigenvectors and eigenvalues and the 



selection of an optimal model with minimal complexity that predicts Y from X [73], 

with minimized residual error, E.  

 

          (1) 

 

This model assumes a linear relationship between the structure of the data in X and 

that in Y, although many experiments involve non-linear relationships between the 

two sets of variables [73]. Quadratic PLSR (Q-PLSR) has therefore been developed to 

allow the study of quadratic relationships between spectral variables and the 

predictand, Y, while more complex variations in X that relate to Y may be modelled 

using the generalized regression neural network (GRNN), which can model any non-

linear regression problem [75]. A method of feature selection that provides readily 

interpretable results in PLSR involves the method of Jack-knifing developed by 

Martens and colleagues, whereby the uncertainty variance in the regression 

coefficients, B, in the PLS model is estimated for a model with optimal complexity, 

while variables which do not possess regression coefficients that are statistically 

significant at a certain level of confidence are eliminated using a t-test [76]. Other 

methods that employ evolutionary computational techniques such as genetic 

algorithms are less readily interpretable, but very rapidly decompose the spectral 

dataset into a small number of variables that maximize the predictive capacity of the 

models [77], and can be used with any regression algorithm. These algorithms are 

particularly suited to this type of minimization problem since the search space (i.e. the 

number of combinations of variables that may be input to the regression models) is 

vast, and standard exhaustive search techniques are therefore unrealistic [77]. Genetic 

algorithms are one such option that have been successfully utilised in multivariate 



regression problems [73]. They employ concepts from biological evolution where 

spectral variables are encoded as ‘genes’ (which are often encoded as binary 

variables, 1 and 0, such that 1 represents a variable that is selected and vice versa), a 

group of genes is termed a ‘chromosome’ and the algorithm evolves by means of 

mutation (changing the values of individual genes randomly) and crossover 

(exchanging genes between chromosomes) to test different chromosome selections 

and to escape local minima. Individual chromosomes are selected and rejected by 

virtue of their ‘fitness’, i.e. the value of a multivariate selection criterion that must 

either be maximised or minimised depending on the evolution criteria [73,77].  

 

4. Application to Radiobiological Analysis 

 

4.1 Sample Preparation and Data Acquisition 

 

FTIRM and multivariate regression techniques were used to analyse the spectra of a 

human keratinocyte cell line (HaCaT) with γ-radiation dose and with time post-

irradiation, extensive details of which are available elsewhere [78]. Cells were 

cultured on low emissivity silver oxide coated glass slides (MirrIR, Kevley 

Technologies), on which a 2% gelatin coating was deposited to enable attachment of 

the cell and improve cell viability [37]. Doses (ten points) ranging from 0 Gy to 5 Gy 

were delivered to the samples, and they were fixed in 4% neutral-buffered formalin at 

time points ranging from 6 hours to 96 hours post-irradiation. 

 

Spectra were recorded in transflection mode using a Perkin-Elmer GXII spectrometer 

in the 4000 to 720 cm-1 wavenumber range with an aperture size of 100 µm ×100 µm, 



a spectral resolution of 4 cm-1 and with 64 scans per spectrum. Approximately 300 

spectra were recorded at each dose and time point. Outliers were removed using a 

multivariate test of the dissimilarity between the spectral data within a given dose and 

time class, and the contributions of water and carbon dioxide were removed from each 

spectral set [69]. Each spectral set was then corrected using EMSC [68], and were 

vector normalised. 

 

4.2 Multivariate Modelling of Dose Dependencies in FTIRM Spectra 

 

All data processing and analysis was performed in the Matlab 7.2 environment (The 

MathWorks Inc., USA) with PLS Toolbox 5.0.3 (Eigenvector Research, Wenatchee, 

WA, USA). PLSR, Quadratic PLSR (QPLSR) and GRNN models were constructed 

for the spectral datasets at each time point. Each model was constructed on 60% of the 

spectral data randomly selected at each time point, with the remaining 40% of the 

spectral data retained as an unseen testing set. The PLSR and QPLSR models 

performance were subsequently evaluated for 10 separate randomizations of the 

datasets, while the GRNN was evaluated for 50 randomizations of the data to prevent 

data bias. The root mean squared errors of calibration (RMSEC) and prediction 

(RMSEP) were used as measures quantifying the performance of the models in 

regressing the spectral data against the radiation dose to which the cells were exposed. 

 

Table 1 depicts the performance of each of the models in predicting radiation dose at 

time point. The large disparity between the RMSEC and RMSEP values obtained 

using the GRNN, PLSR and QPLSR algorithms suggests that the biochemical 

fingerprint of the cell varies in a non-linear manner with radiation dose, and such 



variations are not adequately described by simple non-linear regressions such as 

QPLSR. In addition, the predictive efficiencies of the PLSR and QPLSR models are 

relatively consistent with time post-irradiation, while that of the GRNN varies with 

time post-irradiation, being best at 6 hours and 96 hours post-irradiation. The 

variation may be the result of the differences in the degree of variability in the 

biochemical fingerprint with dose at each time point, an effect that may be the result 

of the initiation of a variety of DNA repair processes and other responses.  

 
In order to identify spectral features that vary linearly and non-linearly with dose, a 

study with feature selection methods was conducted. Variable selection was 

performed on the PLSR and QPLSR regression coefficients according to the Jack-

knifing procedure described by Martens and Naes, with p<0.05 for t-testing. Variable 

selection was also performed with PLSR and QPLSR using a genetic algorithm (GA) 

constructed in Matlab. Initial selection of variables was performed according to the 

method of Yoshida et al [73,79], where a number of short GA runs (with evolution for 

20 generations and with 30 crossovers (p=0.9) and 50 mutations (p=0.05) per 

generation) were executed to minimize the number of features selected by the 

algorithm, and to prevent overfitting that has been demonstrated to occur when using 

GA’s with a large search domain [73]. Subsequently, a more extensive evaluation was 

performed with the GA, using the features most often selected during the initial 

evaluation (the numbers of which are detailed in Table 2). In this case the GA was 

executed on fifty separate occasions, with evolution for 50 generations at each 

execution (and with 100 crossovers (p=0.9) and 100 mutations (p=0.05) per 

generation). Variables for selection were encoded with binary digits, and a population 

of 25 individual chromosomes was randomly created for evolution at the beginning of 

each independent execution of the algorithm. One hundred spectra from the pooled 



dataset at each time point were selected randomly for calibration of the multivariate 

models with each GA chromosome, and a separate one hundred spectra were selected 

for testing, with the minimisation of the RMSEP being the fitness criterion adopted 

for the evolution of the algorithm. It was found that the number of features selected by 

PLS Jack-knifing was quite large (see Table 2), and was not minimised further with 

repeated evaluations, whereas the number selected by PLS-GA after a number of 

rapid evaluations is much less and is thus more readily interpretable. The GA was 

subsequently adopted for feature selection with both the PLS and QPLS models.  

 

 
In figure 1, a spectrum of a control sample of the HaCaT cell line is provided. The IR 

spectrum contains broad peaks due to strong overlap between vibrations of distinct 

biochemical components, although characteristic group vibrations enable the 

identification of specific species (such as carbohydrate OH bond stretching from 

3520-3100 cm-1, protein amide vibrations from 1654-1530 cm-1, and phosphate bond 

stretch of the DNA and RNA backbone from 1090-1084 cm-1). A full list of 

characteristic vibrations is contained elsewhere [78]. In figure 2, the spectrum of the 

sham-irradiated control sample is provided at each time point to provide a reference 

for the interpretation of the features selected by the GA. The features selected by the 

regression at each time point, and for both the PLS and QPLS models are highlighted 

as bars at the spectral wavenumbers that were selected by the model, with the length 

of the bar reflecting the frequency with which it is selected by the GA over all the 

independent runs of the GA. It is apparent that there are significant differences 

between the features selected by the linear (PLS) and quadratic (QPLS) models, 

particularly at early time points after irradiation, which signify biochemical 



differences in the cellular response to more complex photon deposition and repair 

process (such as occurs after double strand breakage and clustered base damage).  

 

Interpreting only those features with a high frequency of selection (i.e. frequency 

greater than 0.9, where a frequency of 1 is equivalent to that feature being selected on 

each of the independent runs of the GA) one consistent range over which the features 

are selected is between ~ 2600 cm-1 to 1850 cm-1, another being from 3720 cm-1 to 

3500 cm-1, which do not contain features of biochemical origin, but rather may be 

assigned to changes in the optical characteristics of the cell [62,65] due to organelle 

swelling that occurs during the cell cycle, and during apoptotic and necrotic cell 

death.  

 

Various investigations with FTIR spectroscopy have identified spectral features that 

are changed during apoptosis and necrosis [38,39,41,42]. Evidence of early dose 

dependent apoptotic and necrotic cell death are seen here at 6 hours after irradiation 

with the selection of the spectral features by the GA-PLS algorithm at 1155 cm-1 

(assigned to the -C-OH bond stretch of serine, threonine and tyrosine residues [42] 

signifying protein denaturation) and by the GA-PLS and GA-QPLS algorithms at 

1639 cm-1 (assigned to the amide I bond vibration within β-sheet structures in protein 

[38,39]). At 12 hours post irradiation the GA-PLS algorithm selects features at 1713 

cm-1 (assigned to base paired DNA) and 3012 cm-1 (assigned to the olefinic bond in 

lipid) that are changed with apoptosis [39], while the GA-QPLS algorithm selects 

features at 1161 cm-1 (again assigned to the -C-OH bond stretch of serine, threonine 

and tyrosine residues [42]) and 968 cm-1 (assigned to C-C stretch in the deoxyribose 

sugar moiety [39,41]) that have also been shown to be characteristically changed 



during apoptosis. At 24 hours the amide I bond vibration at 1619 cm-1 is again 

selected by the GA-PLS algorithm together with the -CH2 stretching vibrations in 

lipid and protein (2917 cm-1 and 2848 cm-1) that have been shown to be apoptotic 

markers reflecting structural changes in membrane lipid [41]. Further apoptotic 

markers are not selected by either algorithm after 24 hours.  

 

Throughout the spectrum, at each time point after irradiation, the GA-PLS and GA-

QPLS algorithms select spectral features of protein which may signify the formation 

of protein-protein crosslinks and proteolytic reactions occurring during cell death. 

Features that reflect the changing concentrations of carbohydrate during cellular 

proliferation and apoptosis are selected by the GA-PLS algorithm in the spectral 

ranges from 3520-3100 cm-1 (OH bond stretch), 1290-1030 cm-1 (OH bond stretch), 

1200-1000 cm-1 (osidic (C-O) bond stretch), and 960-730 cm-1 (overlapping C-H 

stretching vibrations and ring vibrations in α and β-pyranose carbohydrates) at each 

time point from 6 to 96 hours post-irradiation. Contrastingly, the GA-QPLS 

algorithms select features over each of these ranges only at 48 and 96 hours after 

irradiation, the selected spectral features such as osidic bond stretching vibrations and 

CH deformation vibrations at 6,12 and 24 hours possibly signifying structural changes 

to nucleic acids rather than carbohydrate metabolism. Evidence of the initial effects of 

irradiation on the conformation of the nucleic acid backbone are the selection of the 

feature at 1227 cm-1 (-PO2
- asymmetric stretch in DNA and RNA) by the GA-PLS 

algorithm at 6 hours after irradiation. Similar features (-PO2
- symmetric stretch in 

DNA and RNA at 1243 cm-1) are again selected by the GA-PLS algorithm at 24 

hours, and by the GA-QPLS algorithm at 24 hours (-PO4
- stretch (964 cm-1), -PO2

- 

symmetric (1084 cm-1) and asymmetric (1234 cm-1) stretch) and at 48 hours (-PO2
- 



stretch in DNA/ RNA at 1084 cm-1). Each of these features may signify the early and 

late production of single and double strand breaks through initial energy deposition 

events and potentially as a result of long-term elevation of ROS [3,5] with some 

differences in the relationship between the production of such damage and the initial 

radiation dose. The selection of the osidic bond stretching vibration in DNA and RNA 

(in the region of 1050 cm-1) at 24, 48 and 96 hours after irradiation may also signify 

the occurrence of base cleavage reactions that may be due to ROS damage or DNA 

repair.  

 

These results demonstrate the capacity of FTIRM coupled with suitable data mining 

techniques to capture and elucidate the complex nature of radiobiological responses at 

the molecular level, and to elucidate the evolution of the molecular changes with time 

after irradiation. Further development of the technique, through correlation of spectral 

changes with biochemical and biological endpoints, is necessary to fully exploit the 

richness of the data and establish it as a modality for routine use in radiobiological 

analysis. 

 

5. Conclusion 

 

Vibrational spectroscopy coupled with multivariate chemometric algorithms represent 

a new and powerful approach to the analysis of the total biochemical fingerprint after 

radiobiological damage. Suitable data mining techniques coupled with parallel 

physiological data can elucidate molecular aspects of the cellular radiobiological 

response mechanisms. Future studies will develop the methodology outlined here and 



demonstrate the capability of the measurement to separate and analyse various 

radiobiological responses of the cell in-vitro. 
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Tables 
 
Time 
(hours) 

GRNN 
RMSEC 

GRNN 
RMSEP 

PLSR 
RMSEC 

PLSR 
RMSEP 

QPLSR 
RMSEC 

QPLSR 
RMSEP 

6 0.028(0.005) 0.042(0.007) 0.22(0.01) 0.31(0.02) 0.35(0.02) 0.48(0.05) 
12 0.170(0.007) 0.405(0.072) 0.59(0.03) 0.79(0.03) 0.56(0.04) 0.76(0.06) 
24 0.094(0.006) 0.171(0.024) 0.24(0.02) 0.33(0.02) 0.27(0.02) 0.40(0.04) 
48 0.091(0.062) 0.242(0.082) 0.32(0.01) 0.46(0.02) 0.32(0.02) 0.46(0.03) 
96 0.003(0.005) 0.005(0.004) 0.27(0.02) 0.37(0.01) 0.39(0.04) 0.52(0.02) 
 

Table 1. Comparative performances of GRNN versus PLSR and NL-PLSR models in prediction of dose from corrected spectral 

measurements with time point post-irradiation (RMSEC and RMSEP are in the units of dose (Gy). Figures in brackets denote the 

standard deviations on the mean. 

 
 

Time 
(hours) 

No. features 
selected by 
Jack-knifing 

No. features 
selected by GA 

6 849 108 
12 880 142 
24 669 82 
48 819 86 
96 783 131 

 

Table 2. Numbers of spectral features selected by PLS Jack-knifing and PLS-GA as described in the text. 
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Figure Caption: Figure 1. Reference spectrum of a sham-irradiated control HaCaT 

cell with labelling of major vibrational features. 
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Figure 2(a). Features selected by GA-PLS (top)
 and GA-QPLS algorithms at 6 hours after irradiation

Figure 2(b). Features selected by GA-PLS (top)
 and GA-QPLS algorithms at 12 hours after irradiation

Figure 2(c). Features selected by GA-PLS (top)
 and GA-QPLS algorithms at 24 hours after irradiation

Figure 2(d). Features selected by GA-PLS (top)
 and GA-QPLS algorithms at 48 hours after irradiation

Figure 2(e). Features selected by GA-PLS (top)
 and GA-QPLS algorithms at 96 hours after irradiation

 
 
Figure Caption: Figure 2(a-e). Top, features selected by GAPLS and, bottom, GA-

QPLS algorithms in regressing against radiation dose at each time point after 

irradiation. The frequency with which each feature is selected over several 

independent runs of the GA is reflected in the length of the bar at each selected 

feature. 
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