From the Management of Distribution to the Management of Supply Chains: the Evolution of SCM

Edward Sweeney
Technological University Dublin, edward.sweeney@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/nitloth

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
https://arrow.tudublin.ie/nitloth/13

This Article is brought to you for free and open access by the National Institute for Transport and Logistics at ARROW@TU Dublin. It has been accepted for inclusion in Practitioner Journals by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
From the Management of Distribution to the Management of Supply Chains: the evolution of SCM

Edward Sweeney, NITL

Background and Rationale
A plethora of supply chain management (SCM) definitions have been developed in recent years. There is evidence of differences in emphasis and approach between different industrial sectors, geographical areas and functional backgrounds. Furthermore, a variety of associated terminologies have also been developed which has added to the complexity. As noted by Ross (1998), this can limit management's understanding of the SCM concept and the practical effectiveness its application. Nonetheless, SCM has risen to prominence in recent years in both academic and commercial circles. The number of professional bodies involved in the area is also a reflection of the growth in interest in the subject. However, there is still no universally accepted definition of what SCM is (and, indeed, is not). As pointed out in a seminal article by Mentzer et al. (2001):

"Despite the popularity of the term Supply Chain Management, both in academia and practice, there remains considerable confusion as to its meaning. Some authors describe SCM in operations terms involving flow of products and materials, some view it as a management philosophy, and some view it as a management process."

This article provides an overview of the historical evolution of SCM. The next issue of Logistics Solutions will provide an overview of the various definitions which have been developed over the years.

Historical Evolution of SCM
The term SCM was originally introduced by management consultants in the early 1980s (Oliver and Webber, 1982). Since then several attempts have been made to place contemporary SCM thinking in an historical context and/or to plot its historical development and evolution. The following sections provide an overview of three of the more useful and widely cited approaches. They also provide a framework for describing some key concepts and models which are now effectively constituent elements of the overall integrated SCM paradigm.

Fragmentation to Integration Model
Battaglia (1994) developed a model which indicates the way in which SCM has evolved from its main constituent functions from the 1960s to date (see Figure 1). It indicates that the evolution has involved a shift from highly fragmented approaches with the 1990s characterised as the decade of "Total Integration".

During the “Evolving Integration” decade (the 1980s) various of these functional areas became integrated into materials management and physical distribution - these then became further integrated under the logistics umbrella. SCM extends this integration further by linking logistics with manufacturing, information technology (IT), marketing, sales and strategic planning. The model provides a useful visual model of the way in which companies have attempted to move away from the functional stovepipe or silo approach to more integrated approaches, facilitated by IT. It is interesting to note that this model is analogous to two other “three phase” approaches to logistics evolution.

Masters and Pohlen (1994) describe the evolution of logistics management, and the role of logistics managers, in the following three phases:
1. functional management (1960-1970) - functions such as purchasing, shipping, and distribution are each managed separately;
2. internal integration (1980s) - the management of the supply chain functions of a single facility are unified and become the responsibility of a single individual; and,
3. external integration (1990s) - the management of supply chain functions throughout the chain are unified requiring cooperation and coordination between links in the chain.

La Londe (1994) also describes the evolution of integrated logistics in three phases:
1. physical distribution - the distribution of goods is all that needs to be managed by a logistics manager;
2. internal linkages - it is important for the logistics manager to control both internal supply functions and physical distribution; and,
3. external linkages - logistics management requires cooperation in management with upstream and downstream entities in order to maximize the benefits of the total logistics system.

Lean/Functional to Agile/Customised Migratory Model
Christopher and Towill (2000) use the personal computer (PC) supply chain to illustrate the migration from lean, functionally oriented approaches to agile and more customised supply chain architectures. They use a model origin-
ally developed by Murokoshi (1994) to highlight the four main stages in this evolutionary process (see Figure 2).

As pointed out earlier, lean thinking has its origins in the Japanese automotive industry, in particular in the Toyota Production System and the just-in-time (JIT) paradigm (Ohno, 1988; Womack and Jones, 2003). The main objective of this thinking was the identification and elimination of NVAs or waste (or muda in Japanese). An NVA may be defined as: any activity (or resource or asset) that adds cost (or time) to any supply chain process without adding value from a customer perspective. In the early 1980s the focus was largely on cost optimisation through improved efficiency, particularly in manufacturing processes.

As customer service issues such as product availability and lead time evolved from being order (or market) qualifiers to becoming market (or order) winners, so the need emerged for not just lean functions and supply chains but for responsive and customer-oriented configurations. In other words, agility became a key concern. The agility concept is closely associated with Cranfield University in the U.K. and with Prof. Martin Christopher in particular (see, for example: Christopher, 2000; Christopher and Towill, 2001).

Christopher (2000) defines agility as a business-wide capability that embraces organisational structures, information systems, logistics processes, and, in particular, mindsets. Flexibility, with its origins as a business concept in flexible manufacturing systems (FMS), is a key characteristic of an agile organisation. In essence the need for a shift from lean to agile paradigms has been driven by dynamic and increasingly competitive global markets. The concept of mass customisation (MC) is a key driver of this shift.

The MC concept was first coined by Davis (1989) and it promotes the ability to provide individually designed products and services to every customer. This contrasts starkly with the Henry Ford Model T paradigm. It is achieved through high process agility, flexibility and integration (see, for example: Pine et. al., 1993; Hart, 1995; Eastwood, 1996 and Da Silveira et. al., 2001). In short, as markets become more competitive and customers more discerning, there is a need to move towards the MC ideal and supply chain agility is the route to making this happen. As Christopher (2000) notes, leanness may be an element of agility but it will not in itself provide the degree of organisational flexibility which is increasingly required to meet changing customer requirements.

A final element of the Christopher and Towill Migratory Model worthy of comment is the agility concept. The desirability of being both lean and agile has resulted in the rather contrived term, leagile, being coined. A leagile supply chain is defined as one which combines elements of both the lean and agile approaches. In technical terms, leagility involves the strategic use of a decoupling point (Naylor et. al., 1999). This decoupling point aims to achieve responsiveness to volatile demand downstream (i.e. in the market) while providing level scheduling upstream from the decoupling point. In essence it is an attempt to get the best of both worlds.

Lumus and Vokurka Historical Perspective

Lumus and Vokurka (1999) suggest that the origins of SCM can be traced to the quick response (QR) programme in the textile industry and later to the efficient consumer response (ECR) programme in the grocery industry.

The origins of QR are often traced back to Blackburn (1991) and a useful definition is provided by Fisher and Raman (1996). In the specific context of the textile sector they describe QR as:

An initiative designed to cut manufacturing and distribution lead times through a variety of means including information technology such as electronic data interchange, point of sale scanners, and bar coding, logistics improvements such as automated warehousing and increased use of air freight, and improved manufacturing methods, ranging from laser fabric cutting to reorganisation of the sewing process into modular sewing cells.

This definition recognises the central role of IT in the supply chain improvement process and that improving the speed of response to customer requirements demands a focus on both distribution and manufacturing issues. ECR originated

1 Author's definition based on Womack and Jones (2003) and others.
2 He actually makes the point that an industry may be very lean but not be sufficiently flexible or “nimble” to consistently meet customer requirements profitably. He suggests that the automotive industry might be a case in point.
from a grocery industry task force which was established in 1992 (Kurt Salmon and Associates Inc., 1993) and focuses on the need of quick and accurate information flows in the supply chain as the key to supply/demand synchronisation and inventory reduction. The key common objective of QR and ECR is speed of response to customer requirements – both recognise this as an integral element of value creation. They also both recognise the centrality of effective information management in the achievement of this objective.

Lumus and Vokurka (1999) go on to outline other early documented efforts at improving supply chain performance in companies across a range of sectors.

Their paper continues with a focus on collaborative efforts aimed at identifying “best practices” (e.g. the SCOR model developed by the Supply Chain Council – see below) and on the need for a clear linkage between SCM and overall corporate strategy. It concludes by suggesting seven guidelines for companies beginning to manage across the entire supply chain. As seven relate directly or indirectly to the need for supply chain companies to work in a more coordinated and collaborative way.

The Supply Chain Council (SCC) was organised in 1996 and initially included 69 practitioner companies meeting in an informal consortium (Supply Chain Council, 2005). It has grown to approximately 800 members worldwide, across a range of sectors, by 2005. The Supply Chain Operations Reference (SCOR) model is a product of the Supply-Chain Council (SCC) and provides a unique framework that links business process, metrics, best practices and technology features into a unified structure to support communication among supply chain partners and to improve the effectiveness of supply chain management and related supply chain improvement activities’ (Supply Chain Council, 2005). Three key features of the model are important:

1. It integrates the concepts of business process reengineering, benchmarking, and process measurement into an integrated framework.

2. It is based on five distinct management processes:

 (i) plan – demand/supply planning and management;

 (ii) source – sourcing stocked, make-to-order, and engineer-to-order product;

 (iii) make – make-to-stock, make-to-order, and engineer-to-order production execution;

 (iv) deliver – order, warehouse, transportation and, installation management for stocked, make-to-order, and engineer-to-order product; and,

 (v) return – return of raw materials and receipt of returns of finished goods.

3. It contains three levels of process detail:

 (i) top level – process types;

 (ii) configuration level – process categories; and,

 (iii) process element level – based on process decomposition.

Since its first introduction, a number of papers have appeared in the academic literature concerning the SCOR model (for example: Stewart, 1997; Huan et al., 2004).

Some Key Lessons
The three approaches to SCM historical evolution outlined above highlight at least five key elements of contemporary thinking in the field:

1. There is a need to focus clearly on customer service issues, in particular speed of response to customer requirements;

2. Markets have become more sophisticated and customers more discerning – this has resulted in the need to understand the relevance of MC (as opposed to traditional “one size fits all” perspectives);

3. Intra-company integration of the constituent elements of supply chain functionality requires a strong management focus;

4. Effective information management, facilitated by recent developments in information and communications technology (ICT), is important in improving customer service performance; and,

5. Managing relationships with external parties which perform key supply chain roles has become more important.

Finally, the work of John Gattorna, in particular the performance/capability continuum (Gattorna et al., 2003) provides a useful conceptual overview which mirrors SCM historical evolution in many respects. Furthermore, most of the elements of contemporary SCM identified above are captured in this continuum.

References

Supply Chain Council (2005), www.supply-chain.org (accessed June 2005)