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Abstract

The use of vibrational spectroscopy in the detection of cancer is a newly emerging
diagnostic field, which has shown great potential to date. Many investigations have been
carried out on frozen tissue samples, which by their very nature are hard to obtain.
However, histology departments have archives of thousands of tissue samples, preserved
and mounted in wax blocks. If this archival material can be shown to yield good Raman
and IR spectra capable of differentiating between normal and cancerous tissue, it would
improve the diagnostic capabilities of spectroscopy even further. Results from these
formalin-fixed paraffin processed (FFPP) tissue sections, will give a better understanding
of the effects of processing and could unlock the potential diagnostic capabilities of FFPP
sections. This study investigated the effect of freezing, formalin fixation, wax embedding
and de-waxing. Spectra were recorded from parallel tissue sections of placenta to
examine biochemical changes before, during and after processing with both Raman and
IR spectroscopy. FFPP sections were shown to provide good quality Raman and IR
spectra but new peaks due to freezing and formalin fixation as well as shifts in the amide
bands resulting from changes in protein conformation and possible cross-links were
found. Residual wax peaks were observed clearly in the Raman spectra. In the FT-IR
spectra a single wax contribution was seen which may contaminate the characteristic
CH3 deformation band in biological tissue. This study has therefore confirmed that FFPP
sections have diagnostic potential provided that researchers are aware of the biochemical
changes due to tissue processing highlighted by this study.

Keywords: Raman; Fourier transform infrared spectroscopy; Fresh tissue; Frozen
sections; Formalin-fixed paraffin processed sections; Tissue processing; Fixation; Wax;
Cancer



1. Introduction

In the past number of years many studies have been carried out using vibrational
spectroscopy to classify tissue with a view to cancer diagnosis [1]. Both IR and Raman
spectroscopy have been employed. Raman spectroscopy is very similar to the more
frequently used Fourier transform infrared (FT-IR) spectroscopic technique and both
spectroscopic techniques are very complementary. Vibrations that are strong in an
infrared spectrum, those involving strong dipole moments, are usually weak in a Raman
spectrum. Likewise, those non-polar vibrations that give very strong Raman bands
usually result in weak infrared signals. For example, hydroxyl or amine stretching
vibrations and the vibrations of carbonyl groups, are usually very strong in an FT-IR
spectrum and usually weak in a Raman spectrum. However, the stretching vibrations of
carbon—carbon double or triple bonds and symmetric vibrations of aromatic groups are
very strong in the Raman spectrum. Raman however, has the advantage of minimal
interference from water so is a good choice for biological samples with a view to in vivo

measurements. Some of the tissue types examined by various groups include; cervical [2—
4], breast [5-7], skin [8-12], lung [13], brain [14,15] bladder [16], esophagus [17-19],
colon [20], liver [21,22], thyroid [23] and prostate [24,25]. A variety of different methods
of sample preparation have been employed in these studies, such as; fresh, frozen, air-
dried, formalin-fixed and de-waxed formalin fixed paraffin preserved (FFPP) tissue
sections. The overwhelming majority of tissue studies have been carried out on either
frozen tissue or de-waxed FFPP sections [1]. Although considered the gold-standard,
frozen tissue is difficult to obtain, deteriorates rapidly and cannot provide retrospective
analysis. However, there is a plentiful supply of archival tissue samples, preserved and
mounted in wax blocks. Due to the prevalence of these FFPP tissue sections, a better
understanding of the effects of processing could unlock the potential diagnostic
capabilities of these sections. The sections go through many processing steps before
spectroscopic evaluation. If these processing steps result in changes in bands identified as
diagnostically significant, this would have implications for tissue classification and could
compromise the potential of these FFPP sections in a diagnostic capacity. Previous
studies using vibrational spectroscopy have been carried out into the effect of formalin
fixation as well as ex vivo handling [26-28]. Huang et al. [26] investigated the effects of
formalin fixation on human bronchial tissue using Raman spectroscopy. A decrease in
overall Raman intensities was observed and notable formalin peaks were identified at
907, 1041 and 1492 cm_1. Shim and Wilson [27] examined the effect of tissue drying,
formalin fixation and snap freezing on normal hamster tissues using Raman spectroscopy.
The study found that formalin did not contaminate the Raman spectrum (with the
exception of the 1041 cm_1 band), however drying/ dehydration was found to disrupt
protein vibrational modes. FT-IR spectroscopy was used by Pleshko et al. [28] to study
the effects of fixation in ethanol and formalin, as well as methacrylate embedding. The
study found ethanol fixation of fetal rat bone tissue resulted in changes in the Amide I
and II bands (1650 and 1550 cm_1, respectively), a result of alteration of the protein
conformation of the tissue. This study seeks to re-examine the above and extend the study
to investigate the effect of xylene, paraffin wax embedding and subsequent de-waxing on
human tissue using both Raman and FT-IR spectroscopy. The use of both techniques on
the same samples maximises the amount of structural information obtained from the



tissue. The steps involved in processing these sections can be summarised as follows:
tissue excising, fixation in formalin, tissue dehydration in alcohol, embedding in paraffin
wax, microtomy and removal of wax. This study examined the biochemical structure of
normal parenchymal tissue from the placenta at each of these processing steps using both
Raman and IR spectroscopy. This tissue was chosen due to its homogenous nature. This
minimises the likelihood of recording spectra from different cell types, which would be
expected to produce different spectral features. A homogenous tissue ensures that it is
only the effects of processing that are being detected, rather than point-to-point
inhomogeneities. The effect of tissue freezing was also examined and compared to
freshly excised tissue.

2. Experimental
2.1. Raman spectroscopy

An Instruments S.A. Labram Raman spectroscopic confocal microscope was used, with
an Argon ion laser operating at a wavelength of 514.5 nm. The Labram imaging system is
a fully confocal Raman microscope system, with a motorised XY sample stage for
automated Raman imaging. The system includes a stigmatic spectrometer with two
motorised gratings, of which the 1800 grooves/mm grating was used. The resolution of
the system operating with the 1800 grooves/mm was 1.65 cm_1/pixel. Detection of the
scattered light was performed using a Peltier cooled, 16 bit dynamic range CCD detector
with 1024 _ 256 pixels. A 50_ objective lens was used. The laser power at the sample
was measured and found to be about 6.5 _ 0.05 mW, focused to a spot size of 2 mm at the
tissue surface. The focal depth and thus the maximum sampling thickness is about 2 mm.
The scattered Raman signal was integrated for 60-150 s and measured over a spectral
range of 400-1900 cm_1 with respect to the excitation frequency. Once acquired each
spectrum was baseline corrected, noise subtracted and lightly filtered using a third order
linear model to improve clarity.

2.2. FT-IR spectroscopy

A Perkin-Elmer Spectrum GX single-beam, Michelson interferometer-based, Fourier
transform infrared spectrometer was used. The spectrometer has a dual level optical
module that is sealed and desiccated. The radiation source was provided by a built-in 35
W tungsten halogen illuminator. The medium beam MCT detector covers the range from
5500 to 550 cm_1. MIR and FIR beam splitters and DTGS detector kits allow the range
7000-50 cm_1 to be covered. The range was set to 4000—400 cm_1 with a resolution of 8
cm_1. The spectrometer was configured with the Auto IMAGE microscope system,
which was operated in reflectance mode. The aperture was set to 50 mm _ 50 mm, with a
gain of 4. Each sample was scanned for 128 scans, baseline corrected and lightly
smoothed.

2.3. Sample preparation



Normal parenchymal tissue from the placenta was obtained from the National Maternity
Hospital, Holles Street, Dublin. Tissue was examined at each stage of the fixation,
embedding and de-waxing processes. Tissue was divided into six different pieces and
was examined as follows:

1. Fresh tissue: tissue was refrigerated and examined within 24 h. The tissue was cross-
sectioned and a narrow section from the tissue centre was excised using a scalpel. The
tissue was then rinsed in phosphate buffered saline (PBS), before being mounted onto
silver oxide MirrIR slide (MirrIR, Kevley Technologies, Chesterland, OH, U.S.) for
examination.

2. Frozen tissue: tissue was placed on a metal chuck with optimal cutting temperature
(OCT) as support medium and then placed in a cryostat at _20 8C. Tissue was sectioned
into 10 mm slices using the cryostat’s internal microtome and mounted onto silver oxide
MirrlR slides. Tissue spectra were recorded when the tissue thawed.

3. Formalin-fixed tissue: tissue was placed in formalin for 24 h. The tissue was cross
sectioned and a narrow section from the tissue centre was excised using a scalpel, rinsed
in PBS, and mounted onto MirrIR slides before examination.

4. Formalin-fixed and dehydrated using xylene (Serosep, Limerick, Ireland): tissue was
automatically processed through formalin and xylene. Again the tissue was
crosssectioned and a piece of tissue was rinsed in PBS before being mounted on the silver
oxide slides.

5. FFPP tissue mounted in wax: tissue was automatically processed to wax as follows:

i. vacuum fixed in 10% buffered formal saline histograde pH 6.8-7.2 (J.T. Baker,
Deventer, The Netherlands) and heated to 35 8C;

ii. vacuum dehydration in industrial methylated spirit IMS T100 (Lennox, Dublin,
Ireland) heated to 35 8C;

iii. vacuum clearing in xylene (Serosep, Limerick, Ireland) and heated to 35 8C;

iv. vacuum impregnation with Tissue Tek III Embedding Wax with polymer added
(Sakura, Zoeterwoude, The Netherlands) and heated to 59 8C. 10 mm sections were
sliced using a microtome and mounted on MirrIR slides.

6. De-waxed FFPP sections: 10 mm waxed sections were immersed in a series of baths
consisting of two baths of xylene (BDH, Dorset, UK) for 5 min and 4 min, respectively,
two baths of ethanol absolute (Merck, Dorset, UK) for 3 min and 2 min, and a final bath
of Industrial Methylated Spirits 95% (Lennox, Dublin, Ireland) for 1 min.

Each category investigation was carried out on 3 parallel tissue pieces or sections within
the category and a minimum of 10 spectra were recorded from each using both IR and
Raman spectrometers. A representative selection is shown.

3. Results

Fig. 1 compares the Raman spectra of fresh tissue and frozen tissue. Both tissues produce
good spectra. There is an overall deterioration in the spectrum of the frozen tissue section
compared to the fresh tissue. The most noticeable differences between the fresh and
frozen tissue is the reduction in the intensity the 1002 cm_1 (C-C aromatic ring
stretching), 1447 cm_1 (CH2 bending mode of proteins and lipids) and 1637 cm_1
(Amide I band). The frozen tissue also displays an additional contribution at 1493 cm_1.
Fig. 2 compares the Raman spectra of fresh tissue with formalin fixed tissue and tissue



fixed and soaked in xylene. The most obvious change in the tissue with the fixation in
formalin is the dramatic reduction in the intensity of the Amide I band (1637 cm_1) and
the addition of the peak at 1490 cm_1. Soaking in xylene prior to wax embedding creates
significant spectral differences in the tissue. Strong peaks appear at 620, 1002, 1032 and
1601 cm_1 (C-C twist aromatic ring, C—C stretching aromatic ring, C—C skeletal stretch
and C—C in plane bending, respectively). The addition of the small peak at 1203 cm_1 is
attributed to the C—C6HS5 stretch mode. There is also a reduction in the 1585 cm_1 band
(C C olefinic stretch), and the Amide I band has also reappeared at 1637 cm_1. Fig. 3
compares the Raman spectra of fresh tissue with FFPP sections in wax and de-waxed
FFPP sections using xylene as a de-waxing agent. In 3(B) the wax contributions are
clearly seen at 1063, 1130, 1296 and 1436 cm_1 (C-C skeletal stretch random
conformation, C—C skeletal stretch transconformation, CH2 deformation, and CH2
scissoring, respectively). It is clear from Fig. 3C that all the wax is not being removed
and residualwax peaks are present in the tissue after de-waxing. Also as seen in the
previous processing steps, there is an overall reduction in signal from the biological
material after freezing and formalin fixation.

Fig. 4 examines the FT-IR spectra of fresh and frozen tissue. The frozen tissue displays
an overall reduction in intensity. Also, the Amide I and II bands (1673 and 1554 cm_1,
respectively) are shifted indicating changes in protein conformation in the frozen tissue
section. Fig. 5 examines the effect of formalin fixation and formalin and xylene
processing before wax embedding using FT-IR spectroscopy. There is an apparent 10
cm_1 shift in the Amide I and II bands after formalin fixation. The reduction in intensity
of the Amide I band seen using Raman spectroscopy is mirrored in the FT-IR spectra.
Xylene results in an increase in intensity of the CH2 scissoring (1454 cm_1) and amide
III vibrations (1239 cm_1). A reduction in the intensity of the 1398 cm_1 band (C O
symmetric stretch) is observed after fixation. Fig. 6 compares the FT-IR spectra of fresh
tissue with wax embedded tissue and de-waxed FFPP sections. The wax peak is clearly
visible in Fig. 6B at 1465 cm_1 (CH2 scissoring). The Amide I band has shifted back to
its original position (1673 cm_1) after de-waxing Fig. 6C. Again there is a loss in signal
intensity after de-waxing.

4. Discussion

The Raman spectrum of frozen tissue compared to fresh tissue displays a reduction in
intensity of the 1002 cm_1 (C—C aromatic ring stretching), 1447 cm_1 (CH2 bending
mode of proteins and lipids) and 1637 cm_1 (Amide I) bands. This overall reduction in
Raman intensities was also observed by Huang et al. [26]. A new peak was also observed
at 1493 cm_1. In order to eliminate the mounting medium OCT as a possible contributing
factor, Raman spectra were recorded from OCT, which had no Raman signal at 1493
cm_1 and therefore, was not the cause of the additional peak. The effects of freezing on
cells has been well documented in the cryogenics field and it is well known that a
reduction in temperature can result in depolymerisation of the cellular cytoskeleton [29].
The cellular cytoskeleton is composed of different types of protein fibres. Any
depolymerisation of these proteins would result in unraveling of the secondary structure
and hence an increase in the NH3 + and COQO_ vibrations. The Raman frequencies for



vibrations involving these groups occur between 1485-1550 cm_1 and 1560-1600 cm_1
respectively, and both increase after the tissue had been frozen. Thus the appearance of
the band at 1493 cm_1 can be attributed to an increased contribution from NH3+
deformation, as a result of protein structural changes on freezing tissues. Fixation in
formalin also produced a reduction in intensity of the Amide I band at 1637 cm_l1.
Although, all the effects of formalin fixation are not completely understood, the general
principles are known. Aldehydes in formalin form cross-links between proteins creating a
gel, thus retaining cellular constituents in their in vivo relationship to each other. Soluble
proteins become fixed to structural proteins. The majority of cross-links are formed
between the nitrogen atom of lysine and the nitrogen atom of a peptide linkage (Fig. 7).
This cross-link (methylene bridge) alters the amide from a secondary amide to a tertiary
amide, which in turn alters the frequency of the C O vibration, which could explain the
loss of the band 1637 cm_1. The new peak at 1490 cm_1 may be due to protein
unravelling, resulting in the increased activity of the NH3+ deformation similar to that
seen after tissue freezing. Alternatively, a study by Wojciechowski et al. [30] found a
distinct Raman band at 1491 cm_1 which was assigned to the C-N stretching vibration
coupled with the in-plane C—H bending in amine radical cations. Such coupled vibrations
may be present in the methylene bridging system proposed to form after formalin fixation
(Fig. 7). It can be assumed that there is no residual formalin due to the fact that other
characteristic formalin peaks at 907 and 1041 cm_1 (Huang et al. [26]) are not present,
and any excess formalin has been removed by rinsing in PBS. In Fig. 2C, xylene
contributions are clear at 620, 1002, 1032, 1203 and 1601 cm_1. These C-C ring
vibrations are to be expected given the aromatic structure of xylene. The absence of the
1490 cm_1 band associated with the presence methylene bridges suggested above, and
the re-appearance of the Amide I band suggests that xylene has reversed some of the
cross-links created with formalin fixation, and the amide I band has reverted to a
secondary amide as seen in fresh tissue (1637 cm_1).The xylene signature peaks are not
present in the de-waxed tissue (Fig. 3) so it may be assumed that all xylene is being
removed after de-waxing. However, it is clear from the Raman spectrum of de-waxed
FFPP sections that all the wax isnot being removed. Strong wax contributions were seen
at 1063, 1130, 1296 and 1436 cm_1, so effective wax clearing is an issue when dealing
with FFPP sections.

Using FT-IR spectroscopy, fresh tissue provided the most detailed spectra, whereas
freezing resulted in loss of intensity and a shift in the Amide I and II bands. This shifting
is assumed to result from the de-polymerisation outlined previously. Formalin fixation
produced a shift of 10 cm_1 in the amide I and II bands, which corroborates the findings
of Pleshko et al. [28] who found the amide bands shifting when fixed in ethanol. Freezing
and formalin fixation lead to a large reduction in the intensity of the 1398 cm_1 band (C
O symmetric stretch), which corroborates the Raman findings. Xylene resulted in an
increase in the intensity of the 1239 and 1454 cm_1 bands, but did not display the
dramatic spectral differences seen using Raman spectroscopy. The FT-IR signature
contribution of wax at 1465 cm_1 was also visible. After de-waxing there is yet another
reduction in intensity. The Amide I band shifted back to its original position of 1673
cm_1 as seen in fresh tissue and the wax signature at 1465 cm_1 has been reduced.
However it is very difficult to say whether or not the wax has been removed using FT-IR
spectroscopy. Again, in this instance Raman spectroscopy provides more detailed



biochemical information. Therefore the 1454 cm_1 band (CH3 asymmetric deformation)
seen in fresh tissue and dewaxed FFPP sections, could easily be contaminated with
contributions from wax occurring at 1465 cm_1. For this reason it is not advisable to use
this peak in a diagnostic capacity. The reduction in overall signal intensity after
processing seen in both Raman and FT-IR remains unexplained. The spectra of fresh,
formalin fixed tissue were recorded from tissue pieces mounted on MirrIR slide, and
therefore would inherently have variations in sample thickness. However, any variation
in sample thickness would not have an effect on the intensity of the Raman spectra. This
is due to the fact that Raman spectroscopy is a scattering effect, with a penetration depth
of about 2 mm, far below the minimum sample thickness of about 10 mm. Sample
thickness would affect the overall FT-IR signal intensity, due to the double transmission
nature of the measurement. But the fact that this signal reduction was also seen in Raman
confirms that the effect results from more than sample thickness variation. It is possible
however, that differences in sample density between tissue sections and excised tissue
pieces may account for the differences in overall signal intensity observed between
samples. Although, de-waxed FFPP sections display a reduction in intensity, all of the
bands in fresh tissue are present and many are diagnostically useful.

Generally speaking it was found that Raman spectroscopy produced more detailed
spectra, and hence appears more sensitive to changes in tissue composition than FT-IR
spectroscopy. Naturally, Raman spectroscopy is intrinsically more sensitive to some
bands than FT-IR and vice versa. However, it is the higher spectral and spatial resolution
that results in the more detailed spectra obtained using Raman spectroscopy. The spectral
resolution of the Raman spectrometer (2 cm_1) is superior to the 8 cm_1 resolution used
with the FT-IR spectrometer. Also, the much larger sampling area of the FT-IR
spectrometer (although beneficial for sampling large areas) will also have the effect of
averaging over many cells, broadening bands with the loss of spectral information.
Studies carried out by our group [31], have shown significant differences between normal
and malignant tissue using de-waxed FFPP sections. Many biochemical changes occur in
regions outside those highlighted by this paper as affected by processing. A more
complete study has already been performed into improvements in the de-waxing protocol
[32]. The study examined many different methods of wax removal and found that the use
of hexane instead of xylene resulted in a far superior level of wax removal.

In summary, although bearing a close resemblance to fresh tissue, processed tissue has
undergone many biochemical changes as shown. This systematic study has provided
spectra at each of the processing stages involved in de-waxed FFPP sections. This gives a
real insight into the biochemical changes resulting from each process. It has highlighted
changes that would otherwise be unseen when comparing fresh with de-waxed FFPP
sections. This study has confirmed that de-waxed FFPP sections can be diagnostically
useful as they retain sufficient biochemical similarity to fresh tissue. However,
researchers in this field should be aware of the spectral contributions affected by
processing, particularly when utilising automated analysis techniques.
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