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Executive summary 

Air pollution is the primary environmental cause of premature death in the EU (European Commission, 2013) 

and the most problematic pollutants across Europe have consistently been oxides of nitrogen (e.g. nitrogen 

dioxide (NO2)), particulate matter (e.g. PM10, PM2.5) and ozone (O3). While measurements form an important 

aspect of air quality assessment, on their own they are unlikely to be sufficient to provide an accurate spatial 

and temporal description of the pollutant concentrations for exposure assessment and moreover they cannot 

provide information regarding future air quality. Annex XVI of 2008/50/EC requires member states to “ensure 

that up to date information on ambient concentrations of the pollutants covered” by the Directive are “made 

available to the public”. This information must include actual or predicted exceedances of alert and 

information thresholds and a forecast for the following day of which a model is an integral part. As a result, 

air quality models are increasingly required for public information, air quality management and research 

purposes. The primary objectives of this research fellowship were to develop a calibrated air quality forecast 

model for Ireland capable of predicting the Air Quality Index for Health (AQIH) in each of the air quality zones 

in Ireland and to model the spatial variation in concentrations on a national scale.  

This research project has produced three different models for NO2, PM10, PM2.5, O3 and SO2, all of which are 

available for further use. These are: 

1. A hybrid point wise 48 hour forecast model; 

2. Spatial model (WS-LUR) to produce annual mean maps of air pollution on a national scale; 

3. Temporal WS-LUR model.  

A comprehensive review of modelling systems carried out at the outset of this research fellowship, together 

with consideration for key EPA objectives, informed the direction of model development. This review is 

available as a separate EPA report. A priority within the EPA was to produce air quality forecasts based on 

the AQIH. The AQIH is based on point wise measurements and in order to extrapolate these measurements 

to the future, statistical modelling was deemed the most suitable. The advantages of this approach were that 

it could be developed from first principles specific to the area of interest and completely (avoiding any reliance 

on a third party to supply the model or apply licensing restrictions) and the associated speed of forecast 

computation. Forecasts are only useful if they can be computed and made available to the public relatively 

quickly. The accuracy of such methods also tends to be high and of low bias as they are developed site-

specifically unlike large scale deterministic models that are often developed and tested in vastly differing 

domains. In particular, this method was capable of producing accurate point wise forecasts without the need 

for a detailed emissions inventory. At the project outset, the emissions inventory was not of sufficient spatial 

resolution to make realistic point wise forecasts in all air quality zones by deterministic means and it would 

have been an inefficient use of resources to base the development of forecasts on what was currently 

available.  

Initial model development proceeded using time series analysis in conjunction with non-parametric kernel 

regression, with local meteorological parameters as predictor variables. A model validation study found that 

this technique produced accurate forecast of ozone and SO2 but had a tendency to under predict peak NO2 
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and PM10/2.5 concentrations. An analysis of air mass history using the HYSPLIT model was carried out which 

revealed certain air masses (primarily easterly and re-circulated air) were responsible for most incidence of 

elevated concentrations. The results of this study were used to develop a HYSPLIT add-on for the forecast 

model which operates by forecasting air mass history in real time and invoking a different forecasting 

methodology depending on the region of origin of the air. The ability of the hybrid point wise model to predict 

daily maximum hourly NO2, SO2, 8 hourly ozone and daily average PM10 and PM2.5 was demonstrated by 

comparing a full year of modelled data with measured data at each of the AQIH sites. Index of agreement 

values ranged from a low of 0.80 for SO2 to 0.88 for NO2 and ozone, while correlation coefficients ranged 

from a low of 0.69 for SO2 to 0.82 for NO2. Full results of this validation study are contained in a separate 

report.  

In order to provide detail on the spatial variation of concentration levels across the country, land use 

regression (LUR) was recommended in the model review as the most suitable technique. This technique 

uses surrogate spatial indicators to explain the variation in concentration levels between monitoring points. 

Land cover data (CORINE), DTM output, road density information and population data are all factors that 

influence concentration levels and data that were broadly available. In contrast to most LUR studies, circular 

buffers were not used in the determination of spatial predictor variables. Rather, a novel sector based 

approach (WS-LUR) was adopted whereby variables were calculated within 8 pre-defined sectors 

representing the major wind directions around each monitoring site. This approach had a dual purpose. 

Firstly, it accounts for the direction of influence of emission sources on air quality in a given location. 

Traditional LUR assumes equal influence of emissions in the area surrounding a monitoring site regardless 

of wind direction. This approximation may be reasonable in highly urbanised areas where emissions sources 

are relatively uniform in the surrounding region. However, in this study the regression was applied on a 

national scale and prevailing winds coupled with clear directional influenced at air quality monitoring sites 

meant that WS-LUR is a superior option. The second advantage of this methodology is that it increases the 

effective number of data points available for the regression analysis, resulting in a more robust final equation.  

In conjunction with research project (2013-EH-FS-7), a set of annual mean maps within a geographic 

information system (GIS) environment were created and validated for each of NO2, PM10, PM2.5, O3 and SO2. 

These provide a highly relevant source of information regarding spatial variation in concentration levels on a 

national scale which can be used not only for exposure studies and general air quality assessment, but also 

as a tool to correlate emission sources and surrogates with air quality. A temporal WS-LUR model was 

developed for NO2, Ozone and PM10 by including hourly meteorological data in conjunction with pre-specified 

spatial data as predictor variables. This model has the potential to provide fast, efficient national air quality 

forecast maps for Ireland with minimal computational requirements.  

This project has achieved key EPA objectives and has produced a fully automated and operational air quality 

model which produced twice-daily forecasts of the AQIH in each air quality zone in Ireland. The stepwise 

approach chosen for model development allowed deliverables prior to completion of the project while 

minimising associated risks. The models developed as part of this fellowship form solid building blocks on 

which future air quality modelling studies in Ireland can be based.  
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1 Introduction 

1.1 Overview  

Air pollution as a societal concern is interlinked with other environmental, social, political and economic systems. 

Stakeholders for research in the field of air pollution may therefore come from diverse backgrounds but with a 

common interest in the impacts of air pollution. Air pollution is the primary environmental cause of premature 

death in the EU, accounting for ten times the toll of road traffic accidents (European Commission, 2013). The 

most problematic pollutants across Europe have consistently been oxides of nitrogen (e.g. nitrogen dioxide 

(NO2)), particulate matter (e.g. PM10, PM2.5) and ozone (O3), whilst polyaromatic hydrocarbons (PAHs) have been 

recently identified as pollutants of concern (Environmental Protection Agency, 2012) and proposed new EU 

metrics for black carbon (BC) are under discussion (EEA, 2013). In a recent review of the evidence on the health 

impacts of air pollution the World Health Organization (WHO) state that the previous causal link between PM2.5 

and adverse health impact in earlier guidelines has been strengthened by recent evidence (WHO, 2012). Both 

short and long term exposure to PM2.5 were noted to result in adverse health impacts, even in long term exposure 

studies where exposure was below the current recommended WHO annual limit of 10ug/m3. Such findings 

highlight the need for the introduction of additional short term limit values for PM to account for the health impacts 

of short term but relatively high exposures, such as during commuting. These findings also further highlight the 

dangers of long term exposure to PM such as from domestic fuel use. In addition, this review of recent evidence 

also highlights the links between exposure to NO2 and mortality/morbidity. Such exposure is noted to be 

particularly elevated near roads as a result of traffic emissions. As such, the health impact of outdoor air pollution 

continues to be a global concern among the scientific community for its impacts on human health, the 

environment and climate change. 

As a member of the EU, Ireland is required to demonstrate compliance with a number of EU limit values 

encompassing NO2, PM, Sulphur dioxide (SO2), lead, benzene, carbon monoxide (CO), O3, arsenic, 

cadmium, nickel and benzo(a)pyrene. Challenges facing Ireland in meeting its obligations under the EU 

directives include reductions of NOx in traffic-impacted  areas (noted to be a significant contributor to air 

pollution in Ireland (McGettigan et al., 2000) and targeted by plans such as the “Dublin Regional Air Quality 

Management Plan for Improvement In Levels Of Nitrogen Dioxide In Ambient Air Quality” (Dublin City Council 

et al.)), reduction of PM2.5 by 10% between 2010 and 2020 (EU, 2008) and reducing emissions from domestic 

solid fuel systems which contribute to high levels of PM and PAHs in towns and cities (Environmental 

Protection Agency, 2012).  

1.2 Air quality modelling and policy relevance 

While measurements form an important aspect of air quality assessment, on their own they are unlikely to 

be sufficient to provide an accurate spatial and temporal description of the pollutant concentrations and as a 

result, models are often needed (Moussiopoulos, 1997). Government departments, agencies, and local 

authorities increasingly rely on air pollution models for decision making in relation to air quality, traffic 

management, urban planning, and public health and consequently, the community which uses these models 

is becoming larger and more diverse (Vardoulakis et al., 2002). EU Council Directive 2008/50/EC (CEU, 

2008) states that “A combination of measuring and modelling techniques” may be used to assess ambient 
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air quality where levels over a representative period are below a level lower than the limit value. The directive 

goes on to state that “the sole use of modelling or objective estimation techniques for assessing levels may 

be possible…..” where levels are below a specified level. The transposition of this into Irish law has resulted 

in the recognition of modelling as an assessment technique under the Air Quality Standards Regulations Act, 

2002 (DEHLG, 2002) in certain circumstances, “where the levels of pollutants are below the lower 

assessment threshold, modelling or objective assessment techniques may be used solely to assess ambient 

air quality, except in agglomerations in the case of sulphur dioxide and nitrogen dioxide” and “where fewer 

than five years' data are available, measurement campaigns of short duration during the period of the year 

and at locations likely to be typical of the highest pollution levels may be combined with results obtained from 

emission inventories and modelling”. The use of modelling in other situations where concentrations may 

approach or exceed limit values is also emphasised in 2008/50/EC (CEU, 2008) which states that “Where 

possible modelling techniques should be applied to enable point data to be interpreted in terms of 

geographical distribution of concentrations. This could serve as a basis for calculating the collective exposure 

of the population living in the area”.  

Air quality models are an important aspect of air quality management and have two primary functions in this 

regard. Firstly, they can be used to provide predictions of what the air quality is going to be like both in the 

near (48 hours) and more distant (years) future. Annex XVI of 2008/50/EC requires member states to “ensure 

that up to date information on ambient concentrations of the pollutants covered” by the Directive are “made 

available to the public”. This information must include actual or predicted exceedances of alert and 

information thresholds and a forecast for the following day of which a model is an integral part. The provision 

of air pollution forecasts requires the development of a suitable air quality model.  

Their second major function of air quality modelling is to improve our knowledge regarding the spatial 

variation in pollutant concentrations and the identification of the concentration gradient and peak location. 

The need for caution when assessing air quality based on sampling networks alone and the importance of a 

spatial approach has long been emphasised (Muschett, 1981, Greenland and Yorty, 1985). Anticipating and 

managing changes in pollutant concentrations relies on an accurate representation of the current and future 

chemical state of the atmosphere. Numerical models capable of simulating the chemistry and transport of 

constituents in the atmosphere have, over the last number of years, been developed for the analysis and 

forecast of transboundary transport of photo-oxidant pollutants.  

An air quality model (like any model) is a representation of reality in which a number of parameters are used 

to calculate a result and it can be conceptual, empirical or process oriented. The more physical processes 

that are included in the model, the more comprehensively it will generally be able to describe reality. However, 

increasing the inputs and processes leads to high demands on the quantity and quality of information needed 

to drive the models (European Environment Agency (EEA), 2011). Traditionally monitoring has been the 

primary means of assessing air pollution levels but it can only provide real time information at best and cannot 

provide the spatial coverage of modelling. However, it must be noted that model results are based on their 

input data and some models require extensive data that may be unreliable or difficult to obtain consistently. 

The accuracy of any model is dependent on the quality of the input data coupled with the ability of the model 

to represent real world chemical and physical responses.  
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1.3 Objectives  

The overarching aim of this research was to develop an air quality model for Ireland that could be 

implemented to produce short term forecasts of the pollutants outlined in the CAFÉ Directive, particularly 

targeting NOx, PM10, PM2.5, SO2 and O3.  The model would furthermore be used to anticipate pollution 

episodes, to aid local and regional air quality management and for further research into population exposure. 

There were a number of specific objectives which included: 

a) Review the applicability of current models and previous relevant studies relating to forecasting air quality 

levels in Ireland and internationally.  

b) Assess the applicability of existing models to Ireland. 

c) Participate in relevant EU initiatives on modelling. 

d) Build, analyse and contribute to emissions data on a local and regional scale.  

e) Develop a GIS-based statistical model to determine the spatial variation in background concentration 

levels of pollutants on a national scale at short and long temporal resolutions.  

f) Develop a calibrated air quality forecast model for Ireland.  

Such a model needs to be capable of being run routinely with minimum resource requirements. Routine air 

quality forecasts are of high importance from a public health, air quality management and scientific 

perspective. Densely populated areas and urban locations would benefit significantly from air quality 

forecasting as the population can be warned and emergency control measures adopted in advance of 

pollution episodes. These forecasts would necessarily be 24-72 hours in advance.  

1.4 EU initiatives  

Within Europe no single body has assumed formal responsibility for the development and use of particular 

models in specific circumstances. In contrast, the USA has adopted a more structured approach whereby 

the US Environmental Protection Agency cites regulatory models for specific uses. This means that model 

development has been structured, transparent and fully documented (Williams et al. 2011). Within the EU 

the development of models has mainly been driven by CLRTAP, the European Commission and the CAFÉ 

programme. The Directive sets out performance criteria which the model should satisfy but the choice of 

model is not indicated. As a result individual European countries have adopted a wide range of approaches 

to modelling their air quality depending on their main objectives, resources available and previous results. 

FAIRMODE is a concerted effort to bring together air quality modellers and harmonise modelling on a 

European scale. While models can be used to demonstrate compliance with EU limit values, no direction on 

which model to use is given by the Commission.  

There are a number of EU initiatives whereby European air quality modellers run models for the whole 

European domain both in real time and retrospectively. The MACC/Copernicus programme generates 

ensemble forecasts on a twice daily basis which are made available to the public via an air quality map of 

Europe online. MACC-II has the overall objective of delivering reliable operational products and information 

that support research, European environmental policy and the development of user-specific downstream 

services.   
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1.5 AQIH  

The air quality index for health (AQIH) was developed by the Air Quality Health Information Working Group 

comprising of members from the EPA, Met Eireann, the Department of the Environment and the HSE. The 

index is currently used by the EPA to provide information to the public about air quality in each of 6 air quality 

zones across Ireland in real time. It is a scale between 1 and 10 (Good to Poor) representing the level of air 

pollution. The index for each pollutant is calculated separately using set concentration ranges. The AQIH is 

the worst index of the five pollutants. Alongside the index itself additional information is provided regarding 

the health effects of air pollution and health advice to follow when using the AQIH. A priority for this fellowship 

as indicated by the EPA at the outset of this project was to produce forecasts of the AQIH. Since these 

forecasts are necessarily produced on a daily or twice daily basis for public information, practical 

considerations such as computing requirements, speed of computation and ease of operation influenced the 

direction of the work.  

1.6 Context 

This report provides an overview of major work areas completed as part of the research fellowship. The 

research project itself has produced some key, tangible outputs. Primarily, it has produced in the first fully 

operational air quality forecast model for Ireland. Model development has been carried out by the research 

fellow from first principles meaning that no licensing restrictions apply. The fellow has developed a modelling 

system that runs automatically twice daily to produce 24 and 48 hour forecasts of NO2, PM10, PM2.5, SO2 and 

ozone, and subsequently the AQIH. This work fulfils the key EPA requirement for an air quality forecast 

system that requires minimal resources to operate on a routine basis. The fellow has also developed a 

manual version of the model that can be run for any given date/time. In collaboration with research project 

(2013-EH-FS-7) national scale annual mean maps of background NO2, PM10, PM2.5, SO2 and ozone have 

been produced as part of that project. An hourly/daily national scale spatial model has also been developed.  

This report provides a general overview of these major deliverables. It is not intended as a step by step guide 

on how to replicate the work but rather to introduce the tangible outputs that have been produced as part 

of this research fellowship. Details are provided in a number of publications and three detailed reports 

which were completed during the research fellowship. The publications are as follows: 

 Donnelly, A., Naughton, O., Broderick, B. and Misstear, B. (2016). Short-Term Forecasting of 

Nitrogen Dioxide (NO2) Levels Using a Hybrid Statistical and Air Mass History Modelling 

Approach. Environmental modelling and Assessment. doi:10.1007/s10666-016-9532-4. 

 Donnelly, A., Naughton, O., Misstear, B. and Broderick, B. (2016). Maximizing the spatial 

representativeness of NO2 monitoring data using a combination of local wind-based sectoral 

division and seasonal and diurnal correction factors. Journal of Environmental Science and 

Health, Part A, 51, 1003-1011. 

 Donnelly, A., Misstear, B. and Broderick, B. (2015). Real time air quality forecasting using 

integrated parametric and non-parametric regression techniques. Atmospheric Environment 

(103), 53-65.  

 Donnelly, A., Broderick, B. and Misstear, B. (2015). The effect of long-range air mass transport 

pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: 
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Quantification using clustering techniques. Journal of Environmental Science and Health, Part A. 

(50), 647-658.  

 Donnelly, A., Naughton, O., Broderick, B. and Misstear, B. (2015). Air quality forecasting using 

parametric and non parametric statistical modelling – Prediction of the air quality index for health in 

Ireland. 34th international Technical Meeting on Air Pollution Modelling and its Application. 4th-8th 

May 2015, Montpellier.  

 Naughton, O., Donnelly, A., Pilla, F., Misstear, B.D., Broderick, B. (in preparation). Ambient air 

quality mapping using continuous monitoring data land use regression  

 Donnelly, A., Naughton, O., Broderick, B. and Misstear, B. (in preparation).  A spatio-temporal model 

for mapping NO2 and ozone on a national scale at hourly resolution  

 Naughton, O., Donnelly, A., Pilla, F., Misstear, B.D., Broderick, B. (in preparation). Mapping 

pointwise forecasts using novel interpolation techniques. 

The reports are as follows: 

 Donnelly, A., Misstear, B., Broderick, B. and Delaney, K. (2014). Air Quality Modelling (2012-EH-

FS-6) Interim Report: Review of modelling systems. Prepared for the Environmental Protection 

Agency by Trinity College Dublin.  

 Donnelly, A., Broderick, B. and Misstear, B. (2014). Air Quality Modelling (2012-EH-FS-6) Interim 

Report: Validation of point wise air quality forecasting model. Prepared for the Environmental 

Protection Agency by Trinity College Dublin.  

 Donnelly, A., Broderick, B. and Misstear, B. (2015). Air Quality Modelling (2012-EH-FS-6) Hybrid 

model validation study. Prepared for the Environmental Protection Agency by Trinity College Dublin.  

A brief overview of the model review is provided in the following section but for more detail the reader is 

referred to the full report. Section 3, which details the point wise model development, contains some 

reference to both the interim standard model validation study and the final hybrid model validation study but 

again, additional detail is contained in the reports referenced above.  

2 Review of modelling systems 

A model review was carried out to inform the development of an appropriate air quality forecasting model for 

Ireland. Air quality models have previously been developed for a range of different purposes often with distinct 

advantages and limitations. The aim of this review was to provide an overview of different modelling 

approaches. The success of any model is dependent on the availability of the necessary input data. This 

review was an important first step in developing a modelling system for Ireland. Various modelling techniques 

were analysed with consideration given to the resources and data available within Ireland at this time.  

The range of individual modelling techniques discussed offer diverse and often unique advantages for a 

variety of purposes. An important aspect of modelling is determining which technique offers the best use of 

the resources and data that area available. The best model is not necessarily the most detailed or technically 

advanced and, fundamental to the success of a given model, is the availability at sufficient resolution of the 

necessary data to drive it. Since this work was carried out on a relatively restricted time frame is was important 
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to tackle the relevant priorities within the EPA and ensure that the most urgent deliverables were made 

available within the shortest time frame.  

A priority within the EPA was to produce air quality forecasts based on the Air Quality Index for Health (AQIH). 

The AQIH is based on point wise measurements and in order to extrapolate these measurements to the 

future, statistical regression and time series techniques were deemed the most suitable. The primary 

advantage of this approach was that it could be developed from first principles specific to the area of interest 

and completely removes the reliance on a third party to supply the model or apply licensing restrictions. 

Furthermore, a benefit of using such a method is the speed of computation. Forecasts are only useful if they 

can be computed and made available to the public relatively quickly. The accuracy of such methods also 

tends to be high and of low bias as they are developed site specifically unlike large scale deterministic models 

that are often developed and tested in vastly differing domains. In particular, this method was capable of 

producing accurate point wise forecasts without the need for a detailed emissions inventory. At the project 

outset, the emissions inventory was not of sufficient spatial resolution to make realistic point wise forecasts 

in all air quality zones by deterministic means, and it would have been an inefficient use of resources to base 

the development of forecasts on what was currently available.  

In order to provide detail on the spatial variation of concentration levels across the country, land use 

regression (LUR) was recommended in the model review as a suitable technique. This technique uses 

surrogate spatial indicators to explain the variation in concentration levels between monitoring points. Land 

cover data (CORINE), DTM output, road density information and population data are all factors that influence 

concentration levels and data that were broadly available.  

A stepwise approach was chosen for model development as this crucially allowed deliverables prior to 

completion of the project. This minimised risks and allowed the production of preliminary air quality forecasts 

at the end of the first year of the project. The fluid, stepwise approach adopted meant that the work completed 

by the EI fellow (2013-EH-FS-7) (who commenced at the end of year one) could be integrated efficiently into 

the current fellowship, making maximum use of resources. Details of each of the individual models developed 

are provided in sections 3, 4 and 5. The three primary models developed are as follows: 

 Point wise forecast model (Section 3) 

 Spatial mapping of air pollution (annual mean) (Section 4) 

 Temporal LUR model (Section 5).  

3 Point wise forecasting of the AQIH 

3.1 Standard model 

3.1.1 Overview 

This section provides an introduction to the point wise forecast model used to predict daily maximum NO2, 

SO2 and 8 hour ozone and daily average PM10 and PM2.5 at all of the sites used in the derivation of the Air 
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Quality Index for Health (AQIH). Necessary inputs are outlined and model outputs are illustrated. A full model 

validation report has been completed where details of model performance are examined.  

The statistical forecast model provides point wise predictions of daily maximum NO2, SO2 and 8 hour ozone 

and daily average PM10 and PM2.5 at all of the sites used in the derivation of the Air Quality Index for Health 

(AQIH). The model has been developed based on: 

 Relationships which exist between air quality and meteorological parameters 

 Long term trends in air quality levels  

 Diurnal and seasonal cyclical variations at individual site types 

 Persistence of concentration levels from one day to the next 

 Air mass history and its relationship with NO2 and PM10/2.5 levels.  

Aside from the actual predictions, the model provides useful information about concentration variations at 

each site in Ireland. This information is available for all pollutants and sites used in the AQIH. The data are 

available in tabular form with values for the following parameters at every site: 

 Concentrations for all wind speed and wind direction combinations in both seasons 

 Concentrations for each hour of the day at weekends in winter, weekdays in winter, weekends in 

summer and weekdays in summer (diurnal variation) 

 Concentrations for each day of the year (seasonal variation) 

 Weekday variations in concentration levels  

 Trends in concentrations across sites 

 Relationships between other meteorological parameters and concentration levels 

 Air mass history forecast for background sites 

 Back trajectory cluster analysis results for NO2 and PM10/2.5.  

The model is trained for each site individually and ideally will be based on more than one year’s data to 

enable long term trends to be captured. Typically the most recent 5 years of data have been used for model 

development at each site. 

New sites can be added to the forecast model at any time provided there is sufficient monitoring data available 

on which to calibrate and train the model. Ideally monitoring would take place for a minimum of a year before 

the model was trained. However if necessary the model can be trained using 3 month (a season) of data and 

correction factors applied to develop an interim model. After a year the model would then be re-calibrated 

using the full data set. Where a site is discontinued (or moved), the model can continue to make predictions 

at that site while data are being collected at the new site.  

3.1.2 Variation in concentrations with meteorological parameters  

The variation in concentration levels of all pollutants shows clear correlation with wind speed and wind 

direction. It is important that these factors are not considered in isolation as there is generally important 

interaction between both wind factors. Figure 1 (left) shows a sample output (from Kilkitt) from the 

nonparametric model that is used to generate a wind speed/wind direction (WSWD) factor at each site 

(Donnelly et al., 2010, 2011). This WSWD factor is used as an input to the forecast model and is calculated 
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in operational mode using forecast meteorological data. This information can also be useful for source 

attribution or general analysis of air quality levels at certain sites.  

Time series analysis is used to develop a diurnal and seasonal factor at each site which is also used as 

inputs to drive the forecast model. Concentrations vary between winter and summer months and between 

weekdays and weekends. An example is shown for Kilkitt in Figure 2 (left). There is a clear difference between 

weekdays and weekends and between summer and winter months. Considering firstly, weekday 

concentrations it can be seen that in winter there is a gradual increase in concentration levels throughout the 

day and a peak is reached in the evening at approximately 5pm. This peak is later in summer months due to 

longer hours of daylight and subsequently better mixing conditions. The delayed peak and gradual increase 

observed at this site is suggestive of a reasonably distant source or sources affecting the site. Concentrations 

at weekends are lower but still display the delayed peak.  

In the same manner as for the diurnal variations, seasonal variations are calculated for each site. Figure 2 

(right) shows the results for Kilkitt. At all sites, lower concentrations are observed during summer months (as 

expected). Sites with very local, dominant sources might be expected to display less percentage variation 

across seasons.  
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Figure 1 Variation of NO2 concentrations at rural background site Kilkitt in winter (left) and summer (right) with wind 
speed and direction. 
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Figure 2 Diurnal (left) and seasonal (right) variation of NO2 concentrations at rural background site Kilkitt  
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3.1.3 Model fitting 

The model is developed using the variables outlined in Table 1 as predictor variables. The general form of 

the model is: 

𝐶 = 𝑏0 +∑𝑏𝑖

𝑛

𝑖=1

𝑥𝑖 +∑𝑑𝑖

𝑚

𝑖=1

𝑦𝑖 + 𝜀 

where 𝐶 is the response variable (pollutant concentration), 𝑏0 is the regression constant, the 𝑥𝑖 are the 

meteorological predictor variables with coefficients 𝑏𝑖,  and the 𝑦𝑖 are the predictor variables output from the 

non-parametric and time series models with coefficients 𝑑𝑖. 𝜀 is the stochastic error associated with the 

regression.Technical modelling details including the derivation of the model 𝑦𝑖 factors by advanced non 

parametric regression are outlined in detail in (Donnelly et al., 2015b).  

Figure 1 outlines the general model development process. Measured pollutant concentrations together with 

wind speed, wind direction, day of the year and hourly information are fed into the non-parametric model. 

The 𝑊𝑆𝑊𝐷𝑓, a seasonal factor and a diurnal factor are output from this model. These factors together with 

other meteorological data are fed into a multiple regression model as predictor variables, while measured 

pollutant concentration data are the response data. A first iteration model is then produced and this is 

assessed using a variety of techniques. Re-iteration continues until the model is accepted. This model was 

then validated using a separate validation data set.  

A 6 month validation study was carried out on the standard point wise forecasting model and details in an 

associated report.  

Table 2 shows key model performance statistics for each of the pollutants. In general it was found that the 

model predicted mean concentration variations well for all pollutants indicated by high Index of Agreement 

(IA) values. On occasion it can miss peak events (highlighted by reduced correlation coefficient (r) values). 

IA values are slightly lower for PM10 and PM2.5 than for other pollutants indicting poorer point to point 

agreement. This is also the case for the correlation coefficient (r), although since this measure is very 

sensitive to outlier this is most likely due to under prediction of peak events by the model. FAC2 is considered 

one of the most robust measures of air pollution model performance (Borrego et al., 2011). It is the proportion 

of modelled values that lie within a factor of two of the measured value. It is recommended that an air quality 

model is considered acceptable if more than half of the model predictions lie within a factor of 2 of the 

observations and faulty if not – this FAC2 criterion was chosen here as it is a common metric in academic 

literature for assessing air quality model outputs (Derwent et al., 2010). This is 100% for ozone and is 

adequately high for NO2, PM10 and PM2.5 indicting no major false alarms. The value is poorer for SO2 but this 

is thought to be due to the very low concentrations involved and a large number of measured zero values 

making the test unreliable. 
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Table 1 Predictor variables for standard point wise forecast model 

Variable Category Predictor Variable Description 

Model 

(Yi) 

𝑾𝑺𝑾𝑫𝒇 wind speed, wind direction factor   

𝑺𝒇 Non-parametric seasonal factor   

𝑫𝒇 Non-parametric diurnal factor 

𝑻𝑺𝒇 Time series forecast factor 

Meteorological 

(Xi) 

Temp Hourly Temperature 

SunHr Sunshine Hours 

RelHum Relative Humidity 

AtmPres Atmospheric Pressure 

StabilityCl Stability Class 

NO2h-24 
Daily average NO2 concentration at 24/48 hour lag NO2h-48 

NO2max-24 

NO2max-48 
Daily maximum NO2 concentration at 24/48 hour lag 

O3d-24 

O3d-48 Daily average O3 concentration at 24/48 hour lag 
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Figure 3 Methodology flowchart for standard point wise model development 

 

Table 2 Statistical parameters for each pollutant September - March 

 Ideal value Ozone NO2 PM10 PM2.5 SO2 

R 1 0.85 0.74 0.46 0.50 0.79 

FAC2 1 1.00 0.71 0.90 0.79 0.54 

IA 1 0.91 0.84 0.66 0.69 0.86 
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3.1.4 Discussion 

This model benefits from simplicity of the input data and requires very low computational resources to run 

making it ideally suited to providing fast and reliable real time air quality forecasts. The model validation study 

concluded that model performance for ozone and SO2 was of a suitably high standard. Mean NO2 and 

PM10/PM2.5 concentrations were also well predicted by the model. However, the under prediction of peak 

events for these pollutants warranted further investigation and led to an additional area of work being 

completed (air mass history modelling) and, ultimately, based on these results, the expansion of this point 

wise model to produce an improved hybrid point wise forecasting model. 

3.2 Hybrid point wise forecast model 

3.2.1 Analysis of air mass history and NO2/PM10/2.5 concentrations at urban 

and rural sites 

The HYSPLIT model was developed by the US National Oceanic and Atmospheric Administration (NOAA)’s 

Air Resources Laboratory (ARL) and combines the Eulerian and Lagrangian approaches to track air mass 

movement (Draxler and Hess, 1998). While the model is capable and frequently used to calculate 

concentrations of pollutants, it is applied in this study to calculate back trajectories. With the HYSPLIT model, 

air mass paths from one region to another can be calculated and it can therefore be demonstrated whether 

or not the vector necessary for air pollutant transport is present (Anastasspoulos et al., 2004). When the 

model is run in back trajectory mode, the movement of a parcel of air can be calculated backwards in time 

from the receptor where concentrations were measured, allowing the origin of the pollution to be identified. 

Based on the results of the validation study of the standard forecast model, an analysis of air mass history in 

relation to concentrations was carried out with the objective of determining whether regional conditions could 

be contributing to peak NO2 and PM events. The results are detailed in Donnelly et al. (2015a).  

The specific aim of this work was to quantify the effects of various long range transport pathways on NO2 

and PM10 concentrations at a range of sites in Ireland and identify air mass movement corridors which may 

lead to incidences poor air quality for application in forecasting. The origin of and the regions traversed by 

an air mass 96h prior to reaching a receptor was modelled and k-means clustering is applied to create air-

mass groups.  

Trajectory cluster analysis was employed to group trajectories based on their three dimensional similarities 

and identify the primary meteorological pathways influencing the background site. This technique groups 

similar trajectories together, with the aim of minimising differences within clusters and maximizing the 

differences between clusters. It allows for the inclusion of re-circulated trajectories and trajectories with 

rapidly varying directionality. The hierarchical cluster method adopted in this study initially assumes that the 

number of clusters is equal to the total number of trajectories (N) and thus the spatial variance (SV) (the sum 

of the squared distances between end points of the clusters component trajectories and the mean of that 

cluster) is zero. In the first iteration, each combination of trajectory pairs is tested to compute the cluster SV. 

The total spatial variance (TSV) is then calculated by summing all of the clusters SV’s. The two trajectories 

with the lowest SV are then combined into a single cluster, thus reducing the total number of clusters after 

the first iteration to N-1. Once paired, clusters remain together in subsequent iterations. In the second 
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iteration, the clusters are either individual trajectories or the cluster of the initial pairing of trajectories. Again, 

every combination is assessed and the two clusters combined are those that result in the lowest increase in 

TSV. The iterations continue in this manner until the last two clusters are combined resulting in all N 

trajectories in one cluster. In the first number of iterations the TSV increases greatly as the number of clusters 

combined increases. Thereafter, it tends to increase gradually up to a point when it increases sharply, 

indicating that the clusters being combined are not very similar. A plot of TSV against the number of clusters 

will clearly indicate this change and suggest where clustering should be stopped.  

Significant differences in air pollution levels were found between air mass cluster types at urban and rural 

sites as shown in Table 3. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 

levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 

levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses 

are more frequent during winter months leading to higher overall concentrations. The span in relative 

concentrations between air mass clusters is highest at the rural site indicating that regional factors are 

controlling concentration levels. The methods used in this work were then applied to assist in modelling and 

forecasting air quality based on long range transport pathways and forecast meteorology without the 

requirement for detailed emissions data over a large regional domain or the use of computationally 

demanding modelling techniques. 

Table 3 Average NO2, NOx/NO2 ratio and PM10 expressed as a percentage of the seasonal mean at each 
sites for the major clusters  

  Kilkitt Glashaboy Ballyfermot 

Winter Direction NO2 NOx/NO2 PM10 NO2 NOx/NO2 PM10 NO2 NOx/NO2 PM10 

 East 160 96 154 124 105 135 149 124 147 

 South west 47 101 56 59 92 81 49 85 51 

 South west/West 78 105 77 80 102 65 84 96 75 

 West 47 111 59 104 92 92 67 100 69 

 North 78 93 71 107 100 99 113 105 112 

Summer East/Re-

circulated 

239 56 199 137 100 103 136 99 131 

 South west fast 103 79 85 68 97 93 63 108 83 

 South west Slow 123 104 113 82 96 87    

 West 36 141 84       

 North west 90 115 87 90 99 98 88 102 85 

 North 49 96 57 90 97 98 99 99 84 

3.2.2 Data partitioning at AQIH sites 

Building on these results, 48 hour air mass back trajectories were calculated for two full calendar years (2011 

and 2012) with hourly end-points located at Kilkitt and Claremorris monitoring stations. These two AQIH sites 

were assumed to represent background conditions for NO2 and PM, respectively.  

Resulting trajectories were divided into seasonal groups to account for known variability in both synoptic 

scale variations and air pollution levels between the winter (January – March), spring (April-June), summer 

(July – September) and autumn (October – December) periods.  The trajectory duration was chosen as 48 

hours because too short a duration may miss the actual source of the emissions and important path crossings 

while too long a run induces a large amount of uncertainty into the analysis and may produce misleading 

results. As an island with no nearby land mass to the west and south west and significant nearby land mass 
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to the east and south, the appropriate trajectory duration may differ in Ireland than in land locked countries. 

A simple analysis of air masses and clusters should reveal the appropriate trajectory duration for a given 

country. Clustering was carried out on each seasonal group individually and the optimum number of clusters 

was chosen in each case by visual inspection of the TSV plots.  

Results of the cluster analysis are shown in Figure 4. Six clusters were defined from January to March. These 

include a slow moving east/south easterly cluster and a moderate moving easterly cluster. These two clusters 

are associated with the highest NO2 concentrations, (averaging 196% and 168% of the mean for this time 

period). From April to June only one easterly cluster is defined and NO2 concentrations for these air masses 

average 161% of the mean for the time period. A similar result is observed between July and September 

where concentrations for the easterly cluster average 191% of the mean for the period. The easterly cluster 

results in average concentrations of 196% between October and December. During this time period Ireland 

is also frequently affected by slow moving northerly air masses representative of cold winter weather 

conditions. The defined cluster is of much shorter length in this season than in other seasons and its slow 

moving nature and its land track over parts of the UK result in average NO2 concentrations of 153% of the 

mean for the time period.  

Average concentrations for each cluster for NO2, PM10 and PM2.5 are displayed in Table IV, V and VI, 

respectively. After clustering, the variability in hourly NO2 and daily PM between clusters was analysed and 

an analysis of variance (ANOVA) technique was applied to assess which cluster types led to increased 

concentrations. Data were partitioned into “high” background and “low” background groups at AQIH sites as 

illustrated by the shaded boxes in the tables.  
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Figure 4 Cluster results from Kilkitt for 2012 and 2013 data Jan-Mar (A), Apr-Jun (B), Jul-Sep (C) and Oct-Dec (D)  

 

Table IV NO2 concentrations (ppb) for air mass clusters arriving at Kilkitt 

Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

No. Average NO2 % of mean No. Average 
NO2 

% of 
mean 

No. Average 
NO2 

% of 
mean 

No. Average 
NO2 

% of 
mean 

5 4.29 1.96 2 3.38 1.61 4 2.65 1.96 2 2.85 1.91 

6 3.68 1.68 3 2.07 0.99 1 1.23 0.91 5 2.29 1.53 

4 2.46 1.12 5 1.37 0.65 3 1.09 0.81 4 0.88 0.59 

2 1.58 0.72 1 1.11 0.53 5 0.93 0.69 1 0.78 0.52 

1 0.34 0.15 4 0.79 0.38 2 0.92 0.68 3 0.68 0.45 

3 0.09 0.04 - - - - - - - - - 
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Table V PM10 concentrations (µg/m3) for air mass clusters arriving at Claremorris  

Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

No
. 

Average 
PM10 

% of 
mean 

No
. 

Averag
e PM10 

% of 
mea
n 

No
. 

Averag
e PM10 

% of 
mea
n 

No
. 

Averag
e PM10 

% of 
mea
n 

5 25.42 137 2 12.69 119 5 12.73 134 5 12.64 112 

6 21.20 114 4 9.91 93 4 12.35 130 1 11.47 101 

4 14.24 77 3 9.87 92 2 8.29 87 4 11.46 101 

1 13.70 74 5 9.83 92 1 8.17 86 2 10.86 96 

2 11.84 64 1 9.69 91 3 8.10 85 3 10.47 93 

3 8.15 44          

 

Table VI PM2.5 concentrations (µg/m3) for air mass clusters arriving at Claremorris 

Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

No
. 

Average 
PM2.5 

% of 
mean 

No. Average 
PM2.5 

% of 
mean 

No
. 

Average 
PM2.5 

% of 
mean 

No
. 

Average 
PM2.5 

% of 
mean 

5 19.52 180 2 8.49 139 4 7.16 157 5 7.89 141 

6 17.58 162 3 5.27 86 5 4.74 104 2 5.88 105 

4 8.78 81 5 5.05 83 2 3.95 87 3 5.17 92 

1 5.51 51 4 5.00 82 1 3.79 83 4 4.86 87 

2 5.18 48 1 4.42 72 3 3.75 82 1 4.77 85 

3 3.66 34          

3.2.3 Model fitting 

NO2 

The premise of the hybrid model is that pollution contributions are split into local and regional effects and 

different models are then developed for the “high” and “low” air mass groups. Two unique local NO2 forecast 

models were developed for each condition. 

 Low Cluster Model: This model forecasts NO2 concentrations at all AQIH sites in Ireland for “low” air 

mass groups  

 High Cluster Model: This model forecasts NO2 concentrations at all AQIH sites in Ireland for “high” 

air mass groups. It is comprised of a “background” contribution and a “local” contribution. The 

forecast concentration at the local site on “high” days is thus the concentration computed by the 

“high” background model plus the concentration computed by the “high” local model.  

The model fitting procedure and technical details are described in detail in Donnelly et al (2016). The hybrid 

NO2 model is developed using the same techniques to the standard model but, with the incorporation of the 

air mass history term, the modelled outputs now include: 

 Forecasts for background locations in Ireland for high cluster time periods 

 Forecasts at non-background locations due to local sources only for high cluster time periods 
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 Forecasts at all locations for non-high cluster time periods.  

PM10/2.5 

For PM10/2.5 the same approach was also carried out and the model results were tested. However, it was 

found that due to the difficulty in defining a “background” location, that the results were not as strong. An 

alternative approach was therefore adopted, whereby the data were partitioned as above using the 

background monitoring data from Claremorris. A unique “high” cluster model was developed for Claremorris 

for high pollution days. Operationally, the results from this “high” forecast are compared to the results of the 

“basic” forecast at Rathmines and concentrations are other sites are multiplied by the difference to provide a 

better description of the regional influences on PM levels across Ireland.  

Ozone/SO2 

Model fitting for both ozone and SO2 did not make use of partitioned data but rather used total data sets. 

Analysis of air mass history in relation to concentrations indicated that the prediction of peak events would 

not be significantly improved through the inclusion of an air mass history term in the model for these 

pollutants.  

3.2.4 Model operation 

In operational model the model completes a number of tasks in sequential order to produce final forecasts of 

individual pollutants and subsequently the AQIH. These tasks are as follows: 

 Download forecast meteorological data from the Met Eireann ftp server 

 Download real time air quality data from all AQIH monitoring sites 

 Download forecast hemispheric meteorological data from the NOAA server 

 Run the HYsplit model in back trajectory mode for the next 48 hours 

 Assess each forecast trajectory path and assign it to one of the pre-defined clusters 

 If a high cluster is identified then run the “High” model for NO2, PM10 and PM2.5. Run the standard 

model for ozone and SO2.  

 If no high clusters are identified then run the standard model for all pollutants.  

The model decision tree for NO2 is illustrated by Figure 5. The model is written from first principles using 

visual basic code and presented using a Microsoft Excel Interface. Any model operational editing (such as 

adding a new site) must be done using Visual Basic code. Model coefficients for existing sites can be changed 

by adjusting the values in the model settings spreadsheet. However, this should be done with caution and 

only after a full calibration of response/predictor data. An SOP has been written as part of this research 

project to provide guidance of model updates and adjustments.  
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Figure 5 Hybrid model operational decision tree 

 

3.2.5 Validation study 

A comprehensive hybrid model validation study has been completed and is available as a separate report. 

The statistical forecast model was run daily for the time period January 2013 to December 2013 to provide 

48 hour forecasts. This involved running the entire modelling system retrospectively in forecast mode. The 

model decision tree is shown in Figure 5. The HYsplit model was first run for every forecast day. Each 

trajectory was assessed and assigned to the relevant cluster. Based on this assignment either the standard 

or hybrid model was run for NO2, PM10 and PM2.5. The standard model was run for ozone and SO2. 24, 48 

and 3 day forecasts were produced by the model. These data were then compiled as time series for each of 

the pollutants.  These time series have then been compared to observed time series data for the same time 

period. The observed data used in the comparison have been validated. 

Descriptive modelled and measured statistics are shown in Table 7. The mean ozone value measured across 

sites is 70.25 µg/m3. This is slightly under predicted by the model (64.46 µg/m3). Mean NO2 values are slightly 

over predicted by the model due to the shifting of the data distribution by incorporating the HYsplit term (17.4 

µg/m3 modelled compared to 13.5 µg/m3 measured). Mean SO2 concentrations are well predicted with an 

overall prediction of the average within 1 µg/m3. The mean measured and modelled PM10 and PM2.5 
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concentrations are very similar (<2 µg/m3 of a difference for PM10 and <5 µg/m3 for PM2.5). Median values 

largely follow the same pattern as mean values and are well predicted by the model for all pollutants. There 

is some over prediction of the median SO2 concentration which arises from the Kilkitt data where the model 

consistently over estimates the concentration. However in absolute terms the magnitude is very small.  

In addition to the median and mean values the 90th 95th and 99.8th percentile values are assessed to examine 

the distribution of the data. These percentile values also largely correspond to the number of exceedances 

per year as defined by the EU limit values. For ozone, the 90th and 95th percentile are well mirrored by the 

modelled value. There is a small under prediction of the 99.8th percentile but this statistic is subject to a large 

degree of chance variation. The actual under prediction is less than 7% of the true value.  NO2 percentile 

values are slightly over predicted by the model (meaning a conservative estimate of the data distribution) but 

since the NO2 values being considered are individual hourly values they are subject to a large degree of 

inherent variation. Nevertheless the model performs well at capturing the over distribution of the data. SO2 

predictions of percentile values are very good by the model with good agreement of the 99.8th percentile. The 

distribution of daily average PM10 and PM2.5 concentrations is well captured across sites with some slight 

over prediction at high percentile values.  

Table 8 show the statistical parameters for all modelled values. r values are good for gaseous pollutants. 

PM10 and PM2.5 have lower r values but this can be attributed to a small number of outliers in the data set. 

Ideally FB should equal zero and a negative value indicates that there is some under prediction by the model. 

This was previously observed when using the standard model for both NO2 and PM10/2.5. The hybrid model 

has a very slight positive bias for PM10 and SO2 (0.09 and 0.14, respectively) and a slight negative bias for 

ozone (-0.09). The negative bias in the ozone results may be due to some over smoothing in the model 

development at some sites. This is discussed in more detail in a later section. The positive bias is higher for 

PM2.5, SO2 and NO2. This reflects a slight over prediction of the mean value. The Hysplit add on enables the 

model to forecast a greater number of high pollution events but it does also result in a slight shifting of the 

overall distribution of the data in a positive direction although this is not considered a significant issue. It is 

important to note that pollutant concentration distributions tend to be lognormal and therefore the linear 

measures of fractional bias (FB) and correlation coefficient can be disproportionality influenced by 

infrequently occurring high pollutant events. 

FAC2 exceeds 70% for NO2 and is close to 100% for Ozone. It is 93% for PM10 and 80% for PM2.5. It is lowest 

for SO2 but this is due to the very large number of measured zero values which the model cannot be within 

a factor of two of without perfect prediction (i.e. this measure fails for such conditions).  

The index of agreement is a robust measure of the degree to which the measured value is accurately 

estimated by the model. It is a similar indicator to the correlation coefficient and also has an ideal value of 1 

but unlike the correlation coefficient, the index of agreement measures the error of the modelled data rather 

than the direct correlation between variables and is not as sensitive to outlying data points. The index of 

agreement is very high for all pollutants (>=0.8) and compares favourably with values obtained in other air 

quality modelling studies (Zhang et al., 2012, Voukantsis et al., 2011, Kumar and Jain, 2010, Beelen et al., 

2013a).  

Figure 6 to Figure 10 show scatter plots of measured versus modelled concentrations (colour coded by AQIH 

site) for NO2, PM10, PM2.5, ozone and SO2.  These plots together with time series plots and details validation 
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statistics are discussed in detail in the model validation report. This is not repeated here for brevity but in 

general results were highly acceptable and comparable or better than results achieved by other forecast 

models. The hybrid model offered significant improvements over the standard model for prediction of NO2, 

PM10 and PM2.5 peak events.  

Figure 11 illustrates the improvement that was obtained by incorporating the air mass history term into the 

model at Rathmines. The red symbols show that the standard model had a tendency to under predict at 

higher concentrations and could not account for concentrations over 45µg/m3 at this site, in general. The 

hybrid model however results in a much stronger linear relationship between measured and modelled values 

across the entire range of concentrations.  

The model was found to perform better at the urban sites than at the rural site. There are a number of reasons 

for this. Firstly, concentrations at the rural site are very low, which means that the monitoring instrument is 

often not sufficiently precise to measure near zero concentrations. As a result these values are estimated to 

be equal to zero or the nearest 0.01µg/m3, which leads to an unnatural distribution within the data. Therefore, 

while the modelled data follow the measured data reasonably closely, the statistical tests do not account for 

this lack in precision and indicate poorer results. Secondly, rural sites are less impacted by local 

anthropogenic activities which tend to be repetitive and cyclical (e.g. rush hour traffic). Since emissions travel 

a greater distance prior to reaching the rural monitoring site, there is more opportunity for dispersion and 

transformation of pollutants. While this results in lower NO2 concentrations, it also leads to more variability in 

concentration levels (albeit at much lower total concentrations).   
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Table 7 Modelled versus measured descriptive statistics 

 Ozone (µg/m3) NO2 (µg/m3) SO2 (µg/m3) PM10 (µg/m3) PM2.5 (µg/m3) 

 24 hr 
forecast 

>=3 day 
forecast 

Monitored 24 hr 
forecast 

>=3 day 
forecast 

Monitored 24 hr 
forecast 

>=3 day 
forecast 

Monitored 24 hr 
forecast 

>=3 day 
forecast 

Monitored 24 hr 
forecast 

>=3 day 
forecast 

Monitored 

Mean 64.46 67.55 70.25 17.4 17.93 13.53 7.45 7.18 6.46 18.1 17.07 16.52 15.6 14.1 11.50 

Median 64.43 69.50 69.90 13.9 14.27 10.3 5.82 4.81 4.52 14.4 14.55 14.43 8.2 8.98 8.2 

90th percentile 86.70 88.30 93.87 35.9 36.7 30.7 13.94 16.61 11.97 32.9 30.3 28.1 37.2 33.64 23.8 

95th  percentile 91.90 90.33 99.40 43.5 42.71 35.9 19.78 21.93 19.57 39.1 36.59 34.45 50.9 42.56 33.3 

98th percentile 98.63 90.51 105.21 51.5 52.08 44.0 25.76 26.36 28.4 46.2 43.6 42.84 63.1 56.47 44.98 

 

Table 8 Statistical parameters for each pollutant 

  NO2   PM10   PM2.5  SO2 Ozone 

 Ideal 
value 

24 hour 
forecast 
Hybrid 

>= 3 day 
forecast 
Hybrid 

24 hour 
forecast 
Standard 

>= 3 day 
forecast 
Standard 

>= 3 day 
forecast 
Hybrid 

24 hour 
forecast 
Hybrid 

>= 3 day 
forecast 
Standard 

>= 3 day 
forecast 
Hybrid 

24 hour 
forecast 

>= 3 day 
forecast 

24 hour 
forecast 

>= 3 day 
forecast 

FB 0 0.26 -0.278 0.09 0.02 -0.03 0.30 -0.05 -0.2 0.14 0.13 -0.09 -0.11 

R 1 0.82 0.80 0.72 0.46 0.62 0.74 0.50 0.647 0.69 0.47 0.82 0.80 

FAC2 1 73.4 70 93 90 93 79 79 80 77 79 99.5 99.1 

IA 1 0.88 0.83 0.84 0.66 0.70 0.84 0.69 0.77 0.80 0.59 0.88 0.82 
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Figure 6 Measured versus modelled daily maximum NO2 concentrations 

 

Figure 7 Modelled versus measured daily average PM10 concentrations for 24 hour forecasts 

 

Figure 8 Modelled versus measured daily average PM2.5 concentrations for 24 hour forecasts 
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Figure 9 Modelled versus measured daily maximum 8 hourly O3 concentrations for 24 hour forecasts 

 

Figure 10 Modelled versus measured daily maximum hourly SO2 concentrations 24 hour forecasts 

 

Figure 11 Observed NO2 concentrations (rolling 24 hour maximums) at Rathmines showing improvement in hybrid 
model over standard model 
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3.3 Discussion  

Real time air quality forecasting has become an area of much interest in recent years and various 

deterministic and statistical techniques have been used to produce functional forecasts. Numerous studies 

have used statistical techniques to develop air quality forecasts. Techniques adopted include multiple linear 

regression (Genc et al., 2010, Vlachogianni et al., 2011), ARIMA modelling (Zhang et al., 2012, Kumar and 

Jain, 2010), neural networks (Moustris et al., 2010, Voukantsis et al., 2011, Feng et al., 2011), nonlinear 

regression (Singh et al., 2012, Donnelly et al., 2015b), Kalman filtering (Hoi et al., 2010) and various 

combinations of these (Zhang et al., 2012, Voukantsis et al., 2011). However, most of these methods suffer 

from the disadvantage that they cannot capture the contribution of distant weather dependant sources and 

regional air mass movement. While deterministic models can account for air parcel history, they are 

computationally intensive, require detailed emissions inventories over the modelled domain and have a high 

operational cost (Zhang et al., 2012) which can make them unsuitable for real time air quality forecasting in 

many situations. Furthermore, many applications of real time air quality forecasting only require predictions 

at certain locations and in such instances, the processing required by deterministic models to provide detailed 

spatial variations may be a misuse of resources. As noted by Zhang et al. (2012) statistical models often 

have a better capability for describing complex site specific variations in concentrations than deterministic 

models, often with a higher accuracy than deterministic models.  

The hybrid model developed as part of this research fellowship represents a novel way to forecast air quality 

routinely and accurately with minimal resource requirements. The hybrid model incorporates the advantages 

of the standard statistical model outlined in Donnelly et al. (Donnelly et al., 2015b) and combines it with the 

(open-source) deterministic HYSPLIT model. This allows regional effects to be included in the forecasts 

without the need for a complex deterministic and computationally demanding air quality model to be used. 

Hybrid model advantages include: 

 Requires only simple input data 

 Minimises model selection error by combining various statistical methods 

 Low bias 

 Ability to forecast cyclical and anthropogenic effects without the need for an emissions inventory 

 Ability to describe complex site specific variations while including the effects of regional weather 

patterns 

 Speed of computation 

 Ease of operation.  

3.4 International model application 

A key underlying assumption in this hybrid approach is that the transboundary contribution to air quality at 

the background site is representative of that at the forecasting site. The geographic location, prevailing 

climatic conditions and relatively low urbanisation characteristic of Ireland make this a reasonable 

assumption to make in the case presented here. However, when applying the method internationally it should 

be considered that some areas may be influenced by heavy urbanisation, industrialisation or more complex 

regional air mass transport and care should be taken in the selection of appropriate background site to ensure 

representativeness. Multiple background sites may thus be required when applying the model across a 
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national monitoring network, with parallel trajectory forecasts necessary to enable model selection and 

forecasting. Due to the low computational resources of the statistical model and the ease with which trajectory 

forecasts can be produced this does not represent a substantial increase in resource requirements and so 

this approach remains a viable option for producing fast and reliable real-time air quality forecasts in 

regulatory environments where resource availability is low. 

3.5 Summary 

 A fully operational air quality forecast model has been produced. The model runs in an automated 

manner to produce twice daily 48 hour forecasts of NO2, SO2, Ozone, PM10 and PM2.5 at AQIH sites 

in Ireland.  

 Incorporation of an air mass history parameter has resulted in a large improvement in the prediction 

of NO2 and particulate matter concentrations.  

 The model is quite conservative in its PM10 and PM2.5 predictions. There is a slight positive bias at all 

sites as a result of the methodology used to account for regional air mass movement and pollutant 

transport. PM is one of the most difficult pollutants to model due to its wide range of anthropogenic 

and natural sources. Therefore, a conservative estimate accompanied by some specialist 

interpretation is considered to be the best means of producing a forecast. When the AQIH is forecast 

to be poor, air mass history and other conditions relating to PM concentrations should be examined 

in conjunction with the value given by the AQ model to produce a final forecast.  

 During the next model calibration/training, ozone should be trained using hourly data. The use of 8 

hour averages as the response variable has resulted in some over smoothing of the data. 

 SO2 values are very low at most sites. There is some over prediction by the model at Kilkitt but the 

very low values involved make this a relatively insignificant issue.  

 Statistical parameters for SO2 are stronger than initial model training would have suggested. 

 Air quality forecasts should be made using a combination of: 

o Numerical output directly from the model 

o Assessment of forecast local meteorological conditions 

o Assessment of regional air mass movements as forecast by the Hysplit model which is built into 

the operational air quality model  

o Consideration of any other unusual events or conditions (e.g. volcanoes or Saharan dust 

episodes).  

 The model should be re-calibrated using up to date validated air quality and meteorological data on 

an annual basis. This process will ensure that air quality trends at individual sites are well captured 

and any new sources in an area are identified and included in the model.  

 However, it should be noted that if major changes in the emission source were to occur (such as a 

sudden increase in road traffic volume), the model would require re-calibration.  

 In the case where new air quality monitoring sites are used for the derivation of the AQIH, the model 

can be used to continue to forecast at the old site until a full year of data are available at the new site. 

This will avoid any break in forecasts within any one air quality zone. Once at least a full year of data 

are available, the model should be re calibrated and updated to include this new site within the model 

architecture.  
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This model has been brought to full operational model as part of this research project and has been set up 

to run in a completely automated manner to provide daily forecasts of the AQIH in each zone in Ireland. The 

model can also be operated manually (retrospectively or in forecast mode) for any date/time where 

appropriate meteorological data are available.  

4 Land use regression modelling – Annual mean maps 

4.1 Introduction  

The application of land use regression techniques provides the opportunity to produce high resolution maps 

of background air pollution on a national scale. Linear regression methods have frequently been employed 

in air quality modelling in the past (Briggs et al., 1997, Shi and Harrison, 1997, Robeson and Steyn, 1990). 

Konovalov et al. (2009) found that in applying model output statistics to the CHIMERE model using both 

linear regression and non-linear neural networking, there was no significant difference between the 

performance of PM10 forecasts carried out by each method.  

Stedman et al., (1997b) developed maps of NOx and NO2 concentrations across the UK using an approach 

which involved a number of methods, one of them being regression. Firstly concentrations from monitoring 

stations which were representative of concentrations over areas >20km were directly interpolated. Thereafter 

the impact of local NOx emissions (<20km from the monitoring sites) were estimated using a box modelling 

approach incorporating surrogate statistics. At the time of the study emissions data for the UK were available 

at a resolution of 10km by 10km. Since it was noted that NOx and NO2 concentrations vary at a much finer 

spatial scale than this emissions from major roads and the percentage of urban and suburban landcover 

were used as surrogate statistics rather than the emissions data. This could be applicable to Ireland since 

emission data are not currently available at a 1km resolution. The development and derivation of these maps 

is discussed in detail in a number of papers and reports (Stedman et al., 1997a, Stedman et al., 1997b, 

Abbott and Stedman, 1999, Abbott and Vincent, 1999, Stedman, 1998, Stedman and Bush, 2000, Kent et 

al., 2006, Stedman et al., 2007). They have been developed from a combination of emission estimates from 

the UK National Atmospheric Emissions Inventory (NAEI) and measurements from the national air monitoring 

networks (Stedman and Bush, 2000). Variable degrees of agreement between measured and modelled 

values were found with correlation coefficients (R2 values) ranging from 0.33 to 0.78 for various pollutants 

(Stedman and Bush, 2000). It can be argued that these maps are limited in their usefulness, particularly in 

the area of exposure analysis as they only provide an annual mean value and no indication of shorter term 

values. There is also a substantial risk of double counting the source in certain cases.  

Beelen et al. (2009) developed maps for the European Union for NO2, PM10 and O3 at 1km resolution using 

ordinary kriging, universal kriging and land use regression techniques. They cited the need for detailed input 

data together with the need for powerful computing facilities (for large areas and fine resolution) as a limitation 

in approaching air quality modelling through the use of dispersion models. They found that universal kriging 

performed the best of the three techniques with R2 values ranging from 0.45 and 0.7.  

Vienneau et al. (2010) note that land use regression has the potential to produce maps of air pollution on a 

national and European scale in a relatively simple manner to inform policy and as a basis for risk 

management. In their study they developed LUR models for both Great Britain and The Netherlands for NO2 



 

27 
 

and PM10. They found that the performance of models based on common data was only slightly worse than 

models optimised with local data. However, they advise the need for caution in transferring models across 

different study areas.  

The spatial modelling carried out under this research project builds on many of these previous studies but 

incorporates a novel means of accounting for variability in prevailing wind directions and orientation of land 

use types in relation to receptors.  

4.2 Sector based LUR 

In contrast to previous LUR approaches, the approach adopted in this project did not use circular buffers. 

Rather, a sector based technique was used whereby the land area affecting air quality at a given site is 

dependent on wind direction.  

The basis of LUR mapping is a multiple linear regression which uses summaries of spatial variables in the 

vicinity of the monitoring point. In general spatial indicators are calculated within circular buffers of varying 

radii around the monitoring point and the most significant used as predictor variables in the regression 

equation. However, circular buffers effectively apply equal weights to emission sources around a receptor, 

irrespective of the prevailing meteorological conditions and the relative positions of receptor and source. This 

limitation may be minor when LUR is applied within a local region, but when used on a national scale as 

required by the project, varying regional wind patterns may lead to poor model performance. Pollutant 

concentrations can show significant asymmetry depending on wind conditions, as demonstrated in figure 1, 

where the variance in NO2 concentrations with wind speed and direction can be seen at both urban Figure 

12: left) and rural sites (Figure 12: right).  

 

Figure 12 Polar plots of NO2 concentration at urban site at an urban site (Coleraine St, left) and a rural 
background site (Kilkitt, right) 



 

28 
 

As regional prevailing wind conditions can vary substantially and thus impact the applicability of ordinary LUR 

techniques on a national scale, a novel LUR methodology was devised which incorporates wind effects using 

angular sectors or “wedges”. The 360° wind field is discretised into a set of eight wind sectors; average 

pollutant concentrations and predictor variables are then calculated for each sector and used in the LUR 

process. The use of continuous monitoring data from the national network, rather than short-term passive 

monitoring, allows the calculation of average concentrations within each wind sector. However, as prevailing 

wind directions vary geographically, seasonally and diurnally and hence a biased sectoral average may be 

obtained in some instances. For example, if a wind direction was more frequent during winter than summer 

months the raw sector average would be excessively high. Consequently, a non-parametric regression 

correction method has been applied to remove diurnal and seasonal bias from the data prior to sector 

averaging. There are four key steps involved in the wind sector land use regression (WS-LUR) model 

development and mapping process:  

1. Calculate annual average pollutant concentrations within each wind sector at each monitoring site 

using a combination of hourly meteorological inputs and continuous monitoring data. 

2. Generate predictor variables from geospatial datasets for each directional sector within a GIS 

environment 

3. Select predictor variable for LUR equation using a supervised stepwise approach 

4. Calculate key predictor variables on a national scale at a fine resolution and weight using 

interpolated local wind frequency.  
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Figure 13 Monitoring site locations 

4.3 Correction factors  

A correction method was developed to improve the representativeness of the monitoring data used in the 

sector based LUR and to account for uneven weighting of data from each season that may arise within 

different sectors. A brief overview of the correction method is provided here; a comprehensive explanation is 

provided in Donnelly et al. (2015). 

Continuous monitoring data were used to calculate eight defined wind sector means for each station. The 

division of a concentration time series at a point into eight sectors maximises the number of data points 

available for the LUR; however, it also reduces data points available for long-term mean value calculation. 

Diurnal and seasonal concentration variations may lead to a biased annual sector average estimate when 

calculated from sub-annual datasets. Concentrations tend to be higher in winter months, than summer 

months (in Ireland) and, for example, if data within a sector was comprised 20% from winter and 80% from 

summer months, an unrealistically low value for the annual average would be obtained. Consequently, a 
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short term correction factor (St) was applied to remove bias from the concentration data prior to sector 

averaging. Direct averaging of these data within each wind sector will still not necessarily result in reasonable 

predictions of the long run mean due to seasonal differences in wind direction frequencies and other external 

forcing factors such as variation in sunshine hours and stability conditions. 𝐿𝑡 correction factors have been 

developed to apply to the data post binning. Figure 14 illustrates the procedure for correcting the raw data 

from a given monitoring site.  

The removal of concentration fluctuations due to meteorological and seasonal factors allows the isolation of 

external forcing factors and thus improved quantification of spatial variability in concentration levels using 

spatial descriptors and subsequently a more robust LUR model. This is illustrated by an improvement in the 

correlation between pollutant concentrations and spatial emissions indicators as shown in Figure 15 for NO2.  

 

Figure 14 Application of correction factors flow chart 
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Figure 15 Improvement in correlation with land use variables using raw (dotted lines) and corrected NO2 data (solid lines)  

4.4 Predictor data 

Geospatial predictor variables (Table 9) were calculated within each sector from nationally available, spatially 

homogeneous datasets for all sites using the ArcGIS 10.0 software package (ESRI, 2011). Eight circular 

buffers of variable radii were defined around each monitoring site, ranging from 25 metres to 5 kilometres, 

and further subdivided into eight 45° wind direction sectors (e.g. N, NE, E, etc.) (Figure 16 (a)). Residential 

and commercial property variables were derived using geographical coordinates from GeoDirectory (Figure 

16(b)). Traffic network and flow data were obtained from the National Traffic Model (NTM), part of the National 

Transport Model (NTpM) developed by the National Roads Authority (NRA) (Figure 16(c)). Road length 

variables were calculated within each sector for each road category, and the length of each major road link 

passing through the sector was multiplied by the link AADT to give annual Vehicle km (Vkm). Due to the high 

correlation between NO2 concentration and traffic parameters across the range of buffer radii, a weighted 

Vkm (Vkmweighted) parameter was developed. The weighting applied to each sector is related to the inverse of 

the distance of the sector from the monitoring point, with the closest sector (i.e. 25m) carries the highest 

weighting. The inverse-distance weighted Vkm factor was calculated as: 
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Where 𝑖 = 0 to 𝑖 = 𝑁 represent each of the sectors considered, r is the distance from the monitoring point to 

the centre of a given sector, where Vkmi is the sum of the Vkm in a given sector, i. In this case 8 sector sizes 

are considered, 25m, 50m, 100m, 250m, 500m, 1km, 2km and 5km.  

Population and residential combustion data were derived from Census data and spatially disaggregated on 

the basis of residential property locations, whereby average household statistics were calculated within each 

Census Small Area (SA) using the total number of occupied residential properties within the SA. In each 

instance predictor variables were calculated by summing totals (e.g. total road length, total population etc) 

within each sector. 

Land cover variables were derived from CORINE (COoRdination of INformation on the Environment) land 

cover data for the year 2006 the European Environment Agency (EEA). Following the methods outlined in 

Vienneau et al. (Vienneau et al., 2010) and Beelen et al. (Beelen et al., 2013b) the 44 land cover classes in 

CORINE were regrouped into six (High density residential, low density residential, industry, port, urban green, 

and semi-natural and forested areas) as well as additional land use class representing areas of sea and open 

ocean. Predictor variables were determined by calculating the area of each of these land use groups within 

each sector.  

Large point source pollutant emissions were derived from the Pollutant Release and Transfer Register 

(PRTR), operated by the EPA. Point emission totals were assigned to each sector based on PRTR point 

locations and the annual emissions during the year (or years) for which monitoring data were available in the 

sector. The list of predictor variables and sector radii is provided in Table 9.  
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Figure 16: (a) Wind direction sectors, (b) residential and commercial properties, (c) major roads and (d) solid fuel 
combustion 
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Table 9: Predictor variables with variable names, units, and sector size 

Category Units Sector Size (m) Subcategory No. of 
Variables 

Road Length 

Km 25, 50, 100, 
250, 500, 1000, 

2000, 5000 

All roads 
National road 
Regional road 

Local road 
Major road 

 

56 

Proximity to Road 

Km-1, Km-2 N/A Nearest road 
 

Nearest major road 

8 

Traffic Flow 

Vehicle Km 25, 50, 100, 
250, 500, 1000, 

2000, 5000 
 

N/A 8 

Weighted Traffic 
Flow 

Vehicle Km N/A Inverse distance 
Gaussian 

2 

Land Cover 

Hectares 25, 50, 100, 
250, 500, 1000, 

2000, 5000 

High density residential 
Low density residential 

Industry 
Port 

Urban green 
Semi-natural and forested 

Natural 
Sea/Ocean 

64 

Population 
Density 

Persons/km2 25, 50, 100, 
250, 500, 1000, 

2000, 5000 
 

N/A 8 

Property Density 

No. properties 25, 50, 100, 
250, 500, 1000, 

2000, 5000 
 

Residential 
Commercial 

16 

Residential 
Heating 

Properties per 
heating type 

25, 50, 100, 
250, 500, 1000, 

2000, 5000 

Solid 
Gas 

Electricity 
Oil 

32 

Household Cars 

Cars 25, 50, 100, 
250, 500, 1000, 

2000, 5000 
 

N/A 8 

Proximity to 
Coast 

Km N/A N/A 1 

Point Source 
(PRTR) 

Kg 25, 50, 100, 
250, 500, 1000, 

2000, 5000 
 

N/A 8 

Elevation m N/A N/A 1 
Wind Speed m/s N/A N/A 1 

 

4.5 Model fitting 

Selection of the most appropriate explanatory variables within suitable sector sizes is important for defining 

final model performance. Variable selection was carried out using a supervised stepwise approach. Firstly 

each predictor variable was assigned a plausible direction of effect and univariate regression analyses were 

carried out for all predictor variables. The model with the highest adjusted R2 having an appropriate slope as 
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predefined by the direction of effect was considered as the start model.  Additional predictor variables are 

then added consecutively to the model and maintained if the following three conditions are met:  

1. The R2 value increases by at least 1%  

2. The direction of effect of the new variable is as a priori defined 

3. The direction of effect of previously included variables does not change 

The large number of predictor variables examined meant that many of them were correlated. The variance 

inflation factor (VIF) was used to assess how much the variance of an estimated regression coefficient 

increases if predictors are correlated; it is equal to 1 if no factors are correlated. Variables with high VIF were 

removed from the model ensuring that each variable removed is redundant in the explanation 

of concentration. The set of predictor variables giving the highest adjusted R2 value which conformed to a 

priori defined directions of effect were selected for inclusion in the final model. As a final step, variables with 

a p-value of greater than 0.05 were removed from the model.  

Standard diagnostic tests for ordinary least squares regression were carried out. These included assessing 

residuals for heteroscedasticity and normality. Residuals were also analysed for influential or controlling 

observations or outlying data points. In a small number of instances this led to removal of certain data points 

after detailed investigations of the baseline data. Iterations cease and the final model is defined when residual 

diagnostics prove satisfactory.  

4.6 Modelled versus measured values  

A leave one out process was used to assess the annual mean maps. Scatter plots of measured versus 

modelled (Leave one out) values are shown in Figure 17. Results were strongest for NO2. This is due to a 

combination of a well-represented monitoring network and the good description of NO2 spatial variation by 

traffic related spatial variables.  
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Figure 17 Annual mean LUR modelled versus measured concentrations for NO2, Ozone, PM10, PM2.5 and SO2  

4.7 Results and applications  

The output from this modelling work is a set of annual mean maps for each of NO2, PM10, PM2.5, Ozone and 

SO2. These maps are shown in Figure 18 to Figure 21. The NO2 maps shows the dominant influence of traffic 

emissions on national (and urban) NO2 concentrations. PM10 shows increases near coastal regions and also 

in regional towns due to the effects of solid fuel burning. PM2.5 increases near major roads due to fine 

particulate emissions. As expected, ozone shows increases near coastal regions and decreases in heavily 

traffic areas where there are elevated NO emissions. The SO2 map was limited by the number of monitoring 

stations available within each air quality zone. However, the clear influence of the coal ban zones can be 

observed in the final map.  

These annual mean maps can be used for a variety of purposes: 

 Direct analysis of air quality anywhere in Ireland  

 For Assistance in determining appropriate areas to locate future air quality monitors (minimise 

monitor placement bias) 

 Personal exposure studies. 
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Figure 18 NO2 map (National) 
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Figure 19 NO2 map (Dublin) 

  

Figure 20 PM10 and PM2.5 maps 
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Figure 21 Ozone and SO2 maps 

5 Hourly LUR modelling 

5.1 Overview of methodology 

LUR models generally aim to explain spatial variation in concentrations and do not include a temporal aspect. 

Some studies have, however, attempted to model both temporal and spatial variation using a LUR base. 

Mölter et al. (2010) modelled annual concentrations of PM10 and NO2 for Manchester between 1996 and 

2008 using a LUR model from 2005. This model was temporally recalibrated and also made use of some 

temporal values of predictor variables and temporal trends. Dons et al. (2013) tested two methods of 

incorporating a temporal resolution into their model of black carbon in Flanders, Belgium. In the first approach 

they used 48 dummy variables for weekday and weekend hours (R2 of 0.44) and in the second approach 

developed independent hourly models (R2 between 0.07 and 0.8). Chen et al. (2010) included a temporal 

aspect to their LUR model of NO2 and PM10 in Tianjin region in China by establishing four separate models, 

one for the heating season and one for the non-heating season for each pollutant. R2 values ranged between 

0.49 for PM10 in the non-heating season and 0.4 for NO2 in the hearing season.  

Saraswat et al. (2013) developed spatiotemporal models for PM2.5 and black carbon (BC) in New Delhi by 

using a combined spatial monitoring campaign and data from a fixed continuous monitoring site. LUR data 

was sampled one site at a time and at each site measurements were collected for 1-3 hours during each time 

period (separate models were developed for morning and afternoon hours).  The pollutant concentration was 

assumed to be associated with a multiplicative combination of a background temporal component (fixed site) 

and the spatial components. They assumed that the temporal component was spatially invariant and the 
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spatial components were temporally invariant. PM2.5 model fits of 85% and 73% were obtained for the 

morning and afternoon models, respectively. Su et al. (2008) developed a source area LUR for predicting 

hourly NO2 concentrations in Vancouver from land use types and hourly wind speed, wind direction and cloud 

cover. They interpolated hourly meteorological data from 19 regulatory continuous monitoring stations for 

116 passive samplers to create a source area LUR model. They compared these results to a source area 

LUR created from the 19 continuous monitoring stations and those from a regular LUR. Estimated 

concentrations for the hourly model were aggregated back to seasonal averages. They concluded that when 

variability in seasonal concentrations is present the source area LUR provides stronger results than the 

regular LUR.  

In the current research project a novel model for forecasting spatially resolved hourly or daily concentrations 

and also tackles two of the main limitations of LUR. Firstly the issue of wind direction and area of influence 

when using circular buffer zones is addressed through the use of “sectors” within which predictor variables 

are defined and calculated (as introduced in section ????? for the annual mean LUR). In operational model 

the appropriate “sector” will vary with local wind direction. Secondly, the temporal resolution of the LUR is 

greatly improved through the inclusion of hourly meteorological data and seasonal factors as predictor 

variables.  

Using the methods developed in this research project hourly concentrations can be mapped on a national 

scale and forecasts of daily average and daily maximum concentrations can be made across the country with 

minimal computational requirements.  

5.2 Model Development 

5.2.1 General model fitting 

The WS-LUR model uses the same spatial predictor variables (where significant) as presented in Section 4 

and Table 9. In addition the following temporally varying predictor variables are used: 

 𝑊𝑆𝑊𝐷𝑓 (Wind speed/direction factor as introduced in Section 3) 

 𝑆𝑓 (Seasonal factor as introduced in Section 3) 

 Weekday/weekend dummy variable 

 Hourly temperature 

 Hourly precipitation 

 Hourly atmospheric pressure 

 Hourly relative humidity 

 Sunshine hours 

 Hourly stability class 

The premise of the WS-LUR is that a separate prediction equations are developed for different environmental 

conditions and/or time periods. A first step is to identify appropriate methods of partitioning the data so that 

robust models can be developed. The grouping allows a unique prediction of air quality to be made at any 

location in Ireland for any hour where the appropriate meteorological data are available. Model development 

proceeded following these steps: 
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1. Generate an hourly data set of measured concentrations at air quality monitoring sites and 

associated hourly meteorological factors for two full calendar years (2011 and 2012) 

2. Assign a weekday/weekend dummy variable and 𝑆𝑓 to each data point 

3. Generate predictor variables from geospatial datasets for each directional sector within a GIS 

environment  

4. Assign relevant spatial predictors to each hourly data point at each monitoring site 

5. Divide the data set into pre-identified environmental groups 

6. Select appropriate spatial and temporal predictor variables for each dataset using a supervised 

stepwise approach 

7. Merge to form a single model for all hours/seasons 

8. Complete mapping process by calculating key predictor variables on a national scale at a fine spatial 

resolution and hourly temporal resolution for the validation year (2012) 

9. Validate results by comparing to measured daily average and daily maximum concentrations for 

the same time period. 

5.2.2 NO2 

NO2 exhibits strong seasonal and diurnal variations the magnitude of which vary significantly on a national 

scale. Therefore 48 separate regression equations were developed (one for each hour in each season) to 

feed into the WS-LUR model. 

5.2.3 PM10/2.5 

PM10/2.5 concentrations exhibit nonlinear changes in concentration with wind speed and temperature. 

Therefore this method divides the training data into 4 separate temperature classes and four temperature 

wind speed classes. A separate regression equation is trained for each of these meaning a total of 16 

regression equations. In operational mode, the appropriate regression equation can be chosen based on the 

daily average wind speed and temperature that is forecast on a given day. The classes were chosen based 

on the first quartile, median and 3rd quartile of the total temperature and wind speed data sets. The bands 

are shown in Table 10.  

Table 10 Variable classes for PM10 and PM2.5 

Variable class Temperature (ᵒC) Wind speed (m/s) 

1 <6.35 <2.87 
2 <9.76 <4.18 
3 <13.15 <5.81 
4 >=13.15 >=5.81 

5.2.4 Ozone 

In developing the WS-LUR for ozone the data were separated into three (spatially distinct) groups. They are 

a coastal group, a rural/suburban group and a group comprising of the Dublin and Cork air quality zones. 

The data were first grouped seasonally based on similarities between monthly values. They were then 

grouped for regression based on diurnal variations within each of the identified seasons and the three spatial 

location types. Figure 22 shows the diurnal variations at the coastal sites of Valentina and Mace Head split 

by month.  
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Figure 22 Diurnal variation in Ozone at Mace Head and Valentia split by month 

5.3 Results  

The model was fitted for NO2, Ozone and PM10 as discussed above. Hourly (or daily) modelled values were 

compared to monitored data for each of the pollutants. Standard statistical measures were used to assess 

model performance. The results are shown in Table 11. Scatter plots of measured versus modelled values 

are shown in Figure 23, Figure 24 and Figure 25. Results confirmed that the WS-LUR model is a useful and 

efficient means of forecasting air quality on a national scale in Ireland. There is a fair degree of scatter in the 

PM10 plot and the detailed analysis of PM carried out suggested that future spatio-temporal modelling of PM 

might be carried out using an interpolation method on the hybrid point wise forecasts in conjunction with the 

annual mean LUR maps.  

Figure 26 shows a sample output of the Dublin region for two different times of the day on the 10th of August 

2014. A clear difference can be observed between the midday and evening concentrations. This is the effect 

of rush hour traffic emissions. Clear definition can be observed around the road network, in particular the 

M50 and arterial routes highlighting the large contribution of traffic emission to overall NO2 concentrations.  
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Table 11 Statistical performance measures for the WS-LUR model 

  NO2 (Daily average) NO2 (Daily maximum) Ozone (Daily 
average 8 

hour value) 

Ozone (Daily 
maximum 8 
hour value) 

PM10 (Daily 
average) 

FAC2 95.69% 93.20% 98% 98% 94% 

R 0.84 0.77 0.664 0.665 0.60 

Mean fractional bias -1% -1%   -5% 

Index of agreement 0.91 0.86 0.787 0.794 0.73 
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Figure 23 WS-LUR modelled versus measured NO2 data 

 

Figure 24 WS-LUR modelled versus measured Ozone data 
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Figure 25 WS-LUR modelled versus measured PM10 data 

 

Figure 26 Sample output from the WS-LUR model for NO2 Dublin on the 10th August 2014 at 1pm (A) and 7pm (B) 

6 Urban air quality survey 

An urban monitoring campaign was carried out to provide additional information on the spatial variation of 

concentrations across urban and rural areas. This task was a joint work package between the air quality 

modelling fellow and the emissions inventory fellow (2013-EH-FS-7). The objective of the work is to develop 

linkages between air pollution levels at a fine spatial scale in Dublin and other spatial parameters.  

70 NO2/SO2 diffusion tubes and 59 Ozone diffusion tubes were deployed at pre-specified locations around 

Dublin. The sites were chosen using the annual mean maps detailed in Section 4. It was necessary that the 

locations cover primary land use classes as well as the full range in concentrations over the Dublin region. 

Guidelines laid out in the ESCAPE study manual (European Study of Cohorts for Air Pollution Effects, 2008) 

were also followed in choosing site locations. This manual details site selection, site characterization, 
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temporal aspects, LUR model development and potential predictor variables in exposure assessment 

studies. The locations of the monitoring sites are shown in Figure 27.  

The diffusion tubes were all deployed within 24 hours of each other and the GPS coordinates and time of 

deployment recorded. They were each left out for a period of 2 weeks between the 10/06/2015 and the 

24/06/2015. The time of collection of each tube was recorded and any missing or damaged tubes were noted. 

The tubes were placed in sealed plastic bags and returned to the laboratory for analysis along with a number 

of blank tubes for corrective purposes. Final concentrations of NO2, SO2 and ozone at each location are 

provided as a dataset output from this project.  

The diffusion tube survey results provide a valuable resource regarding spatial variation in concentration 

levels in the Dublin region. A second round of sampling will be carried out as part of Emission Inventory 

fellowship (2013-EH-FS-7) to capture additional information on the seasonal variation in concentration levels. 

Thereafter, finely resolved spatial data provided will be used together with the results from the monitoring 

campaign to carry out geo-statistical modelling of the Dublin area as part of the Emission Inventory fellowship.  

A model framework has been developed as part of the current fellowship which will upon which urban 

modelling will be based. This modelling will be carried out using the in-house statistical model developed as 

part of this fellowship and short term average values obtained will be converted to annual mean 

concentrations based on seasonal factors developed during the first two years of the fellowship. The 

methodology will be documented and a framework will be developed for model building and meteorological 

forecast integration.  
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Figure 27 Diffusion tube monitoring site locations  

7 Conclusions  

A suite of air quality models has been developed as part of his research project to achieve key EPA 

objectives. The models provide the following information and operational capability: 

 Automated twice daily 48 hour pointwise forecasts of NO2, SO2, PM10/2.5, Ozone and he AQIH 

 Automated twice daily forecasts of the origin of air reaching Ireland (using HYsplit) 

 Annual mean maps of NO2, SO2, PM10/2.5, Ozone 

 National scale spatial model to predict hourly NO2, 8 hourly average ozone and daily average PM10 

Air quality model development has necessarily been a stepwise process making maximum use of available 

resources. A statistical approach to provide point wise forecasts was adopted which used historical 

monitoring data to train the model in the absence of a detailed emissions inventory. Inclusion of regional 

transport of emissions improved model efficiency. Air mass history modelling was carried out and a HYsplit 

add-on was developed for the model. A validation study was carried out by comparing 12 months of modelled 

data to monitored data from the same period. Some general conclusions from this study were: 

 Model validation statistics show good correlation between measured and modelled values and 

indicate a level of performance equal to or better than that generally expected from air quality 

models. 
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 Overall IA values of 0.88, 0.84, 0.84, 0.80 and 0.88 are achieved for NO2, PM10, PM2.5, SO2 and 

ozone, respectively. 

 Overall r values of 0.82, 0.72, 0.74, 0.69 and 0.82 are achieved for NO2, PM10, PM2.5, SO2 and ozone, 

respectively. 

 Overall FAC2 values of 73%, 93%, 79%, 77% and 100% are achieved for NO2, PM10, PM2.5, SO2 

and ozone, respectively. 

 Incorporation of an air mass history parameter resulted in a large improvement in the prediction of 

NO2 and particulate matter concentrations.  

 The model is quite conservative in its PM10 and PM2.5 predictions. There is a slight positive bias at 

all sites as a result of the methodology used to account for regional air mass movement and pollutant 

transport. PM is one of the most difficult pollutants to model due to its wide range of anthropogenic 

and natural sources. Therefore, a conservative estimate accompanied by some specialist 

interpretation is considered to be the best means of producing a forecast. When the AQIH is forecast 

to be poor, air mass history and other conditions relating to PM concentrations should be examined 

in conjunction with the value given by the AQ model to produce a final forecast.  

 During the next model calibration/training, ozone should be trained using hourly data. The use of 8 

hour averages as the response variable has resulted in some over smoothing of the data. 

The stepwise approach adopted in model development allowed outputs before completion of the final study 

and achieved a key EPA objective of producing forecasts of the Air Quality Index for Health 24 and 48 hours 

in advance. 

Mid-way through the original research fellowship the EPA funded an additional fellowship concerned with 

development of an emissions inventory for Ireland. This research was closely linked with the air quality 

modelling fellowship and influenced the direction of the work. Air quality modelling results were required to 

feed into the emissions inventory development to ensure that the most appropriate surrogate data are used, 

while the emissions inventory work provided spatial datasets for the development of the national annual mean 

maps.  

Using air quality data from the national ambient air quality monitoring network and spatial predictor data a 

LUR technique was used to model air quality on a national scale. A novel technique was employed whereby 

the air quality data were spilt into 8 wind dependent sectors and corrected for short term fluctuations. Spatial 

predictor variables were also defined using the same sector based approach. This had the effect of 

maximising the number of data points available for the regression while also improving the description of 

spatial emissions/air quality relationships. The outputs from this modelling work were annual mean maps of 

NO2, PM10, PM2.5, SO2 and ozone for the base year of 2012. A temporal aspect was introduced to the above 

model by including short term meteorological predictor variables and seasonal and diurnal factors in addition 

to spatial variables. The resulting model has the ability to forecast hourly NO2, 8 hourly average ozone and 

daily average PM10 at any location in Ireland.  

This work highlighted some bias in the monitoring network, particularly in the case of ozone and PM10//2.5. A 

significant coastal influence was observed on PM10 but a lack of sufficient monitoring data meant that this 

could not be fully quantified. However, an approximation was developed and this is an area recommended 

for further work. Validation of the model using a “leave one out” procedure showed that the model performs 
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excellently for NO2 and is of a suitably high standard for PM10/2.5, SO2 and ozone to be used for studies of 

spatial variation in concentrations across Ireland. Insufficient detail in background concentration data is 

frequently cited as the reason for poor results in local and urban modelling studies. The national scale model 

outputs from the present project have high relevance as inputs (background concentrations) into more 

detailed urban modelling studies.  

A detailed study was carried out into incidences of high PM10 and PM2.5 across Ireland. The following events 

(together) are likely to lead to high PM and should be associated with a PM alert system: 

 Low wind speed (<3m/s) 

 Low temperature (<6 degrees) 

 High pressure  (>1020mbar) 

 Shallow boundary layer (<500m) 

 Stable conditions 

 Low/no precipitation.  

This fellowship has produced a number of key tangible outputs as detailed in section 8. The suite of models 

developed should form the building blocks for future modelling work, which is necessarily an iterative process. 

While a direct output from this work has been a fully automated air quality forecast model it should be noted 

that user knowledge and interpretation of model outputs are important in all air quality modelling work and 

the importance of developing a knowledge base in this area should not be underestimated. It is recommended 

that air quality forecasts should be made using a combination of: 

 Numerical output directly from the model 

 Assessment of forecast local meteorological conditions 

 Assessment of regional air mass movements as forecast by the HYsplit model which is built into the 

operational air quality model  

 Consideration of any other unusual events or conditions (e.g. volcanoes or Saharan dust episodes) 

 Expert judgement.  

8 Recommendations for future work 

Recommendations for future work concerning model maintenance and development are as follows: 

 The point wise model should be recalibrated using up to date validated air quality and meteorological 

data on an annual basis. This process will ensure that air quality trends at individual sites are well 

captured and any new sources in an area are identified and included in the model.  

 In the case where new air quality monitoring sites are used for the derivation of the AQIH, the model 

can be used to continue to forecast at the old site until a full year of data are available at the new site. 

This will avoid any break in forecasts within any one air quality zone. Once at least a full year of data 

are available, the model should be recalibrated and updated to include this new site within the model 

architecture.  

 The national annual mean maps and temporal LUR models should be recalibrated every two years 

(or when new and significant spatial data become available).  
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 Recalibration of the national annual mean maps and temporal LUR models should also be carried 

out in the case of significant changes in spatial characteristics within a given zone or region.  

The work carried out as part of this fellowship highlighted a number of areas which require, or would benefit 

from, further research. These are as follows: 

 Further work is required to ensure that the national ambient air quality monitoring network has 

sufficient spatial coverage across the range of pollutant concentrations. Outputs from the current 

fellowship can be used to assist in determining spatial coverage. Using the national scale maps, the 

total area within each AQ zone is calculated. The concentrations within each zone as indicated by 

the model are plotted as cumulative distribution plots. This is shown by the 4 curves in Figure . The 

concentrations at each of the AQ monitoring sites in the national network are then overlaid as points 

on these curves. Ideally the monitoring sites should cover the full range of concentrations shown by 

the distributions for each zone. These distribution curves show a clear lack of monitoring stations at 

the upper levels of the curve (trafficked sites in the case of NO2) in zone B and C. Since the national 

scale model has been developed using the current AQ monitoring network, an iterative process 

would be necessary whereby a new model is developed after the AQ review and the process 

repeated.   

 

Figure 28 Cumulative distribution curves with concentrations at each monitoring site superimposed 

 PM10 was found to display significant coastal influence. Bias in monitor placement in the national 

ambient network meant that an approximation had to be used in the present fellowship to quantify 

this. A research study should be carried out that quantifies PM10/2.5 concentrations at set distances 

from the coast (up to 10km) during onshore, off shore and variable winds during different 

meteorological conditions and seasons. PM10/2.5 coastal fall off curves should be developed for 

different meteorological classes. 

 PM10 and PM2.5 were found to display significant temporal variation due to both natural and 

anthropogenic effects. Further research is required which links source apportionment work with 

forecasting work. Quantifiable outputs from source apportionment could potentially be applied within 

a forecast environment to provide improved predictions of PM on a national scale.  
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 Ozone was found to be significantly higher in coastal regions but the small number of coastal sites 

made this difficult to quantify. Ozone monitoring should be carried out in coastal regions using either 

passive or active techniques to improve the quantification of high ozone events.  

 The hybrid pointwise model developed as part of this fellowship was found to produce excellent 48 

hour forecasts of the AQIH at pre-specified locations. A novel new area of work is the interpolation 

of these forecasts on a national scale. The number of monitoring sites is too limited to perform a 

direct interpolation; however, the integration of hybrid point wise model with the spatial model 

provides an innovative methodology for producing fast, resource efficient forecasts on a national 

scale at hourly resolution. Pointwise forecast would first be developed for every monitoring site in 

Ireland. The technique would involve background stripping the point wise forecasts in real time by 

subtracting the background concentration as provide by the annual mean maps from the 

concentration forecast at each location. These local forecasts are then interpolated using 

appropriate techniques. The background concentration can then be added back on nationally to 

provide real time national scale forecast maps. This model would be based in an GIS environment 

and could be fully automated.  
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