D 5 BLIN Technological University Dub.lin
e n ARROW @TU Dublin

Masters Engineering

2001-09-01

Slab Drawing Layout: a Study to Develop a New Information
Technology Package to Aid Those Involved in the the
Manufacture of Pre-stresed Hollow Core Plank Flooring

Joe Parker
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/engmas

6‘ Part of the Engineering Commons

Recommended Citation

Parker, J. (2001). Slab drawing layout: a study to develop a new information technology package to aid
those involved in the the manufacture of pre-stresed hollow core plank flooring. Masters dissertation.
Technological University Dublin. doi:10.21427/D79P65

This Theses, Masters is brought to you for free and open access by the Engineering at ARROW@TU Dublin. It has
been accepted for inclusion in Masters by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engmas
https://arrow.tudublin.ie/engthe
https://arrow.tudublin.ie/engmas?utm_source=arrow.tudublin.ie%2Fengmas%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fengmas%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

“SLAB DRAWING LAYOUT”

A study to develop a new Information
Technology package to aid those involved in
the manufacture of pre-stressed hollow core

plank flooring.

Joe Parker B.Eng.
MPhil.

Dublin Institute of Technology

Mr. Eddie Fallon C.Eng., MSc.
Mr. Gerry Walker

School of Engineering Technology
September 2001
Volume 1 of 1

| certify that this thesis which | now submit for examination for the

award of , Is entirely my own work and has

not been taken from the work of others save and to the extent that
such work has been cited and acknowledged within the text of my

work.

This thesis was prepared according to the regulations for
postgraduate study by research of the Dublin Institute of Technology
and has not been submitted in whole or in part for an award in any

other Institute or University.

The Institute has permission to keep, to lend or to copy this thesis in
whole or in part, on condition that any such use of the material of the

thesis be duly acknowledged.

Signature

Date

ABSTRACT

Manufacture of pre-stressed hollow core flooring (from here on referred to as
‘'slabs’) can be traced through a number of steps. These steps can generally be
arranged in the following order,;

1. Receipt of a drawing indicating the area that the client requires to be floored.

2. Production of a new drawing showing the layout of individual siabs over the
proposed floor area.

3. Production of design calculations to B.S.8110 (or other design specification)
that adequately covers each slab within the floor layout drawing according to its
individual design criteria.

4. Production of sheets for manufacture of slabs showing the physical and
geometrical properties of each individual slab.

5. Manufacture of slabs.

6. Transport of slabs from place of manufacture to site.

7. Placing of slabs on site.

Slabs are generally modular in nature and depending on the individual

manufacturer’s profile come in varying lengths of either 1200mm or 2400mm wide.

The production of floor layout drawings thus tends to be repetitive which leaves

them open for automation via computer technology. Since all fioor slabs are of a

uniform cross section their design will be dictated by their loading conditions and

the presence or not of a structural screed. Design calculations can aiso be
modeled using computer technology.

It was the intention of this study to automate as much as possible steps 2 to 4 from

above thus reducing valuable time spent by manufacturer’s staff on repetitive

duties. In attempting this the study exposed the framework necessary to develop
the IT package and steps 2 and 3 were adequately covered. An attempt was made
to cover step 4 which worked for the simplest of cases. A very basic package was
developed which could cater for uncomplicated small floor layouts. While most of
the time was spent writing code to perform vital tasks the code needed to

manipulate the user-interface was neglected. For industry standards this is a most

important area and a huge amount of thought would be necessary to develop this
aspect of the package.

AutoCAD is the preferred drawing tool of the building industry and as such it was
chosen as the main environment for the development of the Information
Technology (referred to as IT subsequently) package. During the development of
this thesis AutoCAD proved extremely versatile and the structure of its internai
architecture made it a very powerful tool to work with.

To complement AutoCAD Borland’s Delphi was chosen as the environment to write
the non-drawing dependent software. The learning curve with Delphi is quite steep
for a beginner but once mastered it has all the tools available for the most complex

of software solutions.

Table of Contents

Chapter 1 PreliniNaries ... 4
I LProgranuming Environmentscoo.oooooo e 4
P2 AWMOCAD e ‘
1.3.80 which API? .)
l.4.Borland Delphi................
1.5.The Sample Project
Chapter 20 The First APProaeiio . oo

2.6 About The Object Model
2.7 Working With Variants And ATtays ...o.cooooooioooiooooiooooooooo 17
Chapter 3 Programning in VBA ..ot oo
3.1 The VBA Environment
3.2 The Object Browser.....................
3.3, Sciting The Drawing Preferences
3.4 Adding Forms To The Project..........o...o......
3.3 System Variables .o .
Chapter 4 Comtrolling IR ..o

4.5 Transparent Commands
Chapter 5 Progranuning Techigues....................
& R

5.2 Adding Objects To A Block....oooooooooio
5.3 Connceting A Project To A Database ...,
5.4 Implementing The Database With DAO

Chapter 6 The New APPrOACH...........cocorivecomoeiie oo 34
6.1 Dynamic Link Libraries — A Brief Tntraduction
6.2 Programinatically Creating A Toolbar ...
6.3 Adding A Macro To The Project ... :

Chapter 7 THe TOOIDAY ...t

7.2 Get_Slab_Boundaryoooovooo i
T3Ge Any_Holes...oo
T4 Get _Any_Walls.ooo e

7.5 Get_Point_Loads

T T HANEETS e J

7.8 Design..........

7.9 Group Slabs

7.10 Production Sheets

7.1 Toggle Layers ..o................

T A2 RESCL oo

7.13 Concluding AutoCAD
Chapter 8 Delphi ...

3.1 Where To Begin?

8.2 COM Revisilet ..ot

S Virtual Method Tablos e e 91

8.5 IILETIACES ot 92
8.6 COM and the Client Server Model ... 95
8.7 Servers: In-Process and Out-01-Process ..o, 96
Chapter 9 Dyncaimic LIk LIDIQEICSo.cooooieu oot 97
ol TyYPe LADTATICS oot e u7
9.2 Making A Start: The Simplest Of ActiveX DLLS ..o 97
9.3 The Draw DLL....o e eeeees e et oo e 104
9.4 The Design DI e, 109
Chapter FE COMCHSTONS ...ttt 118
LOLE Achicved DevelOPIMENLS (..o ot 118
HE2 Future DevelOpiment.. ..t oo, 118
REJEFCIECS oottt 120

Diagram Index

Fig 1.5.2 Isometric of 200mm deep Unit............ooooe oo 9
Fig 2.1.1 Inter-process CommuNiCation ..o 10
Fig 2.2.1 AutoCAD' s database StrucCture.occooueeoeoeoe oo 12
Fig 3.1.1 The Visual Basic EitOrccoooiioo oo 19
Fig 3.2.1 The Object BrOWSE!cooooiie oo 21
Fig 3.4.1 UserForm showing command button..............cc.oooooeieo o 24
Fig 3.4.2 The Properties WIndowccooviioiiie oo 24
Fig 4.1.1 Floor Bounding Ar€aoccoiiieioco oo 28
Fig 5.3.1 The ODBC Administrator.............ooooioiie oo oo 43
Fig 5.3.2 Setting up a Database.........cccoooeeiioioe oo 44
Fig 5.3.4 Available Project Referencescccoovooi oo 44
Fig 5.4.1T ADatabase Table ... 48
Fig 6.1.1 Available Macros Dialogue BOX...........ccoocvimoeooeeoeee oo 58
Fig 6.2.1 Adding @ Procedureoc.oooiiiiooeecc oo 59
Fig 7.1.1 New Toolbar showing Tooltip for first button.occoovviiii 60
Fig 7.2.1 Client Name Dialogue BOXooioveoiiieeeeoe oo oo, 62
Fig 7.2.2 Floor Area Propertiesc.oc.ooooiiiioeee oo 63
Fig 7.3.1 HOIE SIZING ..ot e 65
Fig 7.3.2 Resultant hole addedooooiioiiii o) 67
Fig 7.3.3 Intersection area between floor area and holeooovvoeoooivoi 70
Fig 7.3.4 New hole producedc..ooo oo 70
Fig 7.3.5 Floor area less new hole areac.oocoooevveoe oo oo 70
Fig 7.4 1 Wall FIOWChart..........c.c.ooiiiii e 72
Fig 7.5.1 Point load Flowchart..............cooooo oo, 73
Fig 7.6.1 Slabbed floor area..............oo.oiviiiicc e 75
Fig 7.7.1 Hangers FIOWChAIo.oooo oo oo 76
Fig 7.9.1 Grouped SIaDS ...t e 80
FIg 7.9.2 Group SIADSooviiiii e 83
Fig 10.2.1 Adding an ActiveX LIDrary ..., 98
Fig 10.2.2 Both member forms of the ActiveX dlloooooooeoe e, 99
Fig 10.2.3 Automation Object Wizard..................oocoo oo 101
Fig 10.2.4 Delphi Type Library EAOr.......coooeo oo oo 102

(%3

Fig 10.3.2 Dynamic SHCiNg.......ccov oo 107
Fig 10.4.1 Results Sheet TOOIDAT...............oooovoveeeeo 115
Fig 10.4.2 Changing the unit Size ..o 115
Fig 10.4.3 Changing the strand pattem ... 116
Fig 10.4.4 Creating cantilevers..................ccooovoooos oo 116

Plate Index

Plate 7.10.1 Production Sheet 1. 85
Plate 7.10.2 Production Sheet 2................c.ocoovvvoo 86
Plate 10.4.2 Results Page NO.T ... t12

Chapter 1 Preliminaries

1.1.Programming Environments

From the very outset of this research it was decided to work within two operating
environments;

e AutoCAD

¢ Borland Delphi

1.2.AutoCAD

The reasons for choosing AutoCAD were straightforward.

1. AutoCAD is the universal drawing tooi chosen by engineers worldwide. Most
drawings received by a manufacture will either have been done using AutoCAD
or can be interpreted using AutoCAD.

2. Over the years AutoDesk have been providing application-programming
interfaces allowing users to get at the heart of its AutoCAD structure. It was
known when this research began that AutoCAD could be programmed using
one of these interfaces (or APIs for short) allowing the user to customise the
programme for their own specific needs.

3. Two years ago when this research was started there was of a couple of APls
that could be used to programme AutoCAD. These were as follows:

» Auto LISP,
* ObjectARX AutoCAD Runtime Extension,
* VBA and ActiveX Automation.

Auto LISP

AutoLISP is a programming language designed for extending and customizing

AutoCAD functionality. It is based on the LISP programming language, whose

origins date back to the late 1950s. LISP was originally designed for use in Artificial

Intelligence (Al) applications, and is still the basis for many Al applications.

AutoCAD introduced AutoLISP as an API in Release 2.1, in the mid-1980s. LISP

was chosen as the initial AutoCAD API because it was uniquely suited for the

unstructured design process of AutoCAD projects, which involved repeatedly trying
different solutions to design problems. (Note: Visual LISP has since been
introduced which is a programming tool used to expedite AutoLISP programme

development.)

ObjectARX or AutoCAD Runtime Extension

ObjectARX is the most powetful application development environment for
AutoCAD. ARX was first introduced to AutoCAD in R13 and was much improved
and enhanced for R14. This APl is not for the beginner and requires the developer
to have achieved a certain skill level. Knowledge of C++ including what virtual and
overloaded functions are and how to derive a class from a base class is essential.

The main benefit of ObjectARX is that custom AutoCAD objects can be created.

Microsoft Visual Basic for Applications or VBA
ActiveX Automation, a technology developed by Microsoit and based on the COM

(component object model) architecture, is a new programming interface for
AutoCAD. It can be used to customize AutoCAD, share drawing data with other
applications, and automate tasks. Through Automation, AutoCAD exposes
programmable objects, described by the AutoCAD Object Model that can be
created, edited, and manipulated by other applications. Any application that can
access the AutoCAD Object Model is an Automation controller, and the most
common tool used for manipulating another application using Automation is Visual
Basic for Applications (VBA). This form of Visual Basic is found as a component in
many Microsoft Office applications. These applications, or other Automation
controllers, such as Visual Basic and Delphi, can be used to drive AutoCAD.
Microsoft VBA is an object-oriented programming environment designed to provide
rich development capabilities similar to those of Visual Basic (VB). The main
difference between VBA and VB is that VBA runs in the same process space as
AutoCAD, providing an AutoCAD-intelligent and very fast programming

environment. VBA was tentatively introduced to AutoCAD R14 it was not until

about two months after research began that full functionality was given to VBA in

R14.01

1.3.50 which API?

Research began by investigating the AutoLISP programming environment. About
three weeks was spent examining sample AutoLISP applications and their
associated code. The code is basically in the form of a long list delimited by
commas and brackets written into a text editor and compiled by AutoCAD. It was
found to be difficult to follow and extremely difficult to de-bug although 3 weeks
would be considered a very short period in which to condemn it. At around the
same time lots of references to VBA both within AutoCAD and also within many
Microsoft products were beginning to appear. AutoCAD R14 that also had some
sample VBA applications and associated code was available at this time. Although
R14 did not have full VBA functionality it was decided that developing through it
was the way forward. It has since been found that very little AutoLISP code was
needed to complete the project. Due to the programming experience required
using ObjectARX was never really considered. Charles McCauley published by
AutoDesk Press for Thomson Learning extensively covers the topic in
“Programming AutoCAD 2000 Using ObjectARX"

1.4.Borland Delphi

The reasons for choosing Delphi at the time were also quite straightforward:

* It was decided a more flexible programming environment was going to be used
to perform all the calculations and to react to any user inputs with respect to
automating the drawing process. Once all the calculations were done and an
acceptable drawing layout was achieved the information would be sent back to
AutoCAD for drawing.

* Due to the lack of programming experience advice as to what programming
development tool to use was taken. Without any further research it was decided

that Delphi would be the secondary development tool.

0

* Delphiis a rapid application development tool for the Windows environment.
Delphi uses Object Pascal, a set of object-oriented extensions to standard
Pascal. Object Pascal is a high-level (3-4GL), compiled, strongly typed
language that supports structured and object-oriented design. Its benefits
include easy-to-read code, quick compilation, and the use of multiple unit files
for modular programming.

* The Visual Component Library (VCL) is a hierarchy of classes—written in
Object Pascal and tied to the Delphi integrated development environment
(IDE)—that allows applications to be developed quickly. Using Delphi’s
Component palette and Object Inspector, VCL components can be placed on
forms and their properties manipulated without writing code.

* Most Delphi developers write and compile their code in Delphi’s IDE. Delphi
handles many details of setting up projects and source files, such as
maintenance of dependency information among units. Delphi also places
constraints on programme organisation that are not, strictly speaking, part of

the Object Pascal language specification.

1.5.The Sample Project

Throughout the development of this study reference to the sampie project is made.
This basically refers to a section of a floor area that is required to be fitted with floor

slabs by the manufacturer.

- S

ST R

[P

H H

Fig 1.5.1 Demo.dwg

The drawing contains the following elements:

1.

S T

Gridlines B, C, X and Y.

A 260mm x 260mm Universal Column (UC) at gridline intersection points,

2 No. Universal Beams between gridlines B and C.

Symbol indicating span of individual floor slabs.

2 No. wallis at right angles to each other imposing design loads of 8kN/m run

Dead Load and 3kN/m run Live Load respectively.

6. A stairwell to another floor.

A large service opening measuring 1000 mm x 800 mms. A point [oad imposing
a design load of 25 KN Dead Load.

The development of this drawing into a group of intelligent “data aware” slab

objects forms the basis of the research contained within this study. A slab object

can be thought of as an individual slab record within the drawing containing the

entirety of design and geometric information needed by the manufacturer to

reproduce a working unit on the shop floor.

Physically the floor slabs come as modular sections 1200mm wide of varying
cross-sectional dimensions depending on the strength requirements of the floor
area. The slabs contain varying numbers of prestressing strands used to increase
the moment carrying capacity of the slabs. Once on site key joints at the edges of

the slabs are filled with grout to tie adjacent slabs together.

Fig 1.5.2 Isometric of 200mm deep unit

Chapter 2: The First Approach

2.1. The Problem At Hand

Looking at Demo.dwg the first challenge is obvious. The floor area contained within
gridlines B, C, X and Y needs to be divided into a series of floor slabs of maximum
manufacture width 1200mm and shown on the graphics screen. In order to achieve
this it was decided that it was necessary to extract the coordinates of the outer
extremities of the floor area and transfer them to the main programme where they
would be manipulated and a revised set of coordinates sent back to AutoCAD for

drawing.

AutoCAD T Processed
coordinates coordinates
out to . back to
processing AutoCAD for
programme. drawing

Fig 2.1.1 Inter-process Communication
The two programming environments used for the IT development. AutoCAD

controls the drawing processes while Delphi manipulates the numbers before

handing back to AutoCAD.
With this in mind it can be seen that development can assume a twin track
approach with separate routines being developed for both the AutoCAD and Delphi

sides of things.

10

2.2. A Look At The Structure Of AutoCAD

AutoCAD treats it's drawing more or less like a database. Within the drawing
database there are a number of tables. Tables can contain records or index to
other tables, which in turn have records. As with databases, the table can be
opened for read or write operations. New records can be added (appended) to the
table. Existing records can be modified (updated) in a paiticular table. When
finished with whatever operation carried out on the table, the table must be closed.
Thankfully VBA will take care of a lot of these operations behind the scenes but it is

useful to know what is going on.

The AutoCAD drawing contains multiple objects some of which are visible to the
graphics screen and some, which are not. Invisible objects are items such as
layers and text styles. While a layer cannot be seen, its effects on the entities in the
drawing residing on the particular layer can be seen. When starting a new
AutoCAD drawing some of these objects are created automatically, such as the
layer, the text style, the dimension style and so on. More importantly there is also
a block table which has a few records already present: *MODEL SPACE and
*PAPER_SPACE. When the user executes an AutoCAD command to create an
entity, AutoCAD creates an entity of the appropriate type, opens the correct table
for a write operation and appends a new record to the table (the entity information
is contained in the new record). Then AutoCAD closes the record and the
database. The newly created entity will appear on the screen. AutoCAD does all of
this in the background unknown to the user; it is hoped to demonstrate this using
VBA.

Dalabase

Syrribol Tables Block Table Narned Ohjects Heaclers
Dicticnary
- Miine Styles
s Moclet Space Dictionary
-
e
/‘/
Entities % FPaper Space Groups Dictionary
/
yd
1’/—
" Other Block Table User Defined
Entitizs) -
Recnords Dictionary

Fig 2.2.1 AutoCAD’ s database structure.
Having briefly looked at the underlying structure of AutoCAD it is time to investigate

some of the interfaces used to interact with this structure.

2.3.Automation-The First Encounter

AutoLISP was the first API considered to automate AutoCAD. About 3 weeks of
development time was spent examining sample applications written in AutoLISP
and developing applications. Two years ago AutoCAD R 14 was the platform on

which development began. This was the first release of AutoCAD to include the

new Visual Basic APl namely Visual Basic for Applications. Discovery of this

interface put an end to investigations of programming AutoCAD using AutoLISP.

2.4. COM Technology — An Overview

COM stands for the Component Object Model. It is a system that was developed

by Microsoft with the following theoretical purposes in mind:

» it provides a means for defining a specification for creating a set of non
language-specific standard objects.

» |t provides a means to implement objects that can be called between different
processes, even if those processes are running on different machines.

¢ COM provides a platform across which different applications can communicate
to each other. The full implications of COM to the development of this study will

become apparent later on.

2.5.AutoCAD and ActiveX Automation

AutoCAD implements COM via its object model and ActiveX automation. ActiveX
Automation provides a mechanism to manipulate AutoCAD programmatically from
within or outside of AutoCAD. It does this by exposing various AutoCAD objects to
the "outside world". Once these objects are exposed, they can be accessed by
many different types of programming languages and environments, even by other
applications such as Microsoft Word VBA or Excel VBA. VBA sends messages to
AutoCAD by the AutoCAD ActiveX Automation Interface. AutoCAD VBA permits
the VBA environment to run simultaneously with AutocCAD and provides

programmatic control of AutoCAD through the ActiveX Automation Interface.

There are three fundamental elements that define VBA programming in AutoCAD.
The first is AutoCAD itself, which has a rich set of objects that encapsulate
AutoCAD entities, data, and commands. The second element is the AutoCAD
ActiveX Automation Interface, which establishes messages (communication) with

AutoCAD objects. The third element that defines VBA programming is VBA itself,

which has its own set of objects, keywords, constants, and so forth that provide
program flow, control, debugging, and execution.

For simplicily the Object Model shown below is the one that was shipped with
AutoCAD R 14.01.

Current development has taken advantage of the much-improved Object Model
shipped with AutoCAD 2000.

‘ T Yoise Meon ” l = ” iwhaCenl 5-5{ BEE

F: £d* Bockmek Ofon: Heb

He.‘glcgé;—;l i l P | Dbgects ’ Merads | E:n;-afr:sl Qcmla’isl Everls]
Object Model
r Ofze _*J
AueaD L P
Spptoan ey
: r Dl
; Freterences Madafipece ro&c
| [Cesckn I,
e Daoen PepatSpace | AtuteRst
Todartoa
ks - Buifel
Cefecton — Bk - Cik
A
Dicdunaizs . B D,PA ged
Cobection — Dty I Drdrgda
| i
Bindiles g Pt
Cabn U9 L ordnae
Breuns I DivRadd
e 0P L Drfuged
Lagess - - B
Celzition — - Hath
Linstpes . F Lests
Cedectin — L L LgteegiPodn
Regsletedbon Reasteres - Lre
Crfziien T Aploaen L MTed
Seherhondels o, b Pond
Colection Se'itorSel .
TestShles Tt - Palissh
Colecton Te T o Rata
UCSs _) - Ry
Coleckon s L Regia
Views o Shee
Y — Ve
Celechan L s
[-
r Ted
ful - Toae
r o Tace
— Uy oA
Pepefpens Colechinnly
L Pyewpat M
14] '

Fig 2.5.1 AutoCAD R 14 Object Model.’

2.6 About The Object Model

The Object Model is a hierarchical structure that provides programmable objects
that can be accessed with various programming interfaces. An object can be
thought of as one of the building blocks that go to make up the complete
application.

Each object has its own individual properties and methods. Properties can be
considered the attributes of an object whereas methods are usually applied to an
object in order to modify it in some form or other. Each object has a parent object
to which it is permanently linked. All objects originate from a single parent object
called the root object. Following the links from the root to the child objects can
access all the objects in the interface. Additionally, all objects have a property
called Application that links directly back to the root object.

The root object for the AutoCAD interface is the AutoCAD application that is
equivalent to an instance of the AutoCAD application running on the desktop.
Consider AutoCAD with one drawing open (AutoCAD 2000 supports multiple
drawings open at any one time) on the desktop. The appearance of the AutoCAD
window as well as all the other non drawing-specific elements of the AutoCAD
application can be accessed via the preferences object. The drawing object is
equivalent to the .dwg file and contains the entire information within the drawing
database. At any one time AutoCAD will have at least one drawing open that is
considered the ActiveDocument of the application.

Every drawing object contains a group of collection objects that in turn contain the
individual specification for each unique object within the collection. To illustrate this
consider the blocks collection object. This collection will always have a minimum of
two unique blocks within it namely the *Model_Space and the *Paper_Space
blocks (although the names of these blocks will not show up if the user uses the
InsertBlock toolbutton from AutoCAD). The most important of these is the
*Model_Space biock which contains the individual information for every object on

the graphics screen.

Similarly the rest of the collection objects within the drawing may contain AutoCAD
default objects. For example the DimStyles Collection will have at least one
dimension style called “Standard”, the layers collection will have at least one layer
called “0" and so on. AutoCAD groups the graphical objects (lines, circles, arcs,
and so forth) and non-graphical named objects (layers, linetypes, and so forth) in
collections. Although these collections contain different types of data they can be
processed using similar techniques. The ModelSpace and PaperSpace
collections contain all of the graphical objects found in the drawing's model and
paper space. The ModelSpace and PaperSpace collections have methods and
properties for adding graphical entities, extracting a given item, and counting the
number of objects in the collection. The non-graphical named objects are found in
like-named collections, which also have methods and properties for adding,
extracting, and counting items in each collection. The Blocks collection contains
the list of all Block objects (block definitions ot insert entities) in the drawing. Each
Biock object has methods and properties identical to those in the ModelSpace and
PaperSpace collections, for maintaining the graphical objects in each block
definition.

Let's say the user wants to draw a line in AutoCAD. The line toolbutton is chosen
from the draw toolbar after which AutoCAD prompts to either choose coordinates
for the start and end points on screen with the mouse or as data entered from the
keyboard. Programmatically this could be duplicated with VBA code looking

something like the following:
ThisDrawing.ModelSpace.AddLine (StartPoint, EndPoint)
Looking at this line of code an object called ThisDrawing can be seen which is at

the top of the hierarchy — it owns a hlock called ModelSpace into which the user
wants to add an AcadLine (the class to which all simple lines in AutoCAD belong)
which has a defining StartPoint and EndPoint. StartPoint and EndPoint are actually
variant variables containing the x, y and z coordinates, They are known as the
parameters of the AddLine method or function.

In order to start programming in VBA (and when using Automation in general) an

understanding of variants is essential.

16

2.7. Working With Variants And Arrays

A Variant is a special data type that can contain any kind of data except fixed-
length string data and user-defined types. A variant can also contain the special
values Empty, Error, Nothing, and NULL. How the data in a variant is treated can
be determined using the VarType or TypeName Visual Basic functions. The
Variant data type can be used in place of most any data type to work with data in a
more flexible way. Variants are used to pass array data in and out of AutoCAD
ActiveX Automation. This means that the arrays must be of the type Variant in
order to be accepted by AutoCAD ActiveX Automation methods and properties. In
addition, array data output from AutoCAD ActiveX Automation must be handled as
a variant.

AutoCAD ActiveX Automation provides a utility method to convert an array of data
into a variant. The method is called CreateTypedArray. The CreateTypedArray
method creates a variant that contains an array of integers, floating numbers,
doubles, and so forth. The resuiting variant can be passed into any AutoCAD
method or property that accepts an array of numbers as a variant. Array
information passed back from AutoCAD ActiveX Automation is passed back as a
variant. If the data type of the array is known, tsimply access the variant as an
array. If the data type contained in the variant is not known, use the Visual Basic
functions VarType or Typename. These functions return the type of data in the
variant. If itis necessary to iterate through the array, use the Visual Basic For
Each statement. As well as these functions VBA provides the Lbound and
Ubound functions that return the lower and upper bounds of the variant array
respectively. By default arrays are zero indexed and thus the Lbound function
returns zero for the array's lower bound. So a declaration of a variant array would

look like this:
Dim myvar (0 To 5) As Variant
Here a variable called myvar is declared which is a one-dimensional array with six

elements (0 indexed therefore element No. 1 = myvar (0)) each element of which is

avariant. In Visual Basic, arrays can be declared with up to 60 dimensions. For

example, the following statement declares a 2-dimensional, 5-by-10 array.
Dim sngMulfi(1 To 5, 1 To 10) As Single
The array can be thought of as a matrix, the first argument represents the rows and

the second argument represents the columns.
In VBA dynamic arrays can be declared which don’t get a dimension until runtime.
A dynamic array is defined with open and closed parentheses remembering fo give

it a dimension at runtime.
Dim array {}) As Double
declares a dynamic array. To re-dimension an array use the Redim statement (also

used to dimension the dynamic array) and if the integrity needs to be preserved of
data already contained within an array to be re-dimensioned use the Preserve

keyword.
Redim Preserve array (0 to 6) As Double
re-dimensions the existing array while preserving any data contained by any of the

7 individual array elements already existing.

Chapter 3 Programming in VBA

3.1. The VBA Environment

Unless otherwise stated it is assumed from here on that the user is working in an
AutoCAD 2000 VBA environment. New VBA projects for AutoCAD are written
within the Visual Basic Editor. This can be accessed by the following methods;

Tools menu: Macro-Visual Basic Editor
Command line: vbaide

AutoCAD displays the Visual Basic Editor.

(R]| S
= ¥4 ACADProject (Globalz)
[23 ALoCAD Chierts

"

The top left hand windowpane of the VBA window is known as the Project Explorer

and is accessed via the View menu. The Project Explorer displays a hierarchical

list of the projects and all of the items contained and referenced by each project.

When a project is first started the explorer will show the name of the project and a

folder called AutoCAD Objects. The only object contained within this folder at this

time is the AutoCAD drawing which is open (and therefore the ActiveDocument)

whose name defaults to ThisDrawing.

The most frequently used tools in this window are:

View Code

Displays the Code window so code can be written and edited associated with the

selected item.

View Object

Displays the Object window for the selected item, an existing Document or

UserForm.

Reverting to the sampie project. The first approach to tackling the problem was to

use database tables. The way in which these were to be implemented were as

follows:

* The user would be asked to describe the perimeter of the floor area which was
to be slabbed by placing the mouse cursor over a floor vertex and left clicking

» This floor area would then be converted to an AutoCAD polyline and added to
the drawing’s model space hence making the drawing aware of the floor area

* The coordinates of each vertex of the floor area would be sent to a database
table which could be read by the Delphi programme

» Delphi would manipulate the coordinates producing new coordinates for the
vertices of each individual slab and send these new coordinates back to the
database table

* AutoCAD reads the coordinates from the new database table and draws the

corresponding entities

3.2 The Object Browser

If not the most important tool used when programming in the VBA IDE, the most
commonly used tool will be the Object Browser. This can be accessed via the tools
menu:

View-Object Browser

Or by choosing the Object Browser tool button from the Standard toolbar.

AutoCAD displays the Object Browser

&) AcadTen =% AngleToReal

) AcadTexiSyie =% AngleToSting

1 AcadTexStyles - & CreateTypedArray

& AcadTolerance =% DislanceToReal

&1 AcadToolbar ~ {=S Getngle

¥ AcadToolbaritern H-o GetCarner

@1 AcadToolbars =& GelDistance

& AcadTrace =@ GelEntity

1 Acaducs & Getinput

&1 AcadUCss 1S Gelinleger

| =& Gelkeyword

& Acadview Je® GetOrientation e e)
¥ Acadvievipon [elGetPoint T T T T
@ Acadviewpors =9 GelReal

B2 Acadviews = GelRemoteFile

&2 Acadiline =& Getgting

&2 AcadXRecord §=® GetSubEnlity

27 AsAlignment | if=% InitializeUsernput

Fig 3.2.1 The Object Browser
The “all libraries” reference in the top left hand corner is a drop-down list that

refers to all external libraries referenced by the current project. A library is basically
a set of specifications for automatable objects that the project expects to use. The
Classes window refers to all the available classes within the selected library. The
class is the formal definition of an object. The class acts as the template from

which an instance of an object is created at run time. The class defines the
properties of the object and the methods used to control the object's behavior. The
Members pane displays the elements of the class selected in the Classes pane
by group. Methods, properties, events, or constants that have code written for them
appear bold. Right- clicking on any of the items in this pane will produce a drop-
down {ist from which the associated help file can be accessed.

3.3. Setting The Drawing Preferences

The Preferences object holds all the options from the Options dialog that resides in
the registry. Options that reside in the drawing can be found through the
DatabasePreferences object. The Preferences object is divided into separate
objects, with each representing a tab on the Options dialog. The Preferences

object can be referenced from the Preferences property on the Application object:
Dim pref As AcaciPreferences

Dim displaypref As AcadPreferencesDisplay

Set pref =ThisDrawing.Application.Preferences

Set displaypref = pref.Display

Of course a reference to the Display Preferences object can be obtained using the

following:

Set displaypref = ThisDrawing. Application. preferences.DISPLAY

There are a couple of syntax conventions that should be noted at this time. When

navigating through the Object Model a full stop or period (.) is used to separate the

individual levels of hierarchy. Go to the tools menu and select Tools — Options will

give a list of check boxes determining some environment options for the project. A

useful box to have checked is the Auto list members box. When checked it

automatically opens a drop-down list box in the Code window that contains the

properties and methods available for the object

Finding the property or method wanted in the list box can be done by:

* Typing the name - while typing, the property or method that matches the
characters typed is selected and moves to the top of the list.

* Using the up and down arrow keys to move up and down in the list.

e Scrolling through the list and selecting the property or method wanted.

The property or method can be inserted into the statement by:

+ Double-clicking the property or method.

+ Selecting the preperty or method and pressing TAB to insert the selection

¢« Pressing ENTER to insert the selection and move to the next line.

Note: Objects of the type Variant do not show a list after the period (.).
The Set keyword is always used when defining an object variable.

Drawing Preferences can be set according to the users choices, for example to

change AutoCAD's default colours from white on black to black on white:
displaypref.GraphicsWinModelBackgrndColor = vbWhite - G T e
To find out what the background colour is use the read version of the property:

Dim currGraphicsWinModelBackgrndColor As OLE_COLOR
currGraphicsWinModelBackgrndColor= displaypref.GraphicsWinModelBackgrndColor

More drawing preferences can be set similar to the above using the Object

Browser.
3.4 Adding Forms To The Project

A form is an ActiveX control that can respond to events triggered by the user.
Forms can also have other ActiveX controls placed onto them that in turn can be
programmed to respond to input coming from a user.

A form can be inserted into a project from the tools menu:

Insert-UserForm

A blank UserForm appears in the right hand windowpane alongside which appears

a toolbox with a list of available controls.

23

¥ GlobalZ - UzeiFoiml lUnf’o:m) U

ect {Global2)
D Chijects

Fig 3.4.1 UserForm showing command button.

From the toolbox items can be dragged onto this UserForm that will respond to an
action carried out by the user. In the UserForm above a command button has been
dragged from the toolbox onto the center of the form and the caption “Button” has
been placed onto the button. Both the UserForm and the command button (indeed
all the ActiveX controls) have physical attributes that can be altered using the
properties window. This is accessed via the tools menu View-Properties Window.

AutoCAD displays the properties window. Note how the
caption property has been changed to read “Button”
instead of the default “CommandButton 1”. Similarly all
the rest of the properties of the command button can be

changed using the properties window. Clicking the drop-
down list button will show all the other ActiveX controls in
the project whose properties can be changed. Select a

N control in order to change its properties.
: (Hore) !
ePeinter |0 - firdbousePoirkerDefa.
' Goee)
_‘E_vfnPi'_lquosi&vx}Abg_ ;

Fig 3.4.2 The Properties Window

24

So, in tackling the problem of getting the user to define the floor area while making
the drawing aware of this area (by adding a polyline to its ModelSpace), the
concept of UserForms was employed.
When a command button has been dragged onto the UserForm and then this
button double-clicked a space will be given in which to write code. This code will
then be executed when the user chooses to click on this button.
Private Sub CommandButton1_Click()

The code is written here to respond to the button click event.
End Sub

3.5 System Variables

The first step in processing the drawing from the sample project is to define the
floor area to be covered with slabs by prompting the user to define its perimeter
vertices. During drawing commands, the cursor can be snapped to points on
objects such as endpoints, midpoints, centers, and intersections. For example, it is
possible to turn on object snaps and quickly draw a line to the center of a circle, the
midpoint of a polyline segment, or the apparent intersection of two lines. Since the
user will be asked to define vertices it will be useful to have the ObjectSnap Mode
turned on in the drawing. Exactly what snap settings are turned on depends on the
value of the OSMODE? System Variable.

System variables control many AutoCAD functions and many aspects of the design
environment. System variables control how many commands work. System
vartables also turn drawing modes (such as Snap and Grid) on or off, set default
scales for hatch patterns, and store information about the current drawing and
AutoCAD configuration. Each system variable has an associated type: integer,
real, point, switch, or text string. For a full list of System Variables see the
AutoCAD Command Reference.

The OSMODE System Variable is defined as follows:

Type: Integer

Saved in: Registry

Initial value; 4133

Sets running Object Snap modes using the following bitcodes.

0 NONe
ENDpoint

2 MIDpoint

4 CENter

8 NODe

16 QUAdrant

32 INTersection

64 INSertion

128 PERpendicular

256 TANgent

512 NEArest

1024 QUlck

2048 APParent Intersection

4096 EXTension

8192 PARallel

To specify more than one object snap, enter the sum of their values. For example,
entering 3 specifies the Endpoint (bitcode 1) and Midpoint (bitcode 2} object snaps.
Entering 16383 specifies all object snaps.

When object snaps are switched off using the Osnap button on the status bar, a
bitcode of 16384 (0x4000} is returned, in addition to the normal value of OSMODE.
With this additional value developers can write applications for AutoCAD, and
distinguish this mode from Object Snap modes that have been turned off from
within the Drafting Settings dialog box. Setting this bit toggles running object snaps
off. Setting OSMODE to a value with this bit off toggles running object snaps on.

I turn on ENDpoint, MIDPoint, PERpindicular and APParent Intersection with the

following code:
ThisDrawing.SetVariable "OSMODE", 2179
Where the SetVariable’ Method calls for two parameters:

26

object. SetVariable Name, Value

Object Document

The object or objects this method applies to.
Name String; input-only

The name of the system variable to set,
Value Variant; input-only

The new value for the specified system variable.
When setting system variables, AutoCAD may require integers, text, or double
values. Passing the wrong data type, for example, passing a variant of type double
when an integer is required, will also generate an error. The easiest way to avoid
this is to use one of the Cxxx functions, such as Cint(), to explicitly type the data

before it is passed.

Chapter 4 Controlling Input

4.1 Getting Input From The User

Once the desired environment options have been set then proceed by asking the
user to define the floor area to be processed. AutoCAD provides a Utility Object
that provides various methods for allowing the user to interact with the drawing.
From the sample project it can be seen that the bounds of the floor area to the
processed comrespond to the following:

T The Sample Project’ s floor outline

Endpomt showing the red Endpoint Object Snap
and the effect of rubber banding. There
is obviously a command active in the

drawing which is prompting the user to

select a point on-screen while

suggesting to select the highlighted
Endpoint.

Fig 4.1.1 Floor Bounding Area
To get the coordinates of a point from the keyboard or the mouse use the Utility
Function GetPoint that returns a 3 element variant array of type double.
Dim pnt As Variant pnt = ThisDrawing.Utility.GetPoint (prevpnt, “next point :)
Where GetPoint’ calls for two parameters or arguments
pnt = object.GetPoint{prevpnt,[Prompt])
Object Utitity

The object or objects this method applies to.

28

prevpnt Variant {three-element array of doubles); input-only; optional

The 3D WCS coordinates specifying the relative base point.
Prompt Variant (string); input-only; optionai

The text used to prompt the user for input,
Pnt Variant (three-element array of doubles)

The 3D WCS coordinates of the point the AutoCAD user has

selected.
AutoCAD pauses for user input of a point, and sets the return value to the value of
the selected point. The prevpnt parameter specifies a relative base point in the
World Coordinate System (WCS). The Prompt parameter specifies a string that
AutoCAD displays before it pauses. Both prevpnt and Prompt are optional. The
AutoCAD user can specify the point by entering a coordinate in the current units
format; GetPoint treats the prevpnt parameter and the return value as three-
dimensional points. The user can specity the point also by specifying a location on
the graphics screen. If the prevpnt parameter is provided, AutoCAD draws a
rubber-band line (A line that stretches dynamically on the screen with the
movement of the cursor. One endpoint of the line is attached to a point in the
drawing, and the other is attached to the moving cursor.) from prevpnt to the
current crosshair position.
The coordinates of the point stored in the return value are expressed in terms of
the WCS.

4.2 Error Trapping

When prompting the user for input consider what happens if the user supplies
invalid input. This input can be dealt with using the concept of error handling.
When using the GetPoint function AutoCAD expects an x, y, z coordinate from the
keyboard or a point selected on the graphics screen using the digitiser. Any other

input will be considered an error by AutoCAD and must be handled.

29

4.3 Getting The Escape Key

The first situation deait with is if the user selects the Esc key. This key is the most
commonly used key in AutoCAD to abort functions and as such its functionality
should be reflected by any newly created toolbuttons. Invariably, depending on the
situation in which the Esc key is selected, a different message will be sent back to
AutoCAD. This makes it difficult to ascertain when the user has selected the Esc
key and the way found to do this was to do the following:

» Declare a function at module level (describes code in the Declarations section
of a module. Any code outside a procedure is referred to as module-level code.
Declarations must be listed first, followed by procedures).

» Use a On Error Resume Next statement

* Test for the Esc key at runtime
Private Declare Function GetAsyncKeyState Lib "user32” {ByVal vKey As Long) As Integer
Private Const VK_ESCAPE = &H1B
On Error Resume Next
pnt = ThisDrawing. Utility.GetPoint (prevpnt, “next point :)

If Err Then

Err.Clear

If GetAsyncKeyState(VK_ESCAPE) And &H8000& Then -

End If
End If

On Error Resume Next statements specify that when a run-time error occurs,
control goes to the statement immediately following the statement where the error
occurred where execution continues. This statement allows execution to continue
despite a run-time error. Place the error-handling routine where the error would
oceur, rather than transferring control to another location within the procedure. An
On Error Resume Next statement becomes inactive when ancther procedure is
called, so it is necessary to execute an On Error Resume Next statement in each
called routine to obtain inline error handling within that routine.

On Error GoTo Line and On Error GoTo 0 are two other methods of trapping

errors.

30

On Error GoTo line enables the error-handling routine that starts at line specified
in the required line argument. The line argument is any line label or line number. If
a run-time error occurs, control branches to line, making the error handler active.
The specified line must be in the same procedure as the On Error statement:
otherwise, a compile-time error occurs.

On Error GoTo 0 disables any enabled error handler in the cuirent procedure.

Declare statements are used to access functions and procedures that are

contained in external dynamic-link libraries (DLLs. A library of routines loaded and

linked into applications at run time.).

They have the following form:

(PubliclPrivate] Declare Function’ name Lib "libname" [Alias "aliasname")

[({arglist])] [As type]

Private Optional. Used to declare procedures that are available only within
the module where the declaration is made.

Function Optional (either Sub or Function must appear). Indicates that the
procedure returns a value that can be used in an expression,

name Required. Any valid procedure name. Note that DLL entry points are
case sensitive.(GetAsyncKeyState®)

Lib Required. Indicates that a DLL or code resource contains the
procedure being declared. The Lib clause is required for all
declarations.

libname Required. Name of the DLL or code resource that contains the
declared procedure ("user32"- equates to
¢.\Windows\System\user32.dll on my system)

Alias Optional. Indicates that the procedure being called has another name
in the DLL. This is useful when the external procedure hame is the
same as a keyword {a word with special meaning for the procedure
as defined by the user). It is also possible to use Alias when a DLL
procedure has the same name as a public variable, constant, or any

other procedure in the same scope. Alias is also useful if any

31

aliashame

arglist

type

characters in the DLL procedure name aren't allowed by the DLL
naming convention.

Optional. Name of the procedure in the DLL or code resource. It the
first character is not a number sign (#), aliasname is the name of the
procedure’s entry point in the DLL. If (#) is the first character, all
characters that follow must indicate the ordinal number of the
procedure’s entry point.

Optional. List of variables representing arguments that are passed to
the procedure when it is called. (ByVal vKey As Long)

Optional. Data type of the value returned by a Function procedure;
may be Byte, Boolean, Integer, Long, Currency, Single, Double,
Date, String (variable length only), or Variant, a user-defined type, or

an object type. (As Integer)

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type]

Part
Optional

ByVal
ByRef

Description

Optional. Indicates that an argument is not required. If used, all
subsequent arguments in arglist must also be optional and declared
using the Optional keyword. Optional can't be used for any argument
if ParamArray is used.

Optional. Indicates that the argument is passed by value.

A way of passing the address of an argument to a procedure instead
of passing the value. This allows the procedure to access the actual
variable. As a result, the variable's actual value can be changed by
the procedure to which it is passed. Unless otherwise specified,

arguments are passed by reference.

ParamArray Optional. Used only as the last argument in arglist to indicate that the

final argument is an Optional array of Variant elements. The
ParamArray keyword allows an arbitrary number of arguments. The

ParamArray keyword can't be used with ByVal, ByRef, or Optional.

32

varname Required. Name of the variable representing the argument being
passed to the procedure; follows standard variable naming
conventions.(vkey)

() Required for array variables. Indicates that varname is an array.

type Optional. Data type of the argument passed to the procedure; may be
Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, Stiing (variable length only), Object,
Variant, a user-defined type, or an object type.(As Long)

The GetAsyncKeyState function determines whether a key is up or down at the

time the function is called, and whether the key was pressed after a previous call to

GetAsyncKeyState. It is provided by the Windows Advanced Programming

Interface (API). It has the form:

SHORT GetAsyncKeyState(vKey)

VKey Specifies one of 256 possible virtual-key codes.

Rtn Values If the function succeeds, the return value specifies whether the key
was pressed since the last call to GetAsyncKeyState, and whether
the key is currently up or down. If the most significant bit is set, the
key is down, and if the least significant bit is set, the key was pressed
after the previous call to GetAsyncKeyState. The return value is
zero if a window in another thread or process currently has the

keyboard focus.

4.4 Getting Keywords

Keywords are words which when typed at the Command Line in AutoCAD perform
specific functions. VBA gives the programmer a chance to define their own
keywords within their projects. Keywords are defined using the
InitializeUserinput’ procedure again provided by the AutoCAD Utility Object.You

can call the procedure with code similar to the following:
Dim keywd As Variant

Keywd = Array(“casel”,"case?”...... efc)

ThisDrawing. Utility.InitializeUserinput 1, ke ywd

33

The method has the following form:

object.InitializeUserinput Bits[, Keyword]

Object Utility
The object or objects this method applies to.

Bits Integer; input-only
To set more than one condition at a time, add the values together in
any combination. If this value is not included or is set to 0, none of
the control conditions apply.
1: Disallows NULL input.
This prevents the user from responding to the request by entering
only [Return] or a space.
2: Disallows input of zero (0).
This prevents the user from responding to the request by entering 0.
4: Disallows negative values.
This prevents the user from responding to the request by entering a
negative value.
8: Does not check drawing limits, even if the LIMCHECK system
variable is on.
This enables the user to enter a point outside the current drawing
limits. This condition applies to the next user-input function even if the
AutoCAD LIMCHECK system variable is currently set.
32: Uses dashed lines when drawing rubber-band lines or boxes.
This causes the rubber-band line or box that AutoCAD displays to be
dashed instead of solid, for those methods that let the user specify a
point by selecting a location on the graphics screen. (Some display
drivers use a distinctive color instead of dashed lines.) iIf the
POPUPS system variable is 0, AutoCAD ignores this bit.
64: Ignores Z coordinate of 3D points (GetDistance method only).
This option ignores the Z coordinate of 3D points returned by the
GetDistance method, so an application can ensure this function

returns a 2D distance.

34

128: Allows arbitrary input—whatever the user types.
Keyword Variant (array of strings); input-only; optional

The keywords that the following user-input method would recognize.
Keywords must be defined with this method before the call to GetKeyword '
Certain user-input methods can accept keyword values in addition to the values
they normally return, provided that this method has been called to define the
keyword. The user-input methods that can accept keywords are: GetKeyword,
Getinteger, GetReal, GetDistance, GetAngle, GetOrientation, GetPoint, anc
GetCorner. There are two different ways of getting keywords from the user:
* Directly using the GetKeyword procedure provided by the Utility Object
* By Error Trapping
Use the GetKeyword procedure to prompt the user to input none other than a
keyword from the keyboard:
rtnval = ThisDrawing. Utility. GetKeyword (prmpt)
prmpt Variant (string); input-only; optional

The text used to prompt the user for input.
Rtnval String
The keyword returned from the user.

AutoCAD pauses for user input of a keyword and sets the return value to the
keyword that was entered. The Prompt parameter specifies a string that AutoCAD
displays before it pauses. The prompt is optional. The maximum length of the
return value is 511 characters. The AutoCAD user can enter the keyword from the
keyboard. The list of keywords this method will accept is set by a prior call to the
InitializeUserinput method. If the user enters a string not specified in the call to
InitializeUserlnput, AutcCAD displays an error message and tries again {and
redisplays the prompt, if one was specified). If the user doesn't enter anything, but
hits the ENTER key, GetKeyword returns an empty string (") unless the call to
InitializeUserinput also disallowed NULL input.
When using GetKeyword, Getinteger, GetReal, GetDistance, GetAngle,
GetOrientation, GetPoint, and GetCorner keywords are active and generate an

error message when detected. if using one of the above methods and there are

defined keywords using InitializeUserinput AutoCAD will generate an error with
the following description:
Err.description = “user input is a keyword”
which can then be handled. At this stage the keyword is retrieved with a call to the
utility method Getinput':
ThisDrawing.Utility.Getinput
Getinput has the form:
RetVal = object. Getinput()
Object Utility

The object or objects this method applies to.
RetVal String

The index specifying which keyword was entered.
This method retrieves a keyword entered by the AutoCAD user during a call to one
of the user-input functions (Get*** methods). The maximum length of the keyword
is 511 characters (with the 512th character reserved for the NULL character). A call
to Getinputis meaningless and will fail unless it immediately follows a call to one
of the user-input functions. Even then, the call will be successful only if the user-
input function has returned the error description "User input is a keyword.” It isn't
necessary to call Getlnput after a call to the GetKeyword method.
So after defining some keywords with a call to InitializUserinput it is possible to
add more functionality to Get*** methods. Adding the code to what is already there
from getting the escape key that is now present:

Private Declare Function GetAsyncKeyState Lib "user32" (ByVal vKey As Long) As Integer
Private Const VK_ESCAPE = &H1B

Dim pnt As Variant

Dim keywd As Variant

Dim userinp As Variant

Keywd = Array(“case1”,”case2”......etc)

ThisDrawing.Utility.InitializeUserinput 1,keywd

On Error Resume Next
pnt = ThisDrawing.Utility.GetPoint (prevpnt, “next point : *)

If Err Then

If GetAsyncKeyState(VK_ESCAPE) And &H80008& Then * (The Esc key was selected)

EndIf
If StrComp(Err.Description, "user input is a keyword", 1) = 0 Then
userinp = ThisDrawing. Utility.Getinput

if userinp = “case?1” Then

Else

If usernp = “case2” Then

End If
End If
End If
Err.Clear
End If
Note: The StrComp’ method is provided by the VBA Strings object and is used for

comparing strings. It has the form:

Rtnval = StrComp(stringt, string2|, compare])

stringl Required. Any valid string expression.

string2 Required. Any valid string expression.

compare Optional. Specifies the type of string comparison. The compare
argument can be omitted, or it can be 0, 1 or 2. Specify 0 (default) to
perform a binary comparison. Specify 1 to pertorm a textual
comparison. For Microsoft Access only, specify 2 to perform a
comparison based on information contained in the database. |If
compare is Null, an error occurs. If compare is omitted, the Option

Compare setting determines the type of comparison.

Rtnval
If StrComp returns
stringt is less than string2 -1
stringt is equal to string2 0
stringt is greater than string2 1
string1 or string2 is Null Null

37

4.5 Transparent Commands

Finally when requesting input from the user, deal with what happens when the user
selects a transparent command. A transparent command is one executed while
another command is in progress. They would include commands such as zoom,
zoom window efc, it is important that these commands work during, for example a
call to GetPoint, as the user will invariably want to move around the graphics
screen. The On Error Resume Next statement will basically look after these
commands i.e. the use of the transparent command will generate an error and if
the flow is allowed to continue with the On Error Resume Next statement the
transparent command will execute. Although the command exectites the call to the
GetPoint (or any other Get*** method) has failed and it is needed to loop back and
call it again for valid input. This can be done with the use of a boolean variable
and a Do While loop.

This can be added to the code above as follows:

Dim transparency As Boolean
Keywd = Array.........
On Error Resume Next
Do
transparency = False
pnt = ThisDrawing.Utility. GetPoint {prevpnt , “next point : "),

‘efc

Else (“if StrComp(Err.Description............... J
transparency = True
Endif
Err.Clear

End If
Loop While transparency

A pretty robust loop is now present for getting input from the user. |n defining the
floor area the user needs to loop through this and keep getting the vertices of the
floor until such time as all the vertices have been covered. Two keywords were
defined which the user will need when defining the floor area. These keywords are
as follows “c” for close and “u” for undo last entry. Each time the user selects a

point from the graphics screen it is added to an already created array of coordinate
points. If the user types “u” for undo the last coordinate added to this array is
erased and the user re-prompted for the next point. The loop keeps executing until
such time as the user chooses “c” for close. This basically means close the floor
area and add a polyline to the drawing with the coordinates selected by the user. It
was endeavored to keep the functionality of the Esc key to behave as close as
possible to its behavior within the AutoCAD environment i.e. just quit the VBA
routine when the Esc key is pressed. As well as adding the newly created floor
area (as an AutoCAD polyline) to the drawing's Model Space it is also added to a

block called "floor area” so that it can be easily retrieved at a later stage.

Chapter 5 Programming Techniques

5.1 Adding A Block To The Blocks Collection
There are three different types of block: the simpie block, the XRef block, and the

layout biock. A simple biock is a collection of objects that can be associated
together to form a single object, or block definition. It is possible to insert, scale,
and rotate a simple block in a drawing. It is possible to explode a simple block into
its component objects, modify them, and redefine the block definition. Simple
blocks can be defined from geometry in the current drawing, or by using another
AutoCAD drawing. When using another drawing to create a block, the new simple
block is stored in the current drawing database, and therefore it is not updated if
the original drawing changes. Inserting an instance of a simple block into the
current drawing creates a BlockReference object.

An XRef block is an external link from another drawing to the current drawing.
Because the XRef block represents a link to geomeiry, not the geometry itself, it is
updated whenever the original drawing changes. Inserting an instance of an XRef
block into the current drawing creates an ExternalReference object.

In order to create a block programmatically use the following method:

Dim fir As AcadBlock
Set flr = ThisDrawing.Blocks.Add ’(InsertionPoint, “FloorQutline”)

where the method’s arguments are as follows:

InsertionPoint 3-element array of doubles defining base point from which block
will be inserted

Name in this case the block is named - “FloorQutline”

When naming the block be aware of illegal characters in the block name. Special
characters that cannot be used include less-than and greater-than symbols (< >),
forward slashes and backslashes (/\), quotation marks ("), colons (:), semicolons
(), question marks (?), commas (,), asterisks (*), vertical bars (1), equal signs (=),

and back quotes (). Sometimes these characters will not be picked up when

H)

naming blocks programmatically and will only be picked up the next time the
drawing is audited during which AutoCAD will change their names to acceptable
ones. Since it was never intended to insert the “FloorOutline” block into the
drawing its InsertionPoint is not significant so define an array and assign arbitrary
double values to the individual elements of the array:

Dim InsertionPoint (0 To 2) As Double

InsertionPoint (0) = 0 : InsertionPoint (1) = 0 : InsertionPoint 2)=0

Now that a block has been defined in the drawing that is ready to have objects
added to its definition the polyline can be added defining the floor outline to it. It

can also be added to the Model Space (which is basically a block anyway).

5.2 Adding Objects To A Block

Define the floor area using a LightweightPolyline Object that is a 2-D line with
adjustable width composed of line and arc segments (Acad object name:
AcadLWPalyline). In this case it will just have line segments (between vertices)
whose width are zero. In order to create the LightweightPolyline Object the
following method can be used: object, AddLightweightPolyline(VertexList) where
object can be Model Space, Paper Space or Block. In this case add this to both
the newly created block and the drawing’s Model Space as follows:

Dim floorarea As AcadLWPolyline

Set floorarea = fir. AddLightweightPolyline {VertexList) ‘object added to block

Set floorarea = ThisDrawing.ModelSpace.A ddLightweightPolyline (VertexList)

The VertexList parameter is an array of doubles specifying the x and y coordinate
values of each individual vertex. Since the amay is 0 indexed an airay element with
an odd number implies the x coordinate while an even number implies the y
coordinate. Remembering that the vertices information was collected using the
GetPoint method it is now necessary to process that information collected to suit
AddLightweightPolyline method. From GetPoint there is an array each individual
element of which is a 3 element array of doubles specifying an x, y and z
coordinate. The x and y coordinates are the only ones of interest. As each vertex is
coliected a count variable can be used to give the overall number of vertices in the

41

floor area. Armed with this variable and the coordinate array the information can
now be processed to produce a VertexList:

pnt = array of vertex coordinates (retrieved from user)

count = number of vertices (evaluated during execution of loop)

Dim VertexList (0 To count*2 + 1)
Dim i As Integer, j As Integer, k As Integer
i=0:j=1:k=0
While k <= count- 1
VertexList(i) = CLng(pnt(k)(0)) ‘x coordinate
VertexList(j) = CLng(pnt(k)(1)) ‘y coordinate
i=i+2:j=j+2:k=k+1 ‘move to the next array element
Wend
VertexList(i) = CLng(pnt(0)(0)) ‘polyline is closed therefore first = last coord
VertexList(j) = CLng(pnt(0)(1))
CLng coerces the value in brackets to a long integer. Since AutoCAD deals with

real values. Itis a good idea to round off the user input at this stage. It will make
de-bugging hopefully a little bit easier later on when comparing numbers.

At this stage of the development, how to get the coordinates of the newly created
floor area over to the Delphi environment for processing, was considered. The first
approach was as stated earlier to use database tables.

5.3 Connecting A Project To A Database

Database tables were the preferred method of connecting AutoCAD to the Delphi
environment in the early stages of this research and development. During the
research they were found to be inefficient as a mere transient data link between
AutoCAD and Delphi. They were being used as an intermediary storage container
for data transferring back and forth from AutoCAD to Delphi. After some research a
more efficient method became apparent and since the research followed this new
approach the database table method was abandoned. When connecting to the
database in the following discussion it is assumed that Paradox tables underlie the
database configuration. First these database tables were created to contain the
required information by the project. In creating these tables (using Database

42

Desktop provided with the Delphi 5 environment) fields of a specific data type were
defined into which coordinate information was written to and read from. These
tables are then saved to a folder from where they can be accessed by the
database. Next the database needs to be configured using the Windows 32 bit
Open Database Connectivity (ODBC) Interface provided by Microsoft.

Adimi 24 x4

Mictoscit dBase Driver [~.dbf)

Miciosoft Excel Driver (%.4s)

; Mictosalt FoxPro Diiver (*.dif)

1 MOIS SAL Setver

| MS Access 97 Database Mictosolt Access Dirver [7.mdb)

| M5 Access 97 Database Microscit Access Diiver [.mdb)
J2hs Miciosoft Paradox Drives [5.db)

Mictasclt Text Driver (“1:4; * csv)
Miciosolt Visud Forfio Dirver
Mictosolt Visual FosPio Diiver

Fig 5.3.1 The ODBC Administrator
Microsoft's ODBC Administrator is accessed from Control Panel and provides an

interface that allows a database to be configured for use by AutoCAD.

To configure a database accessible from AutoCAD the Add button in the ODBC
Data Source Administrator is selected. Depending on which tab is selected the
data source will have varying levels of accessibility — a data source which most
suits the application is chosen. When choosing the Add button a prompt will be
given to select a data source type to add to the already configured data sources.
On selecting the appropriate data source type a request is then made to give the
new data source a name and in the case of Paradox a version number.

43

A name and description for the

data source is chosen. The version

number is then selected, the “use

current directory box” un-checked

and the “select directory” button
clicked. On selecting the directory
the folder in which the database

Fig 5.3.2 Setting up a Database tables created earlier were saved
is pointed to.

AutoCAD is now ready to connect to the database.

objects of the database to the AutoCAD VBA environment a reference is set to the
Microsoft Data Access Objects (DAO) Library. . Once a reference has been set to
the DAO object library the DAO objects can be viewed in the Object Browser by
clicking DAO in the Project/Library box.

From the Tools menu if references is chosen:

AutoCAD displays the references dialogue box.

If the Microsoft DAO Object
Library is not one of the

available references it can be
installed from the Microsoft
Office disk. It is one of the
options which can be checked

(1 acvbext 1.0 Type Library
(] address 1.0 Type Livary . 2 . g
gnmmme during a customised installation

of the Office product.

Fig 6.3.3 Available Project References

5.4 Implementing The Database With DAO

Microsoft DAO provides a way to control a database from any application that

supports Visual Basic for Applications. Some DAO objects represent the structure

of the database, while others represent the data itself, By using DAO, local or

remote databases can be created in a variety of formats, and work with their data.

With DAO objects;

» Create a database or change the design of its tables, queries, indexes, and
relationships.,

* Retrieve, add, delete, or change the data in the database.

* Implement security to protect the data.

* Work with data in different file formats and link tables in other databases to the
database.

+ Connect to databases on remote servers and build client/server applications.

DAO can be used to work with databases in different formats. There are three

different categories of database formats that are accessible through DAO. The first

type of format is the Microsoft Jet format. DAQ can be used to work with all

databases created with the Microsoft Jet database engine.

The second type of database format is the installable ISAM format. An installable

ISAM is a driver that provides access to external database formats through DAO

and the Microsoft Jet database engine.

The third type of database format that is accessible through DAO is an ODBC data

source that is what was previously configured. If working with an ODBC data

source, DAO operations can be processed through Microsoft Jet, or ODBCDirect

can be used to circumvent the Microsoft Jet Engine and work directly with the data

in the ODBC data source. Whether using DAO with Microsoft Jet or with

ODBCDirect to work with an ODBC data source depends on what kinds of

operations are to be performed on the data source.

Because not all DAO features are available with ODBCDirect, Microsoft DAO still

supports ODBC through the Microsoft Jet database engine. ODBC can be used

through Microsoft Jet, ODBCDirect, or both, with a single ODBC data source.

Which of these two methods to use to access an ODBC data source is determined

by what type of workspace is being worked in. A workspace, represented by a
Workspace object, is an active session for a particular user account. A session
marks a sequence of operations performed by the database engine. A session
begins when a particular user logs on and ends when that user logs off. The
operations that a user can perform during a session are determined by the
permissions granted to that user.

DAO objects in code are referred to in the same way that other objects are referred
to. Objects that represent the structure of the database are saved with the
database. Objects that are used to work with the data in the database generally
are not saved, but are created each time they are needed

When a new DAO object is created to be saved with the database, it must be
appended it to the appropriate collection of saved objects by using that collection's
Append method. To connect the project to this ODBC data source the following

code can be used:

Dim wkspace As Workspace

Dim dbase As Database

Set wkspace = CreateWorkspace ("*, ", " dbUseODBC)

Set dbase = wkspace.OpenDatabase ("slabs", dbDriverNoPrompl, False)

Newly created Workspace objects — those created with the CreateWorkspace’
method — are not automatically appended to the Workspaces collection. The
Append method of the Workspaces collection can be used to append a new
Workspace object if it is to be part of the collection. However, the Workspace
object can be used even if it's not part of the collection.

Append the new Workspace object to the Workspaces collection if it is required to
use the Workspace from procedures other than the one in which it was created in.

CreateWorkspace has the following form:

Set wkspace = Create Workspace(name, user, password, type)

wkspace An object variable that represents the Workspace object to be
created.

Name A String that uniquely names the new Workspace object

User A String that identifies the owner of the new Workspace object.

46

password

type

A Stiing containing the password for the new Workspace
object. The password can be up to 14 characters long and can
include any characters except ASCII character 0 (nul).

Optional. A constant that indicates the type of workspace, as

described in Settings.

The Database object represents an open database. It can be a Microsoft Jet

database or an external data source. The Databases collection contains all

currently open databases.

OpenDatabase” has the foliowing form:

Set dbase = wkspace.OpenDatabase (dbname, options, read-only, connect)

dbase

wkspace

dbname

options

read-only

connect

An object variable that represents the Database object to be
opened.

Optional. An object variable that represents the existing
Workspace object that will contain the database. If a value for
workspace is not included, OpenDatabase uses the default
workspace.

A String that is the name of an existing Microsoft Jet database
file, or the data source name (DSN) of an ODBC data source.
(If opening a database through an ODBCDirect workspace and
the DSN in connect is provided, dbname can be set to a string
of choice that can be used to reference this database in
subsequent code.)

Optional. A Variant that sets various options for the database.
(dbDriverNoPrompt: The ODBC Driver Manager uses the
connection string provided in dbname and connect. If sufficient
information is not provided a run-time error ocCurs.).

Optional. A Variant (Boolean subtype) value that is True if the
database has read-only access, or False (defauit) if the
database has read/write access.

Optional. A Variant (String subtype) that specifies various

connection information, including passwords.

47

When the database is open the table is ready to populate the
X, y coordinates of the floor area. The database contains a
table with the following structure:

T A\Mew Foldefscpords.db

Fig 5.4.1 A Database Table

The table can be populated by means of Recordsets. The Recordset object
represents a set of records within the database. The Recordsets collection
contains all open Recordset objects. DAO offers five types of Recordset objects:
table-type, dynaset-type, snapshot-type, forward-only-type, and dynamic-type.
Dynamic-type Recordset* objects were used which are available only in
ODBCDirect workspaces.

Dynamic-type Recordset objects are updated dynamically as other users make
modifications to the underlying tables. Dynamic-type Recordset objects are
available only if using an ODBC driver that supplies its own cursors. Because not
all ODBC drivers supply their own cursors, it is necessary to determine whether it
does before trying to open a Dynamic-type Recordset object. If the ODBC driver
doesn't supply its own cursors, then a snapshot-type or forward-only-type
Recordset object can be used instead. The advantage of using a Dynamic-type
Recordset object is that the Recordset will immediately reflect any changes to the
data, including added or deleted records.

48

For example, if a Dynamic-type Recordset object is opened and another user

edits a record in one of the underlying tables, that change will be reflected in the

Recordset opened. In order to do this, however, DAO must constantly re-query the

data source, which may slow performance considerably. Therefore, avoid using

Dynamic-type Recordset objects except in situations where it's crucial to have the

most up-to-date data at all times.

Using the table structure referred to above it is possible to now open the following

Recordset:

Dim coords As Recordset
Set coods = dbase.OpenRecordset’("coords”, dbOpenDynamic, dbRunAsynec, dbOptimistic)

where OpenRecordset takes the following arguments;

source

type

options

lockedits

A String specifying the source of the records for the new Recordset.
The source can be a table name, a query name, or an SQL statement
that returns records. For table-type Recordset objects in Microsoft
Jet databases, the source can only be a table name. ("coords” = table
name)

Optional. A constant that indicates the type of Recordset to open.
(dbOpenDynamic opens a dynamic-type Recordset object, which is
similar to an ODBC dynamic cursor.)

Optional. A combination of constants that specify characteristics of
the new Recordset. (dbRunAsync runs an asynchronous query
which is a type of query in which SQL queries return immediately,
even though the results are still pending. This enables an application
to continue with other processing while the query is pending
completion.)

Optional. A constant that determines the locking for the Recordset.
(dbOtimistic refers to a type of locking in which the data page
containing one or more records, including the record being edited, is
unavailable to other users only while the record is being updated by
the Update method, but is available between the Edit and Update

methods. Optimistic locking is used when accessing ODBC

49

databases or when the LockEdits property of the Recordset object is
set to False.)
Having now opened the Recordset the x, y coordinates can be appended to the

coords table:
Dim vertices As Variant
Dim fir As AcadBlock
Dim flooroutline As AcadLWPolyline
Set fir = ThisDrawing.Blocks.ltem(“FloorOutline”) ‘(Block name given eatrlier)
Set flooroutline = fir.Item(0) (its the only item in the block)
vertices = flooroutline.Coordinates ‘returns a variant array of doubles defining the x,y
coordinates of the vertices of the polyline
K=0
While k <= (UBound{vertices) - 1)
coords.AddNew 'Add new records to the recordset object
coords.Fields("x").Value = vertices(k)
k=k+1
coords.Fields("y").Value = vertices(k)
coords.Update 'send the new data out to the database table.
k=k+1
Wend
coords.Close
dbase.Close " closes the database
The coordinate data has now been exported to a database from where it can be

accessed by the Delphi programme. On examination of the preceding code it can
also be seen how AutoCAD objects could be created by reading in data from an
external database. A two-way link between AutoCAD and Delphi has now been
created. In the initial stages of development with the knowledge that the link
existed simultaneous development continued separately in both Delphi and
AutoCAD. When setting the reference to the DAO object model all the available
references AutoCAD could use became apparent. This prompted an investigation
into what could be done with Excel from within the AutoCAD environment.

50

5.5 Automating Applications With AutoCAD

AutoCAD can be used to automate any application which supports COM.
Applications that can be automated will appear in the references dialogue box of
the tools menu. To have control of an application first create an instance of their
appropriate application objects. There are two approaches to use to achieve this
» Late Binding
* Early Binding
When using late binding a reference is not set to the application’s object library in
the references dialogue box. The variable used to create the application object wil
not take on any of the methods or properties of the application until runtime and
there won't be any type checking of parameters etc. at compile time. The code
completion feature of the VBA IDE also will not work on the application objects and
the objects and their associated help files will not be available in the Object
Browser. To get a late bound reference to Microsoft Excel the following code can
be used:
Dim Excel As Object
On Error Resume Next
Set excel = GetObject, "Excel. Application”)
If Err <> 0 Then
Err.Clear
Set excel = CreateObject("Excel. Application ")
If Err <> 0 Then
MsgBox "Could not load Excel.”, vbExclamation
End If

End If
On Error GoTo 0

GetObject’ expects an instance of the application to be running on the desktop

and takes two arguments:

pathname Optional; Variant (String). The full path and name of the file
containing the object to retrieve. If pathname is omitted, class
is required.,

class Optional; Variant (String). A string representing the class of the

object. The class is the formal definition of an object. The class

51

acts as the template from which an instance of an object is
created at run time. The class defines the properties of the
object and the methods used to control the object's behavior,
The class argument uses the syntax appname.ObjectType and
has these parts:

appname Required; Variant (String). The name of the application
providing the object.

ObjectType Required; Variant (String). The type or class of object to
create.

If there is no instance of the application running on the desktop create an instance
using CreateObject and the class of the application to create.

Note: the On Error Goto 0 statement is used to disabled any enabled error
handlers in the current procedure. Early binding was the preferred method. As well
as giving better performance the VBA IDE code completion feature will work for
objects and their associated help files can be viewed in the Object Browser
Window. To access the application object using early binding first check a
reference to the application object in the references dialogue box of the tools
menu. For Excel set the reference to Microsoft Excel 8.0 object library. Then
dimension variables to be application specific;

Dim Excel As Excel Application

Dim Excelsheet As Worksheet

On Error Resume Next

Set excel = GetObject(, "Excel.Application®)

‘etc with CreateOhject

On Error GoTo 0

With a reference to the application object and a knowledge of its object ‘model

whatever automation is necessary can be done:
Excel.Visible = Trye

Excel.Workbooks.Add

Excel.Sheets("Sheet1"”).Select

Set Excelsheet = Excel.ActiveWorkbook.Sheets("Sheet1 ")
Excelsheet.cells(count, 1).Value = vertices(k)

‘Ete,

At this stage the real power of COM was becoming apparent. It was realised that
just as other applications can be automated from within AutoCAD it followed that
AutoCAD could be automated from within another application. Delphi programmes
could be shown to open AutoCAD and draw socme entities. With this accomplished
the task of using the Delphi programme to open AutoCAD and prompt the user for
the required information regarding floor outlines etc was set about. This was to
render the use of database tables obsolete and was to be a direct link between
AutoCAD and Delphi. This works quite well (the Delphi development is discussed
in the 2" section of this document) except that AutoCAD has now lost the focus
and Delphi has taken control of the environment. Experienced technicians in the
course of producing floor layout drawings would be reluctant to leave the AutoCAD
environment and would favour a tool that works from within AutoCAD. What was
needed was a Delphi programme that would lie dormant until such time as the user
needed it. When required it would jump into action perform whatever task was
needed of it and then lie in wait until such time as it was called upon again.
Anybody with any programming experience would recognise this situation as one

in which to employ the use of a dynamic link library (DLL).

53

Chapter 6 The New Approach

6.1 Dynamic Link Libraries — A Brief Introduction

The intricacies of dynamic link libraries and their construction will be discussed in
detail in the second section of this document. DLLs are modules that contain
functions and data. A DLL is loaded at run time by its calling module (in this case
acad.exe). When a DLL is loaded, it is mapped into the address space of the
calling process.

DLLs can define two kinds of functions: exported and internal. Other modules can
call the exported functions. Internal functions can only be called from within the
DLL where they are defined. Although DLLs can export data, its data is usually
only used by its functions. DLLs provide a way to modularize applications so that
functionality can be updated and reused more easily. They also help reduce
memory overhead when several applications use the same functionality at the
same time, because although each application gets its own copy of the data, they
can share the code,

With the use of a DLL there is no need to leave the AutoCAD environment. The
idea now is to create a toolbar in AutoCAD that will pre-process all the floor slab
information. Once this is done the information can be sent io the DLL that will
further process it into individual slab elements that can be manufactured. This
concept is most easily understood if the newly created toolbar and its individual

tools are examined.

6.2 Programmatically Creating A Toolbar
As toolbar objects did not appear in the AutoCAD R 14.01 object model the

operation of a toolbar and its buttons was mimicked with the use of a UserForm
and command buttons. This approach was abandoned with the introduction of the
toolbar object to the AutoCAD 2000 object model. Toolbars can now be created
with VBA code. The definitions including the appearance, associated macros,
associated bitmaps etc. are stored in AutoCAD menu files. The file that stores all

the toolbar information is called acad.mns and is a text file (it can be found under

5e

the ***Toolbars header for all the toolbar information) located in the AutoCAD
directory (usually the support sub-directory). AutoCAD does not use this file directly
but compiles it into two files with the same name but the extensions .mnr and .mnc
respectively. The file with the extension .mnr is a resource file that contains all the
bitmap information required by the various toolbars and the file with the extension
.mnc is the compiled menu file.

A new toolbar can be added to an existing menu file or else have a new menu file
created for it. New (empty) menu groups cannot be created programmatically.
However, an existing menu file can be loaded containing a menu group and saved
out again with a new menu group name and to a new menu file. The new menu
group can then be edited to contain the menus and toolbars desired.

The first step in creating a new toolbar is to get reference to the MenuGroup
Object. A menu group contains menus and toolbars, some or all of which may be
currently displayed in AutoCAD. Each menu group contains a PopupMenus
collection and a Toolbars collection. The PopupMenus collection contains all the
menus within the menu group and can be accessed through the Menus property.
Likewise, the Toolbars collection contains all the toolbars within the menu group
and can be accessed through the Toolbars property.

To add a new toolbar to the Acad menu group:

Dim mybar As AcadToolbar

Dim mnugrp As AcadMenuGroup

Dim acad As AcadApplication

Set acad = ThisDrawing.Application

Set mnugrp = acad.MenuGroups.ltem(*acad”) * gets the acad MenuGroup

Set mybar = mnugimp.Toolbars.Add(“New Toolbar”) ‘ the new toolbar name in quotes

At this stage applying the SaveAs method to the MenuGroup Object can create the

new menu group:
mnugrp.SaveAs “New Menu Name” filetype

where the new menu name is quoted and it can be saved as file type:
acMenuFileCompiled: A compiled menu file (MNC file type).
acMenuFileSource: A source menu file (MNS file type).

A new toolbar object has now been created to which buttons, macros and bitmaps
can be added.

Before adding any toolbuttons the toolbar needs to be visible:

mybar. Visible = True

To add toolbuttons:

Dim mybutton As AcadToolbarltemn

Set mybutton = mybar. AddToolbarButton(0, "Get_Slab_Boundary", "", Chr(3) & Chr(3) & " _-
vbarun getoutlines ")

where AddToolbarButton ' has the following format:

mybutton = mybar. AddToolbarButton{Index, Name, HelpString, Macro],

FlyoutButton])

mybar AcadToolbar
The object or objects this method applies to.

Index Variant; input-only
The index must be either an integer or a string. If an integer, the
index must be between 0 and N-1, where N is the number of objects
in the toolbar. The new item will be added immediately before the
specified index location.

Name String; input-only
The string that identifies the toolbar button. The string must be
comprised of alphanumeric characters with no punctuation other than
a dash (-) or an underscore {_). This string is displayed as the tooltip
when the cursor is placed over the toolbar button.

HelpString String; input-only
The string that appears in the AutoCAD status line for the button.

Macro String; input-only
The command associated with this item.

FlyoutButton Variant; input-only; optional
A boolean variable stating if the new button is to be a flyout button or
not. If the button is to be a flyout button, this parameter must be set to
TRUE. If the button is not to be a flyout button, this parameter can be

set to FALSE or ignored and the new Toolbaritem object will be

returned. (A fiyout buiton is one that has a black triangle in the
bottom right hand corner. When the left mouse button is held down
over the button an extra drop down list of buttons appears each of
which does an individual task)
When the toolbutton has been created it is then possible to add icons onto the
button to give it character.
mybutton.SetBitmaps “Small lcon Name”, "Large lcon Name”
Where small and large icon names can be either the names of any of the icons
used by AutoCAD’s Acad menu file (resource bitmaps stored in acadbtn.dll) or the
path to any user defined bitmap. A user-defined bitmap must be of the proper size
for the small parameter (16 pixels wide by 15 pixels high) and must reside in the
library search path. For the big parameter, if the specified bitmap is not 24 pixels x
22 pixels, AutoCAD scales it to that size. A user-defined bitmap with the file name
and .bmp extension needs to be specified.
The macro property of the button can be used to run a VBA macro with the

following syntax:
Chr(3) & Chr(3) & " _-vbarun getoutlines "
This assigns the command ACAC_-vbarun getoutlines to the toolbutton which is the

equivalent of pressing the Esc button twice and running the VBA macro cailed
getoutlines. The syntax here is important leaving a space between the end of the
macro name and the closing quotes. A VBA macto is a sub-routine that once it is
loaded it is exposed to the user via the macros dialogue box
Tools-Macro-Macros

Command : vbarun

Run highlit macro

Start debugger

{D:\Program Fles\butaCAD Aichitecturad ASUPPORTAacad dvidS
{D: \ngam Fles\ButolAD fuchitectuwal ASUPPORTYacad dvbiS

AP togram FiesMureCAD Architectinal 2\SUPPOR T \acad dvbd

[Pocie donicgs sdpsecs Manage the loaded projects

Fig 6.1.1 Available Macros Dialogue Box
Once the new toolbar has been created it is possible to dock it using the dock

procedure:
mybar.Dock acToolbarDockTop
where acToolbarDockTop can be replaced with any of the following:

acToolbarDockBottom, acToolbarDockLeft or acToolbarDockRight.

6.3 Adding A Macro To The Project

Macros reside as Public Subs in modules or in the Drawing Object code of the
project. Modules are used to break the code up into more easily managed units.
Modules come in two forms:

e Standard Module

e Class Module

A standard module contains only procedure, type, and data declarations and
definitions. Module-level declarations and definitions in a standard module are
Public by default. A class module contains the definition of a class, including its
methods and properties. To insert a macro into the project choose Insert-

Procedure from the tools menu. AutoCAD displays the Add Procedure dialogue

box.

A Public Sub added to the module or the drawing code will be available as a macro
from the command line or the macros dialogue box. A function will return a value to
the code while a property describes a characteristic of an object within the code.

Fig 6.2.1 Adding a Procedure
Once the macro has been inserted into the VBA code it can be accessed in various

ways from the AutoCAD environment. Using a toolbar to access the macros is the

simplest interface to the VBA code.

Chapter 7 The Toolbar
7.1 A Description Of The New AutoCAD Toolbar

Using the code described above a new toolbar was created for AutoCAD that
processes drawings into slab layout drawings. The toolbar looked like this:

Fig 7.1.1 New Toolbar showing Tooltip for first button.

There were eleven toolbuttons on the new toolbar. From left to right they were as
follows:

1. Get_Slab_Boundary
2. Get_Any_Holes

3. Get_Any_Walls

4. Point Loads

5. Get_Slabbed_Area
6. Hangers

7. Design

8. Group Slabs

9. Production Sheets
10. Toggle Layers

11. Reset Drawing

60

7.2 Get_Slab_Boundary

When processing a drawing like the one in the sampie project this is the first button
that should be chosen. It accesses a VBA macro called getoutlines that prompts
the user to describe the outer extremities of the floor area to be slabbed by
choosing the vertex points with the mouse. When using this toolbutton there are
four different options available:

1. Choose a valid point with the mouse

2. Type “U” at the keyboard to undo last entry

3. Type “¢” at the keyboard to close the floor area and finish selecting vertices
4. Use the Esc key to quit the macro and return the drawing to its original.

As soon as the button is selected the drawing is organised to receive the desired
input. The first thing to do is to create some block entities that will store the
incoming information. Any individual floor area will contain information on the
following entities:

* floor outline extremities

* holes within floor area

+ walls imposing on floor area

s point loads imposing on floor area

To store this information the following blocks are created :

Set bick = ThisDrawing.Blocks.Add(inspeinti, "polyline_block_container")
Set bick = ThisDrawing.Blocks.Add({inspoint1, "hole_block_container”)
Set blck = ThisDrawing.Blocks.Add(inspointi, "wall_block_container")
Set bick = ThisDrawing.Bfacks.Add(inspoint1, "point_block_container”)

Having done this the object snap is set variable so that the desired snap options
are turned on in the drawing:

ThisDrawing.SetVariable "OSMODE", 2179

All drawing revisions are to be done on a new layer so that the newly created
entities can be examined without interference from other layers. To do this a new
layer needs to be created, adding it to the drawing and making it the active layer:

Dim layr As AcadLayer
Set layr = ThisDrawing.Layers.Add("SLABOUTLINE")
ThisDrawing.ActiveLayer = layr

o1

Now the vertices of the floor outline can be input as described earlier. When
finished describing the floor outline the processed coordinates can be added as an
AcadLightweightPolyline and as an AcadRegion (discussed in the section on
the second toolbutton).

Each individual floor area will have its own physical properties:

It belongs to a client

It is of a particular unit size

It has a particular screed depth

It has an area loading

Since all the floor areas within a particular drawing will belong to the same client
the user needs only to be asked once for the client detail information. With the
statement UserForm1.Show

The user can be prompted to give this information with a UserForm:

On clicking OK a block called
“Client Details” is created and the
string value entered by the user is

BuildUp Construction

stored as an AcadAttribute within
this block.

Fig 7.2.1 Client Name Dialogue Box

62

A UserForm is used to get the area properties unique to each floor area:

Fig 7.2.2 Floor Area Properties

On clicking OK 4 variables are set equal to the values obtained from the user
inputs on the form. These variables are user variables (there are 5 integer
variables Userl1-Userl5 and 5 string variables available UserS1-UserS5) of
specific type which can be used anywhere in the VBA code. It is important to
note that the string type variables are not saved with the drawing while the
integer type variables are saved with the drawing.

Once the OK button is pressed on this form it completes the function of the first
toolbutton. The code can be represented with the flowchart:

63

(Start j

1
Create Newv Blocks
Create New Laysr
Set Ohject Snaps

F 3

User inputs Floor
Co-ordinates

7 .
=Dt the user clnze ™.
T the floor outline

-
‘-_ /‘/ -

n

—

Mo

Add processed co-ordinates
to polyline hlock container as
1. Acad Polyling
2. Acad Region

Fig 7.2.3 Define floor area flowchart 3

User Inputs fioor
properties

(=)

64

7.3 Get_Any_Holes

This button is used to locate any holes within the floor area. Holes that are wider
than 400mm are not permitted and the user must be asked for a valid value. After
choosing the hole size the user can only either:

1. Select a hole location

2. Choose the Esc key to quit the routine

Again the UserForm is used to get information on the hole size from the user:

Clicking OK determines the size of hole.
Holes of this size are continuously added
at the user defined location until the Esc
key is selected

Fig 7.3.1 Hole Sizing

To determine the location of a hole with respect to the area to be slabbed two
different methods can be used which can be applied to the AcadLWPolyline
namely:

1. IntersectsWith

2. BoundingBox

(Note: neither of these is unique to the AcadLWPolyline)

The first step after getting the hole size is to convert the coordinates to an
AcadLWPolyline that is initially added to the drawing’s Model Space.

Dim hole As AcadLWPolyline
Sef hole = ThisDrawing.ModelSpace.AddLigh tWeightPolyline (coordinates)
Having done this any intersection points between the floor outline and the hole

outline is checked for. This is done with the IntersectsWith method. First a
reference to the floor outline is needed:

Dim floor As AcadLWPolyline
Set Floor = ThisDrawing.Blocks.item (“polyline_block_container”).ltem (0)

It is known that it is the first item in this block since it was added first. Secondly the
region was added.

Are there any intersection points with the outiine of the floor and the outline of the

hole?
Dim intersection As Variant
intersection = floor.IntersectWith (hole, acextendnone)

where the method IntersectWith is applied to an object variable and takes two

arguments as follows:
intersection = floor. IntersectWith(intersectObject, ExtendOption)
floor All Drawing Objects (Except Pviewport and PolygonMesh)

The object or objects this method applies to.
IntersectObject Object, input-only;
The object can be one of All Drawing Objects.
ExtendOption AcExtendOption enum; input-only
This option specifies if one or the other, both, or none of the
entities are to be extended in order to attempt an intersection.
(acExtendNone: Does not extend either object.
AcExtendThisEntity: Extends the base object.
AcExtendOtherEntity: Extends the object passed as an
argument.
AcExtendBoth: Extends both objects.)
Intersection Variant (array of doubles)
The array of points where one object intersects another object
in the drawing.
If the two objects do not intersect, no data is returned and the function UBound
(Intersection) will return the value —1 else (UBound (intersection) + 1)/2 equals the
number of intersection points between the two objects (remembering each
intersection has an x, y and z coordinate and the array is 0 indexed).
It there are no intersection points between the two objects this must mean that the
hole lies either totally outside the floor area or totally within the floor area. Using

the BoundingBox property of the two objects can check this.

Dim maxfloorbb As Variant, minfloorbb As Variant, maxholebb As Variant

06

Dim minholebb As Variant

floor.GetBoundingBox minfloorbb, maxfloorbb

hole.GetBoundingBox minholebb, maxholebb

returns the x, y and z coordinates of a box which would encompass the complete

object the box edges being parallel to the x, y and z axes of the world coordinate
system.

If the hole’s bounding box lies within the floor's bounding box the hole can be
added as an AcadLWPolyline to the hole_block_container, otherwise nothing is
done. If there are intersection points between the hole and the floor outline this
means that only part of the hole lies within the area of the floor to the slabbed. In
this case the portion of the hole that lies within the floor area is found.

When choosing a hole size for the columns in the sample project 460x460mm was
chosen to allow clearance all around the column. When this hole is placed at the
centre of the column the only portion of it affecting the floor area is the bottom right
hand comer of the hole- essentially a hole size of 230x230.

\BQ
A0
_+_R/
S6°
(A
T N
I

Fig 7.3.2 Resultant hole added
In this case the AutoCAD Region and particularly its Boolean and Explode

methods are used to determine the new hole and the remaining floor area. Regions
are two-dimensional areas created from closed shapes or loops. In this case

67

regions were created from closed polylines. A region is created with the
AddRegion method. As shown in the following code the AddRegion method calls
for an array of AcadEntity which must form a closed loop. These entities can be
any of the following type: Line, Arc, Circle, Elliptical Arc, LightweightPolyline, and
Spline.

Note AddRegion returns a variant array of Region objects and the number of
objects in this array depends on the number of closed loops given in the

AddRegion parameter.
RetVal = object. AddRegion(ObjectList)
Object ModelSpace Collection, PaperSpace Collection, Block

The object or objects this method applies to.
ObjectList Array of Objects
The array of objects forming the closed coplanar face to be
made into a region.
RetVal Variant
This method outputs an array of the newly created Region
objects.
The Boolean method is used to add and subtract regions. This will allow the
determination of the portion of the hole that intersects the floor area. The Boolean
method applies a mathematical algorithm to two separate regions resulting in the
creation of a new region the properties of which depend upon the applied
algorithm. The important thing to note here is that after application of this method
one of the regions will be erased while the other will be modified:
object.Boolean(algorithm, Object)
Object 3DSolid, Region
The object or objects this method applies to.
algorithm AcBooleanType enum:; input-only
acUnion: Performs a union operation. acIntersection: Performs an
intersection operation. acSubtraction: Performs a subtraction

operation.

63

Object Object; input-only

The object the operation is performed against.
The first object is modified as a result of the operation, the second is erased. Once
the newly modified region is obtained the coordinates of the vertices need to be
acquired. . AcadRegion does not support a coordinates method so it is necessary
to explode the region to get at its individual elements and coordinates. The results
of exploding an object in VBA depend on the object being exploded - if the
structure of the base object being exploded is known it is possible to predict what
the explode method will return. In this case exploding the regions will return a
variant array of AutoCAD objects each element of the array corresponding to an
AcadLine. By examining the StartPoint and EndPoint of each individual line in the
array a new polyline can be created corresponding to the newly modified hole. The
same can be done to the newly modified floor outline.

Dim regions As Variant

Dim holeregion As AcadRegion

Dim objectlist (0 to 0) As AcadEntity

Dim objectcollection (0 to 0) As Object

Dim floor As AcadRegion

Dim calcfloor As AcadRegion

Dim mspace As AcadModelSpace

Dim explode As Variant Set floor = ThisDrawing.Blocks.ltem
(“polyline_block_container”).item (1)

Set mspace = ThisDrawing.ModelSpace

Set objectcollection (0) = floor

Set calcfloor = ThisDrawing.CopyObjects (objectcollection, mspace)
Sef objectlist (0) = hole

regions = ThisDrawing.ModelSpace.AddRegion {objectlist)

Set holeregion = regions (0) ‘know only one region will be created from the hole 'starting
with

69

460

HOLE AREA

460

~~7] INTERSECTIOM
7

FLOOR AREA

Fig 7.3.3 Intersection area between floor area and hole
holeregion.Boolean acintersection, calcfloor

DISCARDED

MEW
HOLE

Fig 7.3.4 New hole produced

explode = holeregion.Explode ‘process this array and add the new hole to the
hole_block_container
floor.Boolean acSubtraction, holeregion ‘produces

NES
FLOOR AREA

Fig 7.3.5 Floor area less new hole area

explode = floor.Explode ‘this array is processed and replaces the old floor with the new in
polyline_block_container,

The CopyObjects method used above also comes in useful. During the

CopyObjects operation, objects that are owned or referenced by the primary

70

objects in the Objects param

as Deep Cloning'.

eter will also be copied. Using this method is known

.«-’\\
//-.- \\ -
_/"'D,ISE'S the hole block ™.

—n

_Container gxist "
- .

Message Box.
Define fioor area
first

|

User Inputs haole
size and location

-"‘_,f\ -
. ~

"/7- . —-'\
I Was it avalid .
o

o May

- H i T
< location ar the Bsc.
T key? ol

s

T

Vahg lacation

Jf/

~ s
_~"Duoes the hrle ™~

Get the part of hole that intersects
the floor area. Re-define the floor
outting to include e hale and acd
thi rermiaining hole as an
AcadLlightweightPolyline to the hole
hlock container

<_ intersect the fioor
e, oaea?l
"\\j -
\.T/
Yes
b
RN

- .
-~ Iz all of the hale ™

Fig 7.3.6 Hole Flowchart

- e JAdd hole as pohding
“ingits the floor arga? - 1o the hole block
S
_ e
e Stop \‘..
AN /

71

7.4 Get_Any_Walls

This toolbutton uses nested blocks with attached attributes to populate a block

called wall_block_container and implements the following flowchart:

INPUT DATA

Get uscr 1o input unfactored dead load
and live load for the wall followed by
the startpoint and endpoint

Add the new wall as a nested block
to the wall_block_container
containing an AcadLine and two
attributes defining the untactared
dead and live load of the wall.

Fig 7.4.1 Wall Flowchart

7.5 Get Point Loads

This toolbutton uses similar concepts to the walls toolbutton and implements the

following flowchart;

INPUT DATA

Get user to input dead load and live
load for the point load lollowed by its
location

l

Add the new point load as a nested
block to the point_block_container
containing an AcadPoint and two
attributes defining the dead and live
load ol the point load.

Fig 7.5.1 Point load Flowchart

7.6 Get _Slabbed Area

The application of the first three toolbuttons completes the processing of the
drawing required by the first of the DLLs the Draw.Slabs DLL. This DLL looks at
the blocks containing the details for each of the floor ouiline, holes, walls and point
loads. It then, under instruction from the user, divides the floor area up into a series
of floor slabs each containing a complete picture of their own design information.
The design information for each floor slab is stored in a block in the form of
graphical objects and text values stored in attributes contained in the block. The

block is constructed as follows:

13

Block Element

AutoCAD Type

Corresponds To

0 AcadRegion Siab Boundaries

1 AcadText Slab ldentity

2 AcadLWPolyfine Hole.

No. of Holes

Next Element AcadLine wall

No. of Walls

Next Element AcadPoint Point Load

No of Point Loads

Next Element AcadAttribute Unit Size

+ 1 AcadAttribute UDL Dead Load

+2 AcadAttribute UDL Live Load

+3 AcadAttribute Screed Depth

+ 4 AcadAttribute Propped?

+5 AcadAttribute Left Suppoit Position
+6 AcadAttribute Left Support Width
+7 AcadAttribute Right Support Position
+8 AcadAttribute Right Support Width
+9 AcadAttribute Strand Definition
Next Elements AcadAttributes Wall Loads

Next Elements AcadAttributes Point Loads

Each block is constructed in the DLL to contain the information as structured
above. Once the user has accepted a layout for the slabs this information is then
written back to the AutoCAD drawing so that each individual slab has its own block
structure. The method of creating the layout is discussed later but typically the

sample project could be rendered into a floor slab layout looking like this:

74

The slabs numbered 1-1 to 1-11 are stored
- in the drawing as individual blocks
S containing all the information required to
| Ml H both manufacture and design them. In the
[B} S numbering system the number before the
e _H hyphen refers to the floor area while the
1=7 number after the hyphen refers to the slab
. number within that area.

L. 25k M

©

Fig 7.6.1 Slabbed floor area

On examining the above layout it is clear that the slabs numbered 1-5 and 1-6 are
not supported around the stairwell. In this case a bracket known as a hanger would
be made up from angle iron that would be supported from slabs 1-4 and 1-7 the
length of which would support slabs 1-5 and 1-6. Consequently a point load is
imposed on slabs 1-4 and 1-7 that need to be taken into account when designing
these slabs. The narrow slabs are necessitated by the fact that the area to be
slabbed is not a multiple of 1200mm the modular slab width. The position and
width of the slabs is arrived at in the Draw.Slabs DII.

7.7 Hangers

This toolbutton is used if what are known as hanging slabs are present described
above in the drawing. This toolbutton basically adds a point load to the block
structure belonging to the slab upon which the point load is imposed. When
applied to the sample project this button calculates the point load imposed by slabs
1-5 and 1-6 and adds this point load to the block definitions for slabs 1-4 and 1-7.
There follows a flowchart for this toolbutton:

Fig 7.7.1 Hangers Flowchart

INPUT DATA

Get user to input the slabs which are
hanging using one of the AuoCAD
SelectOnScreen methods 10 sclect an
object — in this case an AutoCAD
block.

Calculate the total reactions from all
the hanging slabs at both ends of the
slabs using design data contained in
block.

INPUT DATA
Get user to input the position of the
hanger

With the hanger position decide on
the appropriate reaction i.¢. Ths or ths.

Do the upper and
lower blocks
exist{1-4 & [-7)

If" the automatic search for the upper
and lower blocks did not find any
prompt the user to select them on
screen

Add the appropriate reaction as an
AcadPoint and two AcadAttributes
defining the dead and live loads to the
appropriate blocks,

Add the appropriate reaction as an
AcadPoint and two AcadAdtributes
defining the dead and live loads to the
apnropriate blocks.

7.8 Design

Now that a block with the complete design information ready to be extracted is
complete it is possible to design any of the slabs using the design DLL. The
design DLL expects a number of design variables that present themselves in the

form of a variant array to the design DLL. The variant array is structured as follows:

Element Type Array Size Corresponds To
0 Array 1x2 slab id & client name
1 Array 1x12 global design details
2 Array depends on no. wall info.
3 Array depends on no. point load info.
4 Array depends on no. hole info.
5 AcadBlock n/a slab to be designed

The 12 elements of global design details are:

1. Unit size

Screed depth

Whether or not the unit is propped

Area dead load

Area live load

Overall unit length

Overall unit width

Distance from left hand corner of the unit to the left hand support
Width of the left hand support

10. Distance from the left hand corner of the unit to the right hand support
11. Width of the right hand support

12. A string defining the number and position of pre-stressing strands

© ® N O~ D

Wall information is passed over in the array corresponding to element No. 2. This
array will either be empty in which case no walls impose on the slab or else it will
contain elements each of which is an array in its own right describing an individual

wall. This array contains 4 elements of information:

77

1. Distance from left hand corner of the slab to the start of the wall in the direction
of the span

2. Distance from the left hand corner of the slab to the start of the wall
perpendicular to the direction of the span

3. Distance from the left hand corner of the slab to the end point of the wall in the
direction of the span

4. Distance from the left hand corner of the slab to the end point of the wall
perpendicular to the direction of the span

5. Dead load imposed on the slab by the wall

6. Live load imposed by on slab by the wall

The information pertaining to the walls and the holes is passed over in a similar

fashion. A reference to the block {i.e. slab} is also passed over so that the DLL can

maodify its information on arrival at an acceptable design.

The design module will be discussed more in-depth later but it basically has the

ability to change any of the following in order to produce an acceptable design to

BS8110:

+ The profile of the unit to any profile available for manufacture

+ Whether or not the unit is propped during construction of the structural screed

» The pattern of pre-stressing strands within the unit

* The position and size of the supports to the unit. Altering this may produce
cantilevers.

When the design module has come up with an acceptable design (the user can

modity any of the above properties in order to satisfy both the Serviceability and

Ultimate Limit State conditions) it then modifies the information in the block passed

to it to reflect the changes made. Once the changes have been made to the block it

is written back to AutoCAD and the block’s colour is changed to green symbolising

the fact that the slab has been designed.

It would be unusual for an experienced designer to design each and every slab

within one floor area. Depending on the area size it would not be unusual to design

only one or two of the most critical slabs and assume that given the same

conditions the rest of the slabs will also conform to the design criteria.

78

Assuming that slab No. 1-9 is the critical slab in the sample project. In design a unit
size, a screed depth, whether or not the unit is propped during structural screed
construction and a strand pattern for the pre-stressing strands is decided upon.
Design produces calculations, modifies the block’s contents and changes its colour
to green. Now the layout can be looked at and a decision that slabs 1-1 through to
1-11 can be given the same properties as 1-9 is made. Since the properties of 1-9
were modified during the design process the properties of 1-1 through 1-11 need to
be modified to reflect this. This is the first duty of the next toolbutton that also
organises the slabs into groups with the same physical properties for production

purposes.

7.9 Group Slabs

Slabs can only be grouped with a slab that has already been through the design
process. The designed slab is considered the base slab for the group and it is its
properties to which all other slabs are compared. The design properties of all slabs
are set equal to that of the designed slab. As well as changing their design
properties slabs also need to be put into production groups. Slabs that have the
same unit size and strand pattern form a unique production group. Within this
production group slabs will vary according to their physical properties i.e. overall
span, number of holes, presence of splayed ends etc. Those with the exact same
physical propetties are considered to be of a particular type within a production
group. These criteria provide a method for sorting all the slabs to be produced for
any one contract. The sample project can be looked at to see how grouping affects
its slabs. A decision made earlier established that slab 1-9 was the critical slab and
it was designed. All the other slabs now need to be grouped in the drawing with
respect to 1-9. On selecting the group toolbutton a prompt will be given to select a
slab with which to group slabs. At this stage select a single slab that has the color
acGreen. Upon selecting this slab it will be noticed that in addition to its unique

identity 1-9 this slab will be given an additional identity of the form p* t* where the *

79

will be substituted by an integer. This identity indicates the slabs production group
and also the type within the production group.

Slab 1-9 is the base slab for slabs 1-1 to 1-11. Slab 1-9 has a production group No.
1 and a type No. 1. Each of the other slabs have been given the same design
properties and hence have the same production number while their type numbers
vary from 1 to 9. Type number 5 is the only one that is duplicated and there are in
total three of this type of slab within the production group number 1.

The user is also prompted at this stage to select all the other slabs that they wish
to group with 1-9. Once the user returns their selection one by one the slabs they
chose turn from their default color byBlock to the designed color of acGreen as well
as assuming an additional identity denoting their production group and type within
that group. Applying the group button to the sample project produces the following

layout:
¥
e
T L T —
D B 4 e e | ===
| & e
S ot . Sa—
[b .
> Mg 4 $7%. 25KN
ka9 5
., =
B i e e ,,,,,,.,rl,._ {C
%) €2,

Fig 7.9.1 Grouped Slabs
Arriving at this layout requires quite a few considerations. The first thing to do after

the user makes their choice for the base slab is to get its design properties:
e Unit size
e Strand pattern

80

+ Propped value (true/false)

« Screed depth

Changes can then be made to the properties of the slabs to be grouped with this

base slab. After retrieving these values from the base slab they must then be put

into a production group. The production group is basically an AutoCAD biock that

contains a series of slabs (also AutoCAD blocks) whose unit size and strand

pattern are identical. With this in mind the block should be given a name that is a

combination of the slab’s unit size and its strand pattern. It's strand pattern is a

combination of integers which look like this:222222222200000000-25.00-52.00-

115.00

The first 18 integers are strands and have values of 0 (no strand) to 3 (12.5mmg

strand), the last 3 numbers between the hyphens representing the concrete cover

to the strand layers (the strand pattern string is actually used by the design module

to interrogate a database containing complete strand information). The unit size

refers to the manufacturers available profiles three of which were worked on:

1. prof115 (a 115mm deep unit with no hollowcore inserts)

2. prof150 (a 150mm deep unit with 4 polystyrene inserts)

3. prot200 (a 200mm deep unit with 4 polystyrene inserts)

This gives a production block with a name something similar to this;

Prof200-222222222200000000-25.00-52.00-115.00

With the base slab the drawing can be searched for a production block with the

appropriate name. |f the production block does not exist it needs to be created and

added to the base slab as type No. 1. If the production block does exist, its

elements are iterated through comparing each to the base block on a physical

characteristic basis. This comparison needs to test a few different hypotheses in

order to determine whether the slab is unique (and hence a new type) or not in

which case the number of slabs of this type is incremented by a value of 1.

The test hypotheses for slabs to be equal within a production group are as follows:

» Their handles must not be equal (a handle is a unique identifier given to an
object by AutoCAD. Slabs in this case equate to AutoCAD blocks and therefore

have handles. (i don’t want to add a slab twice to a production group by
mistake}

» Their radii of gyration about the x-axis must be equal (a good comparison to
start with on the basis of physical properties)

» Their areas must be the same (this will filter slabs with the same radius of
gyration but with different areas. Slabs of the same cross-section and different
spans have the same radius of gyration)

* The position of their centroids with respect to the left hand corner of the slabs
must be the same (this will filter slabs that are mirror images of themselves e.g. 1-9
and 1-10.

Only after each of these hypotheses has been passed can slabs be considered to
be of the same type. Once 2 slabs are found to be of the same type, the value of
the attribute that contains the total number of the slab type already contained in

the production group is incremented.

At this stage a new identifier can be added to the slab indication it's production
group number and its type number.

Now it is necessary to process each of the other siabs the user has selected to be
grouped with the base slab. For each slab, its design properties are changed to
that of the base sfab (unit size, strand pattern, propped value and screed depth)
and having done this each slab is added to the production group in the same
manner as described for the base slab. Once the production group has been
created it is simply a matter of reading the information contained within the group in
order to produce production sheets. There follows a flowchart for the group

toolbutton that can be implemented in VBA.

Fig 7.9.2 Group Slabs

INPUT DATA
Get user 1o input the base slab

Retrieve the design properties {rom
the base slab and il the production

' group dose not exist create it

INPUT DATA
Get user o input rest ol the slabs to be
grouped with the base slab

For each slab

Change each slab’s design properties
that of thqg base slab

NO Creale a new type
s cnlry in the production
block group and assien
new identity to slab

Does the slab
have a type in the
production group

Yes

Increment the number of the type by 1
And assign new idgntity to slab

33

7.10 Production Sheets

Most of the work for this toolbutton has been done when the slabs were grouped
together. In doing this a production group was created (a block within the drawing)
which this toolbutton is going to read. On selection of this button the user is
prompted to select a slab within the drawing for which they want to create
production sheets. The resulting sheets refer to a particular strand pattern and unit
size. When a slab is selected on-screen it's unit size and strand pattern are read.
The block corresponding to the combination of these properties (i.e. the production
block for this strand pattern and unit size} is located and information pertaining to
each unigue slab is assimilated and sent to Microsoft Word from where the
production sheets can be printed (automation of external programmes from
AutoCAD, Microsoft Excel being the example was discussed earlier).

The production sheets for the sample project look like this:

Plate 7.10.1 Production Sheet 1

Production Sheet Job ID : BuildUp Const.
Date: 02/07/2002
200mm Slab

1202 1202

P1-T5 P1-T6
TOTAL No:3 TOTAL No: 1
6524 [
\ 4
711 681
" Rt
P1-T7 P1-TS§
TOTAL No: 1 TOTAL No: 1

6524 [E
7600

Plate 7.10.2 Production Sheet 2

Production Sheet Job ID : BuildUp Const.
Date: 02/07/2002

200mm Slab
4] o e (oM] a8 8 0
1202
A

P1-T9
TOTAL No: 1
Holes:
size X,y
230 x 230 972,0
230 x 230 972,7370

7600 §

86

Plate 7.10.3 Production Sheet 3

Production Sheet Job ID : BuildUp Const.
Date: 02/07/2002

200mm Slab
[} o8 e [] oo L]
1202 1202
A
P1-T1 P1-T2
TOTAL No: 1 TOTAL No: 1
Holes: Holes:
size X,y size X,¥
400 x 1000 0,1423 230 x 230 0,0
230 x 230 0,7370
7600 :
v
1148 596
A
P1-T3 P1-T4
TOTAL No: 1 TOTAL No: 1
Holes:
size X,y
400 x 1000 748 , 1423

7600

7.1 Toggle Layers

This is basically a utility that can be used at any time. It is useful for drawings that
have a huge amount of detail. This button will turn off all layers except the

“SlabOutling” layer to which all of the preceding toolbuttons draw.

7.12 Reset

Again this is a utility button. If the user chooses the Esc key during the operation of
one of the earlier toolbuttons it may leave the drawing unusable to subsequent
toolbutton actions (blocks may exist when they are not supposed to etc). This
toolbutton erases all blocks and their contents that may have been created by the

toolbar in the first place.

7.13 Concluding AutoCAD

This concludes the development within AutoCAD. In the earlier part of this section
it was attempted to give the user a good insight into programming with VBA in
AutoCAD. Although very powerful VBA is not equipped to do everything and
depending on the complexity of the programme it might be necessary to step
outside the VBA IDE every now and again. For this purpose Delphi was found to

be a very powerful programming tool indeed.

Chapter 8 Delphi

8.1 Where To Begin?

For now the answer to this question is not at the beginning! Delphi is simply too
expansive and the learning curve too steep to expect to bring anyone to a
competent level of programming before looking at the DLLs that were created for
AutoCAD. As mentioned before Delphi is written in Object Pascal and is a
hierarchical environment based on a class structure the top-level object being
TObject.

Delphi was used to create an Automation Controller for AutoCAD. These

controllers exist thanks to The Component Object Model or COM.

8.2 COM Revisited

COM is a component software architecture that allows applications and systems to

be built from components supplied by different software vendors. COM is the

underlying architecture that forms the foundation for higher-level software services,

like those provided by ActiveX. ActiveX services span various aspects of

component software, including custom controls, data transfer, and other software

interactions. These services provide distinctly different functionality to the user;

however, they share a fundamental requirement for a mechanism that allows

binary software components, supplied by different software vendors, to connect to

and communicate with each other in a well-defined manner. This mechanism is

supplied by the COM component software architecture in a way such that it:

« Defines a binary standard for component interoperability

» |s programming language-independent

« |s provided on multiple platforms (Microsoft Windows, Microsoft Windows NT,
Apple Macintosh, UNIX)

e Provides for robust evolution of component-based applications and systems

s Is extensible

« Communicates between components, even across process and network
boundaries

» Shares memory management between components

* Reports errors and status

¢ Loads components dynamically

The most fundamental question COM addresses is: How can a system be
designed such that binary executables from different vendors, written in different
parts of the world, and at different times are able to interoperate? To solve this
problem, solutions to four specific problems had to be found:

» Basic interoperability—How can developers create their own unique
components, yet be assured that these components will interoperate with other
components built by different developers?

e Versioning—How can one system component be upgraded without requiring all
the system components to be upgraded?

» Language independence—How can components written in different languages
communicate?

« Transparent cross-process interoperability--How can developers be given the
flexibility to write components to run in process or cross-process (and
eventually cross-network), using one simple programming model!?

Additionally, high performance is a requirement for component software

architecture. While cross-process and cross-network transparency is

commendable, it is critical for the commercial success of a binary component
marketplace that components interacting within the same address space be able to
utilize each other's services without any undue system overhead. Otherwise, the
components will not realistically be scalable down to very small, lightweight pieces

of software equivalent to Delphi classes or graphical user-interface (GU!) controls.
8.3 The Basics Of COM
COM has several building blocks that include:

* A binary standard for function calling between components.

90

« A provision for strongly typed groupings of functions into interfaces.

« A base interface providing:

« A way for components to dynamically discover the interfaces implemented by
other components.

« Reference counting to allow components to track their own lifetime and delete
themselves when appropriate.

« A mechanism to uniguely identify components and their interfaces.

« A component loader to set up component interactions and additionally in the
cross-process and cross-network cases to help manage component

interactions.

8.4 Virtual Method Tables

For any given platform (hardware and operating system combination), COM
defines a standard way to lay out virtual function tables (vtables) in memory, and a
standard way to call functions through the vtables.

In Delphi a class-type value is stored as a 32-bit pointer to an instance of the class
in memory, which is called an object. The internal data format of an object
resembles that of a record. The object's fields are stored in order of declaration as
a sequence of contiguous variables. Fields are always aligned, corresponding to
an unpacked record type. Any fields inherited from an ancestor class are stored
before the new fields defined in the descendant class.

The first 4-byte field of every object is a pointer to the virtual method table (VMT} of
the class. There is exacily one VMT per class {not one per object); distinct class
types, no maiter how similar, never share a VMT. VMTs are built automatically by
the compiler, and are never directly manipulated by a program.

The layout of a VMT is compatible with COM. At positive offsets, a VMT consists of
a list of 32-bit method pointers—one per user-defined virtual method in the class
type—in order of declaration. Each slot contains the address of the corresponding
virtual method's entry point. At negative offsets, a VMT contains a number of fields

that are internal to Object Pascal's implementation.

91

8.5 Interfaces

In COM, applications interact with each other and with the system through

collections of functions called interfaces. A COM interface is a strongly typed

contract between software components to provide a small but useful set of

semantically related operations (methods). An interface is the definition of an

expected behavior and expected responsibilities. Interface names begin with "I" by

convention,

Given that an interface is a contractual way for a component object to expose its

services, there are four very important points to understand:

L]

An interface is not a class. While a class can be instantiated to form a
component object, an interface cannot be instantiated by itself because it
carries no implementation. A component object must implement that interface
and that component object must be instantiated for there to be an interface.
An interface is not a component object. An interface is just a related group of
functions and is the binary standard through which clients and component
objects communicate. The component object can be implemented in any
language with any internal state representation, so long as it can provide
pointers to interface member functions.

Clients only interact with pointers to interfaces. When a client has access to a
component object, it has nothing more than a pointer through which it can
access the functions in the interface, called simply an interface pointer. The
pointer is opaque; it hides all aspects of internal implementation. The
component object's data cannot be seen, as opposed to C++ object pointers
through which a client may directly access the object's data. In COM, the client
can call only methods of the interface to which it has a pointer. This
encapsulation is what allows COM to provide the efficient binary standard that
enables local/remote transparency.

Component objects can implement multiple interfaces. A component object
can—and typically does—implement more than one interface. That is, the

class has more than one set of services to provide. For example, a class might

92

support the ability to exchange data with clients as well as the ability to save its
persistent state information (the data it would need to reload to return to its
current state} into a file at the client's request. Each of these abilities is
expressed through a different interface (IDataObject and IPersistFile), so the
component object must implement two interfaces.

» Interfaces are strongly typed. Every interface has its own interface identifier, a
globally unique ID (GUID: 128-bit integers that are guaranteed to be unique in
the world across space and time) thereby eliminating any chance of collision
that would occur with user-defined names. The difference between components
and interfaces has two important implications. if a developer creates a new
interface, they must also create a new identifier for that interface. When a
developer uses an interface, they must use the identifier for the interface to
request a pointer to the interface. This explicit identification improves
robustness by eliminating naming conflicts that would result in run-time failure.

» Interfaces are immutable. COM interfaces are never versioned, which means
that version conflicts between new and old components are avoided. A new
version of an interface, created by adding more functions or changing
semantics, is an entirely new interface and is assigned a new unique identifier.
Therefore, a new interface does not conflict with an old interface even if all that
changed is one operation or semantics (but not even the syntax) of an existing
method. Note that as an implementation matter, it is likely that two very similar
interfaces can share a common internal implementation. For example, if a new
interface adds only one method to an existing interface, and the component
author wishes to support both old-style and new style clients, they would
express both collections of capabilities through two interfaces, but internally
implement the old interfaces as a proper subset of the implementation of the
new.

COM defines one special interface, IlUnknown, to implement some essential

functionality. All component objects are required to implement the I[Unknown

interface, and conveniently, all other COM interfaces derive from IlUnknown.

93

IUnknown has three methods: Queryinterface, AddRef, and Release. In Delphi,

the declaration of {Unknown looks like this:
IUnknown = interface

['{00000000-0000-0000-C000-000000000046}']

function Queryinterface(const HD: TGUID; out Obj): HResult; stdcall;

function AddRef: Integer; stdcall;

function _Release: Integer; stdcall;

end;

AddRef and Release are simple reference counting methods. A component
object's AddRef method is called when another component object is using the
interface; the component object's Release method is called when the other
component no longer requires use of that interface. While the component object's
reference count is nonzero, it must remain in memory; when the reference count
becomes zero, the component object can safely unload itself because no other
components hold references {o it.
Queryinterface is the mechanism that allows clients to dynamically discover (at
run time) whether or not an interface is supported by a component object; at the
same time, it is the mechanism that a client uses {o get an interface pointer from a
component object. When an application wants to use some function of a
component object, it calls that object's Querylinterface, requesting a pointer to the
interface that implements the desired function. If the component object supports
that interface, it will return the appropriate interface pointer and a success code. If
the component object doesn't support the requested interface, then it will return an
error vaiue. The application will then examine the return code; if successful, it will
use the interface pointer to access the desired method. If the Queryinterface
failed, the application will take some other action, letting the user know that the
desired method is not available.
In COM, an object is some piece of compiled code that provides some service to
the rest of the system. To avoid confusion, it is probabily best to refer to a COM
object as a "component object” or simply a "component." Component objects

support a base interface called IlUnknown, along with any combination of other

944

interfaces, depending on what functionality the component object chooses to
expose.

Component objects usually have some associated data and always access other
component objects through interface pointers. This is a primary architectural
feature of COM, because it allows COM to completely preserve encapsulation of
data and processing, a fundamental requirement of a true component software
standard.

An object whose class implements the IDispatch interface (declared in the System
unit) is an Automation object.

Dispatch interface types define the methods and properties that an Automation
object implements through IDispatch. Calls to methods of a dispatch interface are

routed through IDispatch’s Invoke method at runtime.

8.6 COM and the Client Server Model

The interaction between component objects and the users of those component
objects in COM is in one sense based on a client/server model. The term “client"
could be referred to as some piece of code that is using the services of a
component object. Because a component object supplies services, the
implementation of that component is usually called the "server"—the component
object that serves those capabilities. A client/server architecture in any computing
environment leads to greater robustness: If a server process crashes or is
otherwise disconnected from a client, the client can handle that problem gracefully
and even restart the server if necessary. As robustness is a primary goal in COM,
a client/server model naturally fits. Because COM allows clients and servers to
exist in different process spaces (as desired by component providers), crash
protection can be provided between the different components making up an
application. For example, if one component in a component-based application fails,
the entire application will not crash. In contrast, object models that are only in
process cannot provide this same fault tolerance. The ability to cleanly separate

object clients and object servers in different process spaces is very important for a

component software standard that promises to support sophisticated applications.

COM is unique in allowing clients to also represent themselves as servers,

8.7 Servers: In-Process and Out-of-Process

In general a "server" is some piece of code that implements some component
object such that the Component Object Library and its services can run that code
and have it create component objects.

Any specific server can be implemented in one of a number of flavors depending
on the structure of the code module and its relationship to the client process that
will be using it. A server is either "in-process," which means its code executes in
the same process space as the client (as a DLL), or "out-of-process", which means
it runs in another process on the same machine or in another process on a remote
machine (as a .EXE file). These three types of servers are called "in-process”,
"local”, and "remote."

Component object implementers choose the type of server based on the
requirements of implementation and deployment. COM is designed to handle all
situations from those that require the deployment of many small, lightweight in-
process components {like OLE Controls, but conceivably even smaller) up to those
that require deployment of huge components, such as a central corporate
database server. All component cbjects look the same to client applications,

whether they are in process, local, or remote.

96

Chapter 9 Dynamic Link Libraries

9.1 Type Libraries

A type library (.tlb) is a binary file that stores information about a COM object's
properties and methods in a form that is accessible to other applications at run
time. Using a type library, an application or browser can determine which interfaces
an object supports, and invoke an object's interface methods. This can occur even
it the object and client applications were written in different programming

languages.

Delphi records the description of the ActiveX server's interfaces in a type library
that it automatically creates when creating the ActiveX object. Type libraries do not,
however, store the actual objects described—they store only information about
objects. (They might also contain immediate data such as constant values.)

At this stage the theory behind the programming that goes into making up a
custom ActiveX DLL has been discussed. This is now used in order to create two
ActiveX DLLs for the AutoCAD programme. These ActiveX objects look after two

stages in the manufacturing process, the drawing stage and the design stage.

9.2 Making A Start: The Simplest Of ActiveX DLLs

Both DLLs use Delphi forms with which the user can interact in order to achieve
the desired results. First, creating a Delphi form in AutoCAD from a Delphi
compiled DLL, was examined. This form had one button which when selected
showed another form with a close button. It basically does nothing but once

achieved the form can then be designed to do anything.

97

From the file menu New is chosen:
Delphi displays the new items dialogue box.

% BN @ K K i

dActiveSever AdtiveFem AntiveX Autonstion COM Object
1 gecd Coclicd Otgect

Dbgec

G &

* Propedy Page Type Lbsay

Fig 9.2.1 Adding an ActiveX Library

At this stage it is necessary to add the forms to the project that AutoCAD is going
to show.

Choose File-New-Form

Delphi adds a new form to the project and it’s associated unit. Onto this form drag
two buttons from the standard palette to which some new code can be added.
Since this is going to be the first form to be shown by AutoCAD it was saved as
Shown_First.pas in the same directory as saved in the project.

Choose File-New-Form

Delphi adds another form to the project. A close button can then be dropped onto
this form. Since this form is going to be created by the first form it was as
Secondary_Form.pas.

Now some code can be added to the buttons on the Shown_First form.

One of them simply closes the project the other shows the secondary form.

The code looks like this:

procedure TFirst.Show_FormClick(Sender: TObject);

var
second:TSecond,;

98

begin
Second:=TSecond.Create(self);
try
Second.showmodal;
finally
Second.free;
end;
end;

procedure TFirst.CloseClick(Sender: TObject);
begin

Close;
end;

The forms look like these.

Fig 9.2.2 Both member forms of the ActiveX dll

In order to make these forms behave like any other dialogue boxes in AutoCAD
(when AutoCAD is minimised the forms will also minimise) it is necessary to make
AutoCAD the owner of the forms i.e. the AutoCAD window is the parent window of
the forms. This is done by creating parameters for the first form (since it owns the
second form by default AutoCAD will also own the second form).

The following code is needed to make AutoCAD the owner of the first form:

type
TFirst = class(TForm)
Shown_First: TButton;
Close: TButton;
procedure Shown_FirstClick(Sender: TObject);
procedure CloseClick(Sender: TObject);
private

99

{ Private declarations }
FAcadWindow: HWND;
Function GetAcadWindow: HWnd;
protected
procedure CreateParams(var Params: TCreateParams),; override;
public
{ Public declarations }
Property AcadWindow: HWND read FAcadWindow;
end;
Implementation
procedure TFirst.CreateParams{var Params: TCreateParams);
begin
inherited CreateParams(Params);
FAcadWindow := GefAcadWindow;
If IsWindow(FAcadWindow) then
Params.WndParent := FAcadWindow;
end;
Function TFirst.GetAcadWindow: HWND;
var
Func: Function: HWnd; cdecl;
begin
Resulit := HWND(0);

Func:= GetProcAddress(GetModuleHandle('ACAD.EXE’), ‘adsw_acadMainWnd'};

If not Assigned(Func) then Exit;
Result := Func;

end;

The ActiveX object which implements the previous code written can now be

created:
On choosing File-New-ActiveX-Automation Object

Delphi displays the Automation Object Wizard

100

omalion Object*Wizar

Fig 9.2.3 Automation Object Wizard

Into the CoClassName box Forms is
typed. This is a CoClass CoForms
which provides a Create and
CreateRemote method to create
instances of the default interface
IForms exposed by the CoClass.
The functions are intended to be used
by clients wishing to automate the
CoClass objects exposed by the
server.

On selecting OK Delphi does a number of things:

o Creates two Interfaces IForms and IformsDisp
e Creates a Class CoForms used to create instances of the default interface

IForms exposed by the CoClass

o Creates a Class TForms which is implemented by IForms

e Creates a Type Library to describe the methods and properties of the ActiveX

object

o Creates a unit where the methods and properties of the interface Iforms can be

implemented

o Creates a Class TFormsProperties which acts as the server for the class

TForms
Delphi then shows its type library editor:

101

Fig 9.2.4 Delphi Type Library Editor

The interface Iforms was highlighted and the new property button from the toolbar
was selected. The new property added was called Visible. On the parameters tab
in the drop down list for Type in the parameters window VariantBool was chosen
as the type for parameter. On choosing refresh implementation Delphi created the

new properties in the new unit. The unit was saved as Forms_IMPL
The code for the Visible property is very simple and once the Initialise and
Destroy procedures have been added the project is complete. The code in

Forms_IMPL then looks like this:
unit Forms_IMPL ;interface
uses
ComObj, ActiveX, Windows, AcForm_TLB, StdVcl, First;
type
TForms = class(TAutoObject, IForms)
private
FFirst: TFirst;
protected
function Get_Visible: WordBool; safecall;
procedure Set_Visible(Value: WordBool); safecall;
{ Protected declarations }
public
Procedure Initialize; override;
Destructor Destroy; override;

102

end;

implementation

uses ComServ;

procedure TForms.Initialize;
begin

Inherited Initialize;

FFirst := TFirst.Create(nil);

end;

destructor TForms.Destroy,;
begin

FFirst.Free;

inherited destroy;

end;

function TForms.Get_Visible: WordBool;
begin
Result := FFirst. Visible;

end;

procedure TForms.Set_Visible(Value: WordBool);
begin
FFirst.Visible := Value;

end;

initialization
TAutoObjectFactory.Create(ComServer, TForms, Class_Forms,
ciMultilnstance, tmApartment);

end.

Now before the ActiveX server can be used it must first be registered on the
system. If from the run menu ‘Register ActiveX Server' is chosen Delphi makes the
appropriate entries of GUIDs etc to the system registry. The server is now available

to AutoCAD and a small bit of VBA code is necessary to access it. The first thing to

103

be done from the VBA IDE is to set a reference to the new DLL (by browsing to
where DLL was saved). Once this reference has been set, the library Show
appears in the object browser window. It shows a class called Forms that has a
single visible property. To show the Delphi form from AutoCAD add this code to the
VBA project:

Dim showfrms As Show.Forms ‘this must be a module level declaration

Public Sub ShowForms()

Set showfrms = New Show.Forms

showfrms.Visible = True

End Sub

There were two Delphi DLLs created for AutoCAD :

1. The draw DLL which divides up the floor area into its separate slabs
2. The design DLL which produces a set of design calculations for a particular
slab

9.3 The Draw DLL

This DLL deals with rendering the floor area into a series of slab objects that can
then be manipulated by both the design DLL and the production sheets toolbutton.
It is simply a Delphi form that responds to actions carried out by the user. There
are three main events to which the form responds:

1. Mouse Down Event (equivalent to depressing the left mouse button)

2. Mouse Move Event

3. Mouse Up Event (equivalent to releasing the left mouse button)

When an acceptable layout is achieved selecting the OK button writes back the
layout to AutoCAD (Note: to access AutoCAD objects from Delphi, first import its
type library to the project where Delphi will create the unit AutoCAD_TLB.pas).
The bulk of the Draw DLL is taken up by a picture control onto which all drawing is
done. The defaults of this picture are set up to look like the AutoCAD environment
so that the transition from AutoCAD to the DLL is seamless to the user. When this
DLL is called from AutoCAD an initial method called CreatelnitialSlicing is
executed. This method takes a parameter, IDispatch, which it gets from the

104

AutoCAD VBA routine that calls it. The IDispatch parameter is a pointer to the
current drawing in AutoCAD.

On connecting to the AutoCAD drawing the DLL looks for the individual blocks
containing the information relative to the floor area to be slabbed. As mentioned
before these blocks are:

1. Floor Outline

2. Hole Details

3. Wall Details

The CreatelnitialSlicing method then extracts the coordinates of the floor outline
from the appropriate block and draws it to the bitmap on the form. As well as this it
also creates an array of slices for each individual side of the floor outline that are
parallel to the side. Having completed these tasks it then shows the form to the
user. No slicing arrangement is apparent until the user moves the mouse cursor
inside the floor area. Once inside the floor area depending upon which side the
cursor is closest to a slicing arrangement is presented to the user a view of which

is shown below:

1_ Aulo Mode A 24 ; : : 5

Fig 9.3.1 The Draw Editor

105

At this stage the user has 2 choices, either right clicking on the mouse that will fix
the arrangement as presented or left clicking the mouse to slice individual areas
within the floor area. On right clicking the only thing that can be altered in the
arrangement is the width of the last but one slice (it is industry practice to make this
the narrow slice). By placing the mouse on the second last slice (the red one) and
left clicking the slice can be dragged to alter the width of the last but one slab. Its
width can be adjusted to a maximum of 1200mm consequently narrowing the
previous slab. The experienced designer should have an intuition as to the
optimum width of this slab depending on the presented layout.

For the case above this option would probably not be relevant. To achieve the
slicing arrangement aground the stair opening it is necessary to slab to the corner
of the stairs, provide two slabs covering the width of the stair opening, and then
slab the rest of the floor area. Upon left clicking the mouse the user is allowed to
slice individual areas within the floor area. With this tool it is possible to drag a slab
edge to the corner of the stair opening. On releasing the mouse button in the
vicinity of the corner of the stair opening slabs are drawn from this point to the
edge of the floor outline. Again a narrow slab will be encountered.

In the following case instead of right clicking the user has chosen the left click
option to slice from the top edge to the corner of the stair opening. Slicing proceeds
from this corner to the next corner of the stair opening. Note the slab width labels in
the bottom left hand corner. These labels appear when the user opts to alter the
width of the last but one slice. The labels indicate the width of both slabs

dynamically.

106

£% Auto Modo

Fig 9.3.2 Dynamic Slicing

The user continues to slab to the opposite corner of the stair opening. Now at this
stage an experienced designer would know that the large opening is too big for a
single slab to contain. In practice the adjacent slabs would share the entire hole.
To automate this process the user is given the option of releasing the left mouse
button inside the hole. The process detects the hole and a slab edge is created at
the centre of the hole from which slabs are generated. The user can now complete
their layout by dragging the mouse from the last edge to the lower corner of the
floor area to complete a valid layout (see the corresponding toolbutton in
AutoCAD). At this stage the Ok button is enabled. Selecting it accepts the layout
and commences building up the information for individual slabs. Algebraically a
“Slab Object” is constructed which is used to build AutoCAD Blocks for writing to
the drawing.

This “ Slab Object” type is defined in the code in the following way:

TComplete_Slab = Record
outline:TSlab;
holes:THole;
walls:TWalls;
points:TPointLds;

end;

107

TCoord=record

x,y:double;
end;
TLine = Array[0..1] of TCoord;
TSide = Array of TLine;
TSlab = Array of TSide;
Thole = Array of TSide;
TWallRecord=record

Wall: TLine;

deadload:widesltring;

liveload:widestring;
end;
TPointLoad=recorcd

PtLoad:TCoord;

PiDL: Widestring;

PtLL :Widestring;
end;
The TComplete_Slabk record is built up from intersection points calculated from the
layout and using the information contained in the drawing about walls and point
loads. Once this record has been built it is a straightforward matter to convert all
the information intc an AutoCAD block that can be written back to the drawing. The
structure of this block is described in detail in the Get_Slab_Boundary toolbutton
description. Values for attributes that cannot be ascertained at this time are given
defaults to be changed at a later date. One by one the information is built up for
each slab and cone by one they are written back to the AutoCAD drawing. When the
DLL has completed writing all the slabs back 1o AutcCAD from the accepted layout
devised on the Delphi form, the form disappears and the user is back in the
AutoCAD environment. The appropriate slabs including reference numbers have
been drawn in the AutoCAD drawing. These slabs can be simply selected on-
screen by selecting any element which is owned by the block/slab such as a wall,
hole, point load, slab identity etc. Since the slab is defined as an AutoCAD block

selecting a single element selects the whole block {which is actually an instance of

108

a block insertion i.e. a block reference in VBA) that is useful when it comes to
performing operations on individual slabs {design calculations etc.).

Provided there are no slabs hanging from the slab for which a design is required it
can be selected on-screen and sent to the design DLL (If there are hanging slabs

they must be dealt with first with the AutoCAD hangers toolbutton).

9.4 The Design DIl

A reference to the slab that is to be designed is sent to the Design DLL in the form
of IDispatch (a pointer to the memory address containing the block information for
the slab). The first thing the Design DLL does is to deconstruct the AutoCAD block
that is referenced by |Dispatch into the component parts needed to perform an
initial design. The information needed for this initial design is as follows:

e The overall span of the slab

+ The width of the supports

s The position of the suppoitts.

+ Whether or not to prop the slab

¢« The applied Dulls

* The depth of the screed

* The positions and sizes if any holes exist

+ The location of any walls if they exist and there associated dead and live loads
¢ The location and value of any point loads if they exist

¢ The strand pattern for the slab

All of this information is extracted from the AutoCAD block the reference of which
was given by the user when they selected a slab on-screen.
The design dll is comprised of a series of user interactive forms that can change
the design properties of the design slab in order to satisfy design criteria laid down
in BS8110. Given the initial properties sent over from AutoCAD two calculations
are performed and a results sheet is shown to the user in which they can check:

1. Serviceability Limit State Calculations

2. Ultimate Limit State Calculations

109

For SLS calculations the slab is considered at two stages of its lifetime i.e. at
transfer (the stress induced in the pre-stressing strands is transferred to the
concrete which at this stage of its life would have a transfer strength of 30N/mm?)
and at service (the concrete has a service strength of 50N/mm? and imposed loads
due to screed construction and floor area usage are considered).

The effective span of the slab is divided into 100 intervals. At each interval section
propeities and the corresponding stress in the top and bottom fibers of the
concrete is calculated. These values are then plotted to a chart that has stress

on the y-axis and distance along the span on the x-axis. Stress limits are also
drawn on this chart (14N/mm? in compression and —2.66N/mm? in tension at
transfer and 16N/mm? in compression and —3.18N/mm? at service). The slab is
deemed to have passed the SLS calculations if the stress profiles do not exceed
the limits laid down.

For the ULS calculations check applied shear force against shear capacity and the
applied moment against the moment capacity. Both cracked and un-cracked shear
capacities are calculated at each interval along the span of the slab. A shear
envelope can then be drawn representing the shear capacity of the slab along its
entire span. The applied shear is then plotted along the same axes. Once the
shear force diagram does not intersect the shear envelope the ULS Shear
calculations have been satisfied.

Similar calculations are performed for the moment capacity. It is caiculated at the
same intervals, as was the shear. A moment capacity envelope is then drawn
which encompasses the entire span of the slab. Applied moment is calculated at
each interval. Once the applied moment does not intersect the moment envelope
the ULS Moment calculations have been satisfied.

Slabs are assumed to carry 100% of applied wall and point loads although in
practice screeds and key joints tend to distribute some of these loads to adjacent
slabs.

A series of bitmaps are generated which when grouped together go to make up
one complete set of results. These bitmaps are then pasted onto a Delphi Form

which is activated by the Design DLL and presented to the user as the active on-

110

screen window for evaluation. The first page of the results sheet show all the
physical characteristics of the slab to be designed including any walls holes or
point loads to be considered. On the second page the user can view the SLS
calculations and on the final page ULS calculations are displayed. The user can
then decide on the basis of these calculations whether or not to change the design
properties of the slab.

At any stage the user can send the calculations to a Microsoft Word document
whereupon the bitmaps are pasted into a Word document that is activated by the

Design DLL. When viewed in Word the design calculations look like this:

111

Plate 9.4.2 Results Page No.1

Client: BuildUp Const. Date: 13-11-00] JOB REF: 1-4
Basic Design Data
Self Weight(unjointed) 4.66 kKH/m* Dead Load Factor(ULS) 1.4
Self Weight(jointed) 4.82 KH/m* Live Load Factor(ULS) 1.6
Screed Strength 35 H/mm* Ixoi: 661.2E6
$lab Strength @ Transfer 35 Hfmm? Yhtm: 93.44 m
Slab Strength @ Service 50 H/mm? I Comp: 1.8E9 m
Creep Factor 2.0 Y Comp: 144.52
Slab Details (200mm Slab)
0 75mm Screed]
: =T — egend
(I . . . « 9.3 rm strand
T AT AL U AATT AR T AN T |
[|
b q p—
100 AR 100
Applied Loads
UDL No: (kN/m?) No: 1
Dead Load: 045
Live Load: 1.5
Point Load No: (kN) No: 1
Dead Load: 19.7
Live Load: 5.8
Top (mm): 1202
Left (mm): 6524
Vvall No: (kN/im) No:1 No:2
Dead Load: 3.0 8.0
Live Load: 3.0 30

+

There are no openings defined.

112

15
10

-10
-15

15
10

-10
-15

20
15
1n

-10
-15

20
15
10

-10
-15

2 - s 0] r ~
_14.00 Tm 1 am 4m Sir Bim m
i : ; 17e |
SRy ay o — e I T T T I I O o o eee— O
-|-2.66 =153
Top Fibre Stress (N/mm?) @ Transfer PASS
_14.00 T Zm am 4 Sm Gim 7m
- ; | | 5.09 |-
' B ' 0.00 |
—|-2.66 -
Bottom Fibre Stress (N/mm? @ Transfer PASS
1m 2m 3m 4m 5 bm 7m
T16.50 i
" I -
15378 T T U.?Z—:
Top Fibre Stress (N/mm?) @ Service PASS
Tm 2m 3m 4m S am 7m
“T16.50 J
B 637
]’m”—mmmm._ £ RRe _W__ﬁmﬂm]ﬂin]]ﬂh
4318 5 A
Botlom Fibre Stress (N/mm?) @ Service FASS

15

-10
-15

15
10

-10
-19

20
15
10

-10
-15

20
15
10

-10
-15

113

Plate 10.4.3 Results Page No.3

| Client: BuildUp Const.

| Date: 13-11-00| JOB REF: 1-4

im 2ra am 4m Sm G 7m
200 ‘ 200
150 ~ / H f - N 150
100 — - . R — 100
= AT T e I)
50 N M R <o
100 - - — -100
-150 ,i U- -150
=200 : { =200
Critical Shear ratio: 1.85 Ullimate Limit State Shears (kN) PASS
Tm 2m 3m 4m 5m G /m
-200 i -200
-150 - -150
100 - — -100
50 - =0
= .
o Ny sl o
100 “LLLL i — 100
150 - e L 150
200 200

Critical Moment ratio: 1.51 Ultimate Limit State Moments (kNm) PASS

114

While being presented with the calculations the user is also presented with a
toolbar on the Delphi form with which they can change the design parameters for
the slab. The toolbar looks like this

Fig 9.4.1 Results Sheet Toolbar
The back and forward buttons simply navigate through the results pages from one
to three. The Send To button simply sends the results sheets to a Microsoft Word

document from where the results can be printed. The print button sends the results
directly to the printer, which leaves three toolbuttons that directly affect the design
of the slab.

The profile toolbutton activates a dialogue box that allows the user to change the
profile of a slab to another profile that is supported.

Here the unit’s size can be changed to an alternative supported size. Any number
of different profiles can be supported. Also a decision whether or not to prop the
construction of the structural screed with the “Propped?” check box is made on this
form. Selecting OK recalculates and presents results to the user.

Unil Siz;:

Taimm Screed”

Fig 9.4.2 Changing the unit size
The strands toolbutton brings up a dialogue box in which the strand pattern of the

slab can be altered.

Here the user configures the strand pattern for the given slab. Strands can be
turned on and off-strand diameters can be changed. The strands lie in
predetermined layers the cover of which can be changed (in industry these layers
will be fixed by drilling the end-blocks of the profile mould). Again selecting OK
recalculates and presents resuits to the user.

Fig 9.4.3 Changing the strand pattern

The final design parameters that are dynamic are presented by the spans

toolbutton:

Fig 9.4.4 Creating cantilevers

116

The location and the width of the supports can be changed. Consequently
cantilevers can be set up. Selecting OK for a configuration recalculates and
presents results for examination.

With the use of the toolbuttons described above it is possible to test the design of
many slabs with the desire to satisfy the physical conditions of its use. Once an
acceptable design combination has been achieved the user selects OK on the
main form. Each design parameter that came from AutoCAD in the block is
checked for a change and if one is applicable the appropriate change is written to
the block. Finally the block’s colour is changed to green to graphically indicate that

it has been designed and the Design DLL is released to await another call!

117

Chapter 10 Conclusions

10.1 Achieved Developments

While developing this IT package the AutoCAD environment proved to be an
extremely user-friendly versatile product to work with. Only a small subset of its
vast drawing capabilities was used. The nature of the drawing objects provided by
AutoCAD (such as the AcadLine and AcadRegion), with their methods and
properties, avoided the need to write hugely complicated routines to find projected
intersection points, planes resulting from planar unions and or subtractions etc.
AutoCAD’s VBA programming interface was easy to work with and exposed all of
the objects necessary to complete the IT package.

Delphi on the other hand proved a little more difficult to negotiate. Its programming
environment requires a lot more discipline when writing code than VBA although
this is rewarded by it picking up most mistakes at compile time rather than run-
time. Delphi is designed for writing generai applications and combining the internal
objects and components with all the third party add-ons available the possibilities
are endless. It was found to be the ideal tool to use for the non-drawing specific
part of the IT package.

While an |T package was developed during the course of this work it was found
that there would have to be an enormous amount of work to go into the user-
interface end of the package. Should a useful product be developed for industry
this work provides very useful building blocks for such a product. The user —
interface with all the error handling required to tie all these blocks together for use
by the manufacturing industry would take a considerable amount of time to

develop.

10.2 Future Development

This completes the research to date. There is still one main aspect of the
manufacturing process to be considered — the production process. In order to track

a slab completely from inception to leaving the manufacturer’'s premises it is

118

necessary to monitor its production. This is envisaged by producing a graphical
representation of the manufacturer's production beds. Slabs to be produced are
dumped into production beds from where they are transterred to a database once
produced. The production beds are dynamically linked to the database providing
full tracking of the slab during the production process. The beds can show
production linked to any date.

Since AutoCAD is already inherently a database all the information required to set
up the production beds is already contained in the AutoCAD drawing. The
production beds will thus query AutoCAD’s database.

119

References

- AutoCAD 2000 On-Line Documentation “AutoCAD ActiveX and VBA Reference”
2: AutoCAD 2000 On-Line Documentation "AutoCAD Command Reference”

3: Microsoft On-Line Documentation “Win32 Developer’s References”

Delphi Win32api

4: AutoCAD 2000 On-Line Documentation “AutoCAD Visual Basic Reference”

5: Microsoft On-Line Documentation “Microsoft Data Access Objects Reference”

The location and the width of the supports can be changed. Consequently
cantilevers can be set up. Selecting OK for a configuration recalculates and
presents results for examination.

With the use of the toolbuttons described above it is possible to test the design of
many slabs with the desire to satisfy the physical conditions of its use. Once an
acceptable design combination has been achieved the user selects OK on the
main form. Each design parameter that came from AutoCAD in the block is
checked for a change and if one is applicable the appropriate change is written to
the block. Finally the block’s colour is changed to green to graphically indicate that

it has been designed and the Design DLL is released to await another call!

P17

Chapter 10 Conclusions

10.1 Achieved Developments
While developing this |T package the AutoCAD environment proved to be an

extremely user-friendly versatile product to work with. Only a small subset of its
vast drawing capabilities was used. The nature of the drawing objects provided by
AutoCAD (such as the AcadLine and AcadRegion), with their methods and
properties, avoided the need to write hugely complicated routines to find projected
intersection points, planes resulting from planar unions and or subtractions etc.
AutoCAD's VBA programming interface was easy to work with and exposed all of
the objects necessary to complete the IT package.

Delphi on the other hand proved a little more difficult to negotiate. Its programming
environment requires a lot more discipline when writing code than VBA although
this Is rewarded by it picking up most mistakes at compile time rather than run-
time. Delphi is designed for writing general applications and combining the internal
objects and components with all the third party add-ons available the possibilities
are endless. It was found to be the ideal tool to use for the non-drawing specific
part of the IT package.

While an IT package was developed during the course of this work it was found
that there would have to be an enormous amount of work to go into the user-
interface end of the package. Should a useful product be developed for industry
this work provides very useful building blocks for such a product. The user —
interface with all the error handling required to tie all these blocks together for use
by the manufacturing industry would take a considerable amount of time to

develop.

10.2 Future Development

This completes the research to date. There is still one main aspect of the
manufacturing process to be considered — the production process. In order to track

a slab completely from inception to leaving the manufacturer’s premises it is

118

necessary to monitor its production. This is envisaged by producing a graphical
representation of the manufacturer’s production beds. Slabs to be produced are
dumped into production beds from where they are transferred to a database once
produced. The production beds are dynamically linked to the database providing
full tracking of the slab during the production process. The beds can show
production linked to any date.

Since AutoCAD is already inherently a database all the information required to set
up the production beds is already contained in the AutoCAD drawing. The

production beds will thus guery AutoCAD’s database.

119

References

1: AutoCAD 2000 On-Line Documentation “AutocCAD ActiveX and VBA Reference”
2: AutoCAD 2000 On-Line Documentation “AutoCAD Command Reference”

3: Microsoft On-Line Documentation “Win32 Developer's References”

Delphi Win32api

4: AutoCAD 2000 On-Line Documentation “AutoCAD Visual Basic Reference”

5: Microsoft On-Line Documentation “Microsoft Data Access Objects Reference”

	Slab Drawing Layout: a Study to Develop a New Information Technology Package to Aid Those Involved in the the Manufacture of Pre-stresed Hollow Core Plank Flooring
	Recommended Citation

	tmp.1218122845.pdf.eUxX8

