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WHY URBAN WIND? 
 

Population Centres 
 

Transmission/Distribution losses 
 

Green solutions must include wind 
 

Smarter energy diversification must be 

inclusive of wind within urban centres BUT 

solutions predicated on the resource and not 

specifically the technology are needed 
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 Smart Cities…. Smart Grids 
 

o An amalgamation of communication and electrical 
capabilities that allow utilities to understand, optimize, 
and regulate demand, supply, costs and reliability. 

 
Facilitating electrical providers to interact with the power delivery 
system and determine whether electricity is being used and from where 
it can be drawn during the time of crisis and peak demand. 
 
On the demand side – the smart grid empowers the consumer to 
become a ‘prosumer’… 
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 Why is a Smart Grid needed? 
 

o Future grid networks must be competitive and supportive 
of environmental objectives and sustainability 
 

o Reliability, flexibility, accessibility and cost-effectiveness 
are the primary objectives 
 

o Should accommodate both central and dispersed 
generation 
 

o Options for end-users to be more interactive with both 
market and grid; promoting the concept of a ‘prosumer’ 
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o Reliability, flexibility, accessibility and cost-effectiveness 
are the primary objectives 
 

o Should accommodate both central and dispersed 
generation 
 

o Options for end-users to be more interactive with both 
market and grid; promoting the concept of a ‘prosumer’ 

Therefore the means of applying the primary energy resource (Wind) in this regard 
within urban centres must be achieved  
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For each 300 sector, surface roughness was 
estimated by varying  iteratively until the 
best fit was achieved so as to minimise the 
error between the predicted wind speed, 
based on the background climate, and the 
observed wind speed 
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Future Work 
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J. T. Millward-Hopkins, et al., "Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous 
Building Heights," Boundary-Layer Meteorology, vol. 141, pp. 443-465, 2011/12/01 2011. 
 

J. T. Millward-Hopkins, et al., "Aerodynamic Parameters of a UK City Derived from Morphological Data," 
Boundary-Layer Meteorology, vol. 146, pp. 447-468, 2013/03/01 2013 

To be applicable from the ISL into the RSL, 
neighbourhoods of homogeneity need to be identified – 
distinctly different surfaces can be considered separately 
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 Rastered Digital Elevation Model (DEM) - - building footprints (Dublin) 

 Divide the city into distinct neighbourhood regions – Adaptive Grid 
 

Geometric Parameterisation: Employing an 
adaptive grid to calculate the geometric 
parameters 
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 Rastered Digital Elevation Model (DEM) - - building footprints (Dublin) 

 Divide the city into distinct neighbourhood regions – Adaptive Grid 

 Geometric Parameterisation 

 Morphemetric Model 
 

  z0 
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Conclusions 

 In the context of smart cities and smarter (electricity) grids, this type of research is 
essential if renewable energy is to facilitate a cultural shift towards an era of 
prosumers.  
 

 In terms of the limits available to wind energy extraction in an urban context., the 
analyses illustrated limited opportunities below a height 2 → 4 x zHm 
 

 By linking urban wind observations to a background reference, an empirical 
logarithmically matched profile was possible. (Analytical linkages to observations within 
the canopy suggested that knowledge of the background resource in this regard is of 
limited value) 
 

 Analyses of a fully described 4-wire unbalanced section of Dublin city network, in 
respect of increasing levels of prosumer (with a grid-tied commercially available DwG), 
illustrated that for exemplar consumer load and a typical mean year of wind speed, 
voltage tolerance breaches are unlikely and of marginal concern (<2% of occasions) 
 

 Future work will focus on validating the emperical logarithmic extrapolation models 
through moprphemtric means of deriving the Dublin city urban aerodynamic 
parameters 
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