

Technological University Dublin ARROW@TU Dublin

Other resources

School of Electrical and Electronic Engineering

2014-06-12

The Application of Boundary Layer Climatology and Urban Wind Power Potential in Smarter Electricity Networks

Keith Sunderland keith.sunderland@tudublin.ie

Gerald Mills UCD, gerald.mills@ucd.ie

Follow this and additional works at: https://arrow.tudublin.ie/engschelecon

Part of the Electrical and Electronics Commons

Recommended Citation

Mills, G., Sunderland, K. : The Application of Boundary Layer Climatology and Urban Wind Power Potential in Smarter Electricity Networks, American Meteorological Society: 21st Symposium on Boundary Layers and Turbulence (9-13 June 2014, Leeds, United Kingdom)

This Presentation is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Other resources by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

'The application of boundary layer climatology and urban wind power potential in smarter electricity networks'

Dr. Keith Sunderland¹, Dr. Gerald Mills², Prof. Michael Conlon¹

¹ School of Electrical & Electronic Engineering, Dublin Institute of Technology, Ireland ² School of Geography, Planning and Environmental Policy, University College Dublin, Ireland

AMERICAN METEOROLOGICAL SOCIETY CONFERENCE

12th June, 2014

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

Overview

- Aims and Objectives
- Research Context/ Motivation
- Methodology
- Findings
- Future Work
- Conclusions

Overview

Aims and Objectives

- Research Context/ Motivation
- Methodology
- Findings
- Future Work
- Conclusions

Aims & Objectives

Research Aim:

To develop novel modelling capability that is inclusive of the power engineering complexities associated with urban (electricity) network integration of small/micro wind generation, and informed by urban climate research

Aims & Objectives

Research Aim:

To develop novel modelling capability that is inclusive of the power engineering complexities associated with urban (electricity) network integration of small/micro wind generation, and informed by urban climate research

Aims & Objectives

Research Aim:

To develop novel modelling capability that is inclusive of the power engineering complexities associated with urban (electricity) network integration of small/micro wind generation, and informed by urban climate research

Aims and Objectives

Research Context/ Motivation

- Methodology
- Findings
- Future Work
- Conclusions

Research Context

Micro/Small Wind *Electricity* Generation

Research Motivation

Micro/Small Wind *Electricity* Generation

Micro/Small Wind *Electricity* Generation

Smart Cities.... Smart Grids

 An amalgamation of communication and electrical capabilities that allow utilities to understand, optimize, and regulate demand, supply, costs and reliability.

Facilitating electrical providers to interact with the power delivery system and determine whether electricity is being used and from where it can be drawn during the time of crisis and peak demand.

On the demand side – the smart grid empowers the consumer to become a 'prosumer'...

Why is a Smart Grid needed?

- Future grid networks must be competitive and supportive of environmental objectives and sustainability
- Reliability, flexibility, accessibility and cost-effectiveness are the primary objectives
- Should accommodate both central and dispersed generation
- Options for end-users to be more interactive with both market and grid; promoting the concept of a 'prosumer'

Why is a Smart Grid needed?

- Future grid networks must be competitive and supportive of environmental objectives and sustainability
- Reliability, flexibility, accessibility and cost-effectiveness are the primary objectives
- Should accommodate both central and dispersed generation
- Options for end-users to be more interactive with both market and grid; promoting the concept of a 'prosumer'

Therefore the means of applying the primary energy resource (Wind) in this regard <u>within</u> urban centres must be achieved

- Aims and Objectives
- Research Context/ Motivation
- Methodology
- Findings
- Future Work
- Conclusions

Research Methodology

Urban Effects & Wind Modelling

DIT

Urban Effects & Wind Modelling

Urban Effects & Wind Modelling

D-I-1

Urban Effects & Wind Modelling

AIRPORT – Rural reference

K. Sunderland

Research Methodology Urban Effects & Wind Modelling

Research Methodology

SCHOOL OF

ELECTRICAL AND ELECTRONIC ENGINEERING

(Standardised) Distribution Network analysis

- o Single-phase 4-Wire (and Ground)
- o Complex/unbalanced (consumer) load configurations

Research Methodology

SCHOOL OF

ELECTRICAL AND ELECTRONIC ENGINEERING

(Standardised) Distribution Network analysis

- o Single-phase 4-Wire (and Ground)
- o Complex/unbalanced (consumer) load configurations

Energy flow - Monodirectional Power Flow

DwG & DN Implications

DwG & DN Implications

Research Methodology

SCHOOL OF

ELECTRICAL AND ELECTRONIC ENGINEERING

DwG & DN Implications

Embedded Generation Issues

- o Bi-directional power flow
- o Network Power Quality management
- o Safety implications

Research Methodology **DwG & DN Implications**

SCHOOL OF

ELECTRICAL AND ELECTRONIC ENGINEERING

Embedded Generation Issues

 $D \cdot I \cdot 1$

- Bi-directional power flow
- o Network Power Quality management
- o Safety implications

Research Methodology **DwG & DN Implications**

SCHOOL OF

ELECTRICAL AND ELECTRONIC ENGINEERING

- Aims and Objectives
- Research Context/ Motivation
- Methodology

Findings

- Ongoing Work
- Conclusions

Results & Findings

Urban Observations & Modelling

Surface Roughness Parameterisation

	SH					Сн						
	Obs.						Obs.					
Dir.[deg.]	Freq. [%]	u _M [m/s]	us [m/s]	Dir _M [deg.]	Dir _s [deg.]	z ₀ [m]	Freq. [%]	u _M [m/s]	us [m/s]	Dir _M [deg.]	Dir _s [deg.]	z ₀ [m]
0-30	1.8%	1.9	0.9	104	86	/	1.9%	2.3	1.0	82	86	
30-60	2.9%	2.4	1.0	91	47		3.0%	3.3	1.5	76	46	
60-90	3.5%	3.0	1.3	103	42		3.8%	4.1	1.8	91	34	
90-120	4.6%	2.8	1.6	127	51		3.9%	3.3	1.8	113	42	
120-150	12.1%	3.4	1.9	151	49	0.924	10.1%	3.6	1.8	139	42	1.145
150-180	5.8%	3.7	1.8	179	37	0.395	4.4%	3.4	1.7	167	39	0.870
180-210	10.1%	5.2	2.4	218	27	0.180	9.0%	4.9	2.2	211	26	0.640
210-240	21.2%	5.0	2.2	244	23	0.342	22.0%	5.0	2.2	239	18	0.791
240-270	22.4%	4.8	2.1	268	18	0.660	24.3%	5.1	2.1	263	14	1.0575
270-300	10.1%	3.4	1.6	281	30	0.602	11.3%	3.9	1.8	282	17	0.724
300-330	3.7%	2.6	1.4	286	55		4.0%	3.0	1.6	287	45	
330-360	2.0%	2.1	1.1	219	115		2.2%	2.2	0.9	231	117	
ZO(average)					0.5171					ZO(average)	0.8713	

DIT

Urban Observations & Modelling

Surface Roughness Parameterisation

	For each 30 ^o sector, surface roughness was estimated by varying iteratively until the								(Сн		
Dir.[deg.] 0-30 Dest fit was achieved so as to minimise the error between the predicted wind speed, based on the background climate, and the									us [m/s] 1.0	Dir _M [deg.] 82	Dirs [deg.] 86	z ₀ [m]
30-60	60 2.9 observed wind speed								1.5	76	46	
60-90	3.5%								1.8	91	34	
90-120	4.6%	2.8	1.6	127	51		3.9%	3.3	1.8	113	42	
120-150	12.1%	3.4	1.9	151	49	0.924	10.1%	3.6	1.8	139	42	1.145
150-180	5.8%	3.7	1.8	179	37	0.395	4.4%	3.4	1.7	167	39	0.870
180-210	10.1%	5.2	2.4	218	27	0.180	9.0%	4.9	2.2	211	26	0.640
210-240	21.2%	5.0	2.2	244	23	0.342	22.0%	5.0	2.2	239	18	0.791
240-270	22.4%	4.8	2.1	268	18	0.660	24.3%	5.1	2.1	263	14	1.0575
270-300	10.1%	3.4	1.6	281	30	0.602	11.3%	3.9	1.8	282	17	0.724
300-330	3.7%	2.6	1.4	286	55		4.0%	3.0	1.6	287	45	
330-360	2.0%	2.1	1.1	219	115		2.2%	2.2	0.9	231	117	
				z	0(average)	0.5171					Z0(average)	0.8713

Results & Findings

Urban Observations & Modelling

Observation/Modelling: high-platform observations

		С _н		S _H					
	Observed	Wieranga Model	Bottema Model	Log- Model	Observed	Wieranga Model	Bottema Model	Log- Model	
Roughness length (z _o)		1.15	1.15	0.8713		0.55	0.55	0.5171	
Friction velocity ratio		1.0	1.3312	1.7022		1.0	1.2636	1.5512	
и _м [m/s]	4.5992	4.9728	3.2281	4.6165	4.4401	4.9804	3.5795	4.3940	
u _s [m/s]	2.1288	2.2497	1.4604	2.0885	2.1712	2.2269	1.6005	1.9647	
MAE [m/s]	1	0.7113	1.4248	0.6133		0.9392	1.0635	0.7594	
RMSE[m/s]	1	0.9790	1.6878	0.8651		1.2202	1.3873	1.0479	

Results & Findings

Observation/Modelling: high-platform observations

		C _H			S _H					
	Observed	Wieranga Model	Bottema Model	Log- Model	Observed	Wieranga Model	Bottema Model	Log- Model		
Roughness length (z _o)		1.15	1.15	0.8713		0.55	0.55	0.5171		
Friction velocity ratio		1.0	1.3312	1.7022		1.0	1.2636	1.5512		
и _м [m/s]	4.5992	4.9728	3.2281	4.6165	4.4401	4.9804	3.5795	4.3940		
u _s [m/s]	2.1288	2.2497	1.4604	2.0885	2.1712	2.2269	1.6005	1.9647		
MAE [m/s]		0.7113	1.4248	0.6133		0.9392	1.0635	0.7594		
RMSE[m/s]		0.9790	1.6878	0.8651		1.2202	1.3873	1.0479		

Urban Observations & Modelling

Observation vs. Modelling

Results & Findings

Distribution Network Reaction

Typical Mean Year of Wind Speed (Markov Chain)

	Urban Modelled W	⁷ ind Speed (С _Н)	Suburban Modelled Wind Speed (S _H)			
		Markov chain		Markov chain		
Statistical	Modelled Wind	Extended Data set	Modelled Wind	Extended Data set		
Comparison	Data (4789 Hrs)	(8760hrs)	Data (5556 Hrs)	(8760hrs)		
u _{Mean}	4.62	4.58	4.39	4.33		
u _{STD}	2.09	2.18	1.96	2.05		

Distribution Network Reaction

Slide11

- Aims and Objectives
- Research Context/ Motivation
- Methodology
- Findings
- Future Work
- Conclusions

Future Work

To be applicable from the ISL into the RSL, neighbourhoods of homogeneity need to be identified – distinctly different surfaces can be considered separately

J. T. Millward-Hopkins, *et al.*, "Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous Building Heights," *Boundary-Layer Meteorology*, vol. 141, pp. 443-465, 2011/12/01 2011.

J. T. Millward-Hopkins, *et al.*, "Aerodynamic Parameters of a UK City Derived from Morphological Data," *Boundary-Layer Meteorology*, vol. 146, pp. 447-468, 2013/03/01 2013

Future Work

- Rastered Digital Elevation Model (DEM) - building footprints (Dublin)
- Divide the city into distinct neighbourhood regions Adaptive Grid

Future Work

- Rastered Digital Elevation Model (DEM) - building footprints (Dublin)
- Divide the city into distinct neighbourhood regions Adaptive Grid
- Geometric Parameterisation

- Aims and Objectives
- Research Context/ Motivation
- Methodology
- Findings
- Future Work
- Conclusions

- In the context of smart cities and smarter (electricity) grids, this type of research is essential if renewable energy is to facilitate a cultural shift towards an era of prosumers.
- In terms of the limits available to wind energy extraction in an urban context., the analyses illustrated limited opportunities below a height $2 \rightarrow 4 \times z_{Hm}$
- By linking urban wind observations to a background reference, an empirical logarithmically matched profile was possible. (Analytical linkages to observations within the canopy suggested that knowledge of the background resource in this regard is of limited value)
- Analyses of a fully described 4-wire unbalanced section of Dublin city network, in respect of increasing levels of prosumer (with a grid-tied commercially available DwG), illustrated that for exemplar consumer load and a typical mean year of wind speed, voltage tolerance breaches are unlikely and of marginal concern (<2% of occasions)
- Future work will focus on validating the emperical logarithmic extrapolation models through moprphemtric means of deriving the Dublin city urban aerodynamic parameters

Thank you

e: <u>keith.sunderland@dit.ie</u>

