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ABSTRACT 

The performance of the surface zone of concrete is acknowledged as a major factor governing 

the rate of deterioration of reinforced concrete structures as it provides the only barrier to the 

ingress of water containing dissolved ionic species such as chlorides which, ultimately, 

initiate corrosion of the reinforcement. In-situ monitoring of cover-zone concrete is critical in 

attempting to make realistic predictions as to the in-service performance of the structure. To 

this end, this paper presents developments in a remote interrogation system to allow 

continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is 

made of a multi-electrode array [19] embedded within cover-zone concrete to acquire 

discretized electrical resistivity and temperature measurements, with both parameters 

monitored spatially and temporally. On-site, instrumentation, which allows remote 

interrogation of concrete samples placed at a marine exposure site, is detailed, together with 

data handling and processing procedures. Site-measurements highlight the influence of 

temperature on electrical resistivity and an Arrhenius-based temperature correction protocol 

is developed using on-site measurements to standardize resistivity data to a reference 

temperature; this is an advancement over the use of laboratory-based procedures. The testing 

methodology and interrogation system represents an additional technique which could be 

used for intelligent monitoring of reinforced concrete structures.  

 

Keywords: Concrete, performance, remote monitoring, electrical resistivity, Arrhenius, 

temperature. 
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1.0 INTRODUCTION 

The premature deterioration of concrete highway structures due to corrosion of the steel 

reinforcement is a world-wide problem. In the UK, as in most developed countries, the 

infrastructure has now reached an age where capital costs have decreased, but inspection and 

maintenance costs have grown, constituting a major part of the recurrent costs of the 

infrastructure. Traffic delay costs due to inspection and maintenance programmes are already 

estimated to be between 15%-40% of the construction costs [1]. Demands for enhanced 

performance create a pressing need to be able to determine, with an acceptable degree of 

confidence, the anticipated service life of concrete structures. Deterioration of reinforced 

concrete due to corrosion is a significant drain on bridge maintenance resources, not only in 

terms of the remedial work required, but also in the costs associated with periodic inspections 

and testing.  

Current testing methods tend to be intrusive, time-consuming and costly, both in terms of the 

direct costs involved and in the indirect costs such as traffic management, road closures and 

diversions required during inspection and testing. In the management of structures, 

monitoring the performance of the concrete could allow early detection of deterioration and 

hence assist in the implementation of appropriate repair strategies. The development of 

integrated monitoring systems for new reinforced concrete structures could reduce costs by 

allowing timely maintenance interventions and a more rational approach to the assessment of 

repair options and co-ordination and scheduling of inspection and maintenance programmes.  

Integrated monitoring systems and procedures thus have an important role to play in the total 

management of structures as this involves both whole-life costings and service life 

calculations. When data from monitoring systems are used with improved service-life 

prediction models additional savings in life cycle costs could result thus offsetting the up-

front installation costs of such monitoring systems. 
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2.0 BACKGROUND 

Deterioration in concrete comprises an initiation period and a propagation period. The 

initiation period is characterised by changes that occur within the concrete cover zone in 

response to the exposure environment and continues until a stage is reached when damage 

begins to propagate. The propagation period begins at a point in time defined when a 

particular event occurs (e.g. loss of steel passivity due to chloride ingress) and continues until 

a specified limit state is reached. The initiation and propagation stages of deterioration 

processes result from a complex interaction of physical, chemical and electrochemical 

phenomena. Prediction of the field performance of reinforced concrete thus requires 

numerous data inputs, in particular, the response of the concrete to the changing ambient 

environment in the vicinity of a specific structural element or part of a structure. Currently, 

the most predominant process associated with concrete deterioration is the ingress of water 

contaminated with chloride ions. Chloride ions come from deicing salt used on roads for 

winter maintenance purposes or from the marine environment where, for example, bridges 

span tidal estuaries. In addition, the extent of reinforcement corrosion, freeze thaw damage, 

sulphate attack and alkali-silica reaction all depend on the availability of moisture. 

Since it is the concrete cover-zone which protects the reinforcing steel from the external 

environment (i.e. surface 50mm or so), it is understandable that the protective properties of 

this zone are crucial in attempting to make predictions as to the in-service performance of the 

structure with regard to likely deterioration rates for a particular exposure condition and 

compliance with specified design life. The ability to continuously monitor the cover-zone 

would thus allow a more informed assessment of the current and future performance of 

reinforced concrete structures. The development of sensors and associated monitoring 

systems to assess cover-zone performance would thus form an important component in the 

inspection, assessment, maintenance and overall management of structures.  
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This paper presents developments in a monitoring system which could be exploited for 

intelligent monitoring of reinforced concrete highway structures. In this context, intelligent 

monitoring is defined as 'automated monitoring which explicitly provides information on 

current condition and deterioration rates to assist in predicting the remaining life of a 

component or structure' [2]. The focus of the work presented highlights the applicability of 

an embedded sensor array and associated remote monitoring system allowing interrogation 

from the office setting thereby providing virtually continuous, real-time data on the 

performance of cover-zone concrete exposed to natural environments.  

3.0 TESTING METHODOLOGY 

Regarding cover-zone properties, it is the permeation properties which are important and 

terms such as diffusivity (moisture and ionic), permeability (air and water) and sorptivity are 

used in this respect [3]. As a result, a number of surface-applied techniques have been 

developed and used to assess permeation properties [see, for example, 4-10] although their 

direct application in the field-environment has been limited as the moisture state of the 

concrete is unknown.  

Since the flow of water under a pressure gradient, hence permeability, or the movement of 

ions under a concentration gradient, hence diffusivity, is analogous to the flow of electrical 

current under a voltage gradient it is understandable that the electrical resistivity of the 

concrete (or, its reciprocal, conductivity) could be of practical significance in assessing the 

durability of concrete structures [11-13]. Furthermore, once passivity is lost, research 

indicates that the single most important factor affecting the corrosion rate of the reinforcing 

steel is the resistivity of the surrounding concrete [14-18].  
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4.0 REMOTE INTERROGATION AND FIELD MONITORING PROGRAMME 

4.1 Electrical Measurements 

The Authors have utilized a multi-electrode array [19] which can be embedded within the 

cover-zone to allow monitoring of the spatial distribution of electrical resistance; such 

measurements can be correlated with water and ionic movement within the surface region 

[20, 21]. The array also has the facility to monitor temperature distribution through the cover 

region. In summary, the array comprises a series of electrode pairs mounted on a PVC, T-

shaped former, with the former being secured onto two steel bars as shown in Fig. 1. These 

bars allow attachment of the array to reinforcement and their length can be tailored to suit the 

reinforcement detailing; the bars are electrically isolated from the steel reinforcement at the 

points of contact. Each electrode on the array comprises a stainless steel pin sleeved to 

expose a 5mm tip; in each electrode pair the pins had a (horizontal) centre to centre spacing 

of 5mm. The pairs of electrodes were positioned at 5, 10, 15, 20, 30, 40 and 50 from the base 

of the former (Fig. 1). Four thermistors are also mounted on the former and positioned at 10, 

20, 30 and 40mm from the concrete surface to enable temperature measurement. Prior to 

installation, the electrodes on the array are calibrated in solutions of known resistivity thereby 

enabling the measured resistance, R (in ohms), to be converted to resistivity, ρ (in ohm-cm), 

or conductivity, σ (in Siemens/cm, S/cm), hence, 

 � �
�

�
�  ��   ohm-cm [1] 

where k is the calibration factor for the array which was 1.25cm ±5% and represented an 

averaged value over the electrode pairs.  

Electrical resistance measurements were obtained using an auto-ranging logger which 

measured the resistance of the concrete between each electrode pair using an a.c. voltage of 

amplitude 1.0V at a fixed frequency of 1kHz. Previous studies indicated that the chosen 
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operating voltage and frequency would ensure electrode polarisation effects were minimised 

[22]. Thermistor measurements were also acquired using the same system. The logger served 

a dual purpose as it also acted as the system controller, further details of which are presented 

below. 

4.2 Materials and Specimens 

In the current trial work, concrete specimens were exposed to a marine environment to 

include the spray, tidal and submerged zones. Concrete mixes were chosen to satisfy the 

requirements for all exposure conditions specified in EN 206-1:2000 [23] and are presented 

in Table 1. Dredged river gravel and matching fine aggregate were used; the binders 

comprised CEM I 42.5N cement (Portland cement to EN197-1:2000); CEM I cement blended 

with ground granulated blast-furnace slag (GGBS to EN15167-1:2006); and CEM I cement 

blended with fly ash (EN 450-1:2005). Specimens were 300×300×200mm (thick) slabs, with 

the working face cast against plywood formwork. The array, similar to that described above, 

was placed at the plan centre of each slab. On demoulding, the samples were wrapped with 

damp hessian and polythene for a period of 7-days. All surfaces, apart from the surface cast 

against the formwork which was the exposed working surface, were then sealed with several 

coats of an epoxy-based paint to ensure 1-dimensional moisture and ionic movement. Cabling 

from the array was colour coded and taken into a watertight glass reinforced plastic (grp) 

enclosure placed in the face opposite to the working face; a 37 pin, multi-pole female D-

connector was used to terminate all wires. The seal on the lid of the grp box had been 

pressure tested to 10 bar to ensure watertightness under hydrostatic head. A schematic 

diagram is presented in Fig. 2(a); Fig 2(b) displays a slab with the lid removed to show the 

grp enclosure and 37-pin, D-connector. 



8 

 

Eighteen (18) specimens of each mix were transported and placed at a marine exposure site 

on the Dornoch Firth (Scotland) (Fig. 3(a)) and secured in galvanised steel frames (Fig. 3(b)); 

six specimens/mix were positioned at three exposure environments [23], 

(i) above high-water-level in the airborne spray zone; classed as XS1 exposure; 

(ii) just below high-water-level in the tidal/splash zone; classed as XS3 exposure; and, 

(iii) below mid-tide level; classified as the submerged zone; XS2 exposure. 

4.3 Remote monitoring of cover-zone response 

During the early stages of the study, site visits were required with measurements on the 

specimens recorded manually (Fig. 3(b)), however, due to the remoteness of the site, data 

collection was erratic. Clearly, in order to gain a more informed understanding as to how the 

cover-zone concrete is performing and its response to changing environmental conditions, the 

periodicity of data collection needed to be increased. As a consequence, the authors 

developed a system to allow remote interrogation of the specimens thereby providing 

virtually a continuous feedback of site data thereby eliminating the need for site visits. This 

system has been under trial since November 2009  

In the current trial, a total of six samples were hard-wired back to the interrogation system 

(describe below) via individual multi-core cables: three samples, one of each mix, at the XS2 

environment and a corresponding number at XS3 environment. In summary, 37-pin, male D-

connectors were secured at the ends of the connecting cable – one end connected to the 

interrogation system and the other end connected to the female D-connector on the sample. 

The entire male-female connection (Fig. 2(b)) at the sample end was sealed in the grp box by 

flooding the box with an epoxy-based potting compound. 

The interrogation facility at the exposure site comprises two watertight enclosures (Fig. 4(a)) 

secured to a concrete pier-stem, the latter forming part of another related research programme 
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[24]. One enclosure contains a multiplexing unit (Fig. 4(b)), the other contains the controller 

and resistance measurement circuitry (Fig. 4(c)). The multiplexing unit and controller are 

permanently connected. The cabling from the embedded arrays was connected to the 

multiplexing unit in Fig. 4(b), with a total of six samples connected to the unit in this trial. 

The communications interface with the controller is provided by a modem using a dial-up 

approach and a PC mounted software utility to establish a data connection to the modem, 

effectively creating a transparent link between the office-based PC and the serial port on the 

site-based system controller. Data are recovered in the same way as a direct RS232 

connection using standard ASCII commands via the PC's modem. The controller is accessed 

via the mobile telephone network (Fig. 4(d)) and the entire system is powered by a battery 

which is trickle-charged via a solar panel (Fig. 4(d)). The time interval between measurement 

cycles is configured remotely from the office and, in this current trial, is set on a 12 hour 

cycle.  

During a measurement cycle, cover-zone resistance and thermistor data are recorded for all 

embedded arrays, with each array returning seven resistance and four thermistor 

measurements which are subsequently stored by the controller. The systems then sleeps until 

the next measurement sequence is triggered by the controller. By operating on a wake/sleep 

mode, the overall power consumption is reduced by drawing minimal current between 

logging events. In order for the modem to answer calls, it must be powered continuously but 

only draws about 10% of full-power when not actively communicating. The data carrier 

detect line on the modem serial port is used to wake-up the controller when an incoming data 

connection is detected i.e. the system is interrogated from the office. The data stored by the 

controller can be accessed and downloaded at any time. If the storage capacity of the 

controller is exceeded a warning is returned to the office. All the measurements are returned 



10 

 

from site as an Excel
®

 spreadsheet which allows ease of data manipulation and is discussed 

below. 

5.0 RESULTS AND DISCUSSION 

This section presents data taken over the 150-day period after installation to highlight data 

handling and processing protocols. Due to the considerable amount of data collected, only 

typical measurements are presented for illustrative purposes. 

5.1 Resistivity Measurements 

Figs. 5(a)-(c) present the variation in cover-zone resistivity (in kohm-cm) for the three 

concrete mixes at XS2 environment (i.e. below mid tide level) over the initial 150-day period 

after installation of the remote interrogation system. Over the period presented (November–

March), it is clear that, 

(i) the resistivity of the samples with replacement materials (Figs 5(b) and (c)) is 

significantly greater than that of the samples with plain Portland cement binder (Fig. 

5(a)). It is well known that these materials produce in a refinement in the 

microstructure/pore-structure which would result in a higher resistivity as shown by the 

data; however, detailed discussion of these resistivity measurements is outwith the scope 

of this paper. 

(ii) the resistivity for the samples fluctuates markedly over the test period and it is evident 

that these fluctuations occur at similar times in all concrete mixes. 

Regarding (ii) above, since electrical conduction through concrete will be dominated by ionic 

conduction effects via the continuous pore network between the electrodes it will, as a 

consequence, be temperature dependent [25, 26]. Whereas in the laboratory ambient 

temperature can be controlled, this is not the case for concrete exposed to the natural 
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environment where the temperature can vary markedly. The discussion below outlines a 

protocol to standardise in-situ resistivity measurements to a reference temperature. 

5.2 Cover-Zone Temperature 

Thermistor measurements were converted to temperature using the Steinhart-Hart equation, 

 T = [A + BlnR + C(lnR)
3
]

-1
 - 273.15 (2) 

where R is the measured resistance of the thermistor (ohms); T is the temperature (ºC); A, B 

and C are coefficients which depend on the type of thermistor, and ln is the natural logarithm. 

For the thermistors used in the current work, A, B and C were determined as, respectively, 

1.28×10
-3

K
-1

, 2.36×10
-4

K
-1

 and 9.31×10
-8

K
-1

. 

Fig. 6 displays the variation in mean cover-zone temperature (determined from the four 

thermistor values) for the concrete mixes presented in Fig. 5. It is apparent that the resistivity 

fluctuates in sympathy with the changing temperature and it is important to distinguish 

between changes in resistivity due to temperature effects, and changes in resistivity due ionic 

ingress, changing levels of moisture content or hydration effects.  

An Arrhenius relationship is used to model the influence of temperature on resistivity viz, 

 













=
kTgR

aE

oeρρ  (3) 

where ρ is the resistivity (kohm-cm); Tk is the absolute temperature (K); ρo is the pre-

exponential constant (kohm-cm); Rg is the gas constant (8.3141×10
-3

kJ/mole/K) and Ea is the 

activation energy for conduction processes in concrete (kJ/mole). Now, if ρx and ρy are the 

resistivities at temperatures Tk,x and Tk,y , respectively, then, from equation (3) above, 

 












−

=
y,kT

1

x,kT

1

gR

aE

yx eρρ  (4) 
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From equation (4), a value of resistivity, ρy, recorded at a temperature Tk,y could then be used 

to obtain an equivalent resistivity, ρx, of the material a temperature, Tk,x, through a 

knowledge of the Ea/Rg ratio for the conduction process. This formalism enables 

measurements to be standardised to a reference temperature thereby removing the influence 

of temperature on electrical resistivity. In the current work, the reference temperature (Tk,x) is 

taken as 25ºC (298.15K). 

4.3 Evaluation of Ea/Rg from In-situ measurements 

The ratio Ea/Rg for the concrete between each pair of electrodes on the array can be obtained 

from the in-situ measurements and allows evaluation of this parameter for a particular 

concrete mix and electrode pair. Equation (3) can be written, 

 �	� � �	�
 �
�

����
 (5) 

hence plot of lnρ versus 1/Tk will be a straight line of slope Ea/Rg . This value is then used in 

equation (4) to standardise the resistivity values to 25ºC. Using in-situ, site measurements are 

more relevant that determination of this value form controlled laboratory tests.  

As way of illustration, Fig. 7 presents the resistivity values in Fig 5(a) for the CEM I concrete 

mix plotted against the mean cover-zone temperature in the format of equation (5) for data 

obtained over the initial 150-days. The Ea/Rg ratio (slope) obtained from these curves, and 

calculated activation energy (Ea) at each electrode pair, are presented in Table 2; for 

comparison, the respective values obtained for the other mixes are presented.  

Having obtained values for the Ea/Rg ratio, the measured resistivity can now be standardised 

to the reference temperature using equation (4) above at each electrode pair on the array. Figs 

8(a)-(c) display the measurements standardised to the reference temperature of 25ºC for these 

mixes. As the resistivity remains relatively constant over the test period, the fluctuations in 
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resistivity measurements displayed in Fig. 5 are entirely due to changes in temperature. It also 

indicates that the Arrhenius approach is adequate in explaining the influence of temperature 

on electrical resistivity measurements and could be used as a procedure for standardizing 

field data. 

5.0 CONCLUDING COMMENTS 

The electrical resistivity of concrete is now recognised as an important parameter which 

could be developed to assess concrete performance hence durability. The work presented has 

developed a methodology for evaluating this parameter utilizing an embedded electrode array 

together with a remote interrogation system to allow access to data from an office setting. 

Further, the measurement of the electrical resistivity at discrete points allows an integrated 

assessment of both spatial and temporal change in cover-zone performance. 

Data handling and processing procedures are detailed; specifically, the influence of 

temperature on field resistivity measurements is highlighted and a standardizing procedure 

presented which utilized an Arrhenius relationship between resistivity and temperature. An 

important aspect of the procedure entails the use if field data to evaluate the activation energy 

for a particular concrete and electrode pair. This ensures that temperature effects can be 

effectively removed from field measurements. 
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Mix Designation 

 CEM I 42.5N CEM III/A CEM II/B-V 

OPC 

GGBS 

Fly Ash 

(kg/m
3 ) 

460 

- 

 

270 

180 

- 

 

370 

- 

160 

 

20mm 

10mm 

Fine (<4mm) 

(kg/m
3
) 

700 

350 

700 

700 

375 

745 

 

695 

345 

635 

Water-Reducer 

(l/m
3
) 

1.84 3.60 2.65 

w/b 0.4 0.44 0.39 

F28 (MPa) 70 53 58 

 

Table 1   Concrete mixes used in site trials (w/b = water-binder ratio). 
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Depth 

(mm) 

CEM I 42.5N CEM III/A CEM II/B-V 

Ea/Rg 

(K) 

Ea 

(kJ/mole) 

Ea/Rg 

(K) 

Ea 

(kJ/mole) 

Ea/Rg 

(K) 

Ea 

(kJ/mole) 

5 3554 29.55 + + 3753 31.20 

10 4027 33.48 4134 34.37 3651 30.35 

15 3644 30.30 4040 33.59 3790 31.51 

20 4167 34.64 4053 33.70 3725 30.97 

30 4113 34.20 4012 33.36 3551 29.52 

40 4160 34.59 3915 32.55 3817 31.73 

50 4106 34.14 3920 32.59 3011 25.03 

 

 

Table 2  Ea/Rg  ratio determined from the equation (5) and Fig. 7; the activation energy 

Ea for electrical conduction processes is also presented. (+ data lost for 5mm 

depth). 
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CAPTIONS FOR FIGURES 

 

Fig. 1 The multi-electrode array. 

Fig. 2 (a) Schematic diagram of embedded array and cable termination; and, (b) 

showing grp enclosure and lead termination at a 37-pin D-connector. 

Fig. 3 (a) Location of marine exposure site, and (b) slabs secured in galvanised steel 

frames with the lid on the grp enclosures removed for (manual) data collection 

purposes. 

Fig. 4 (a) Watertight enclosures for monitoring and telephony equipment; (b) 

termination of cabling from sensors at multiplexing unit; (c) combined system 

controller/measuring unit, battery and trickle-charger from solar panel; and (d) 

solar panel and aerial for wireless connection. 

Fig. 5 Temporal and spatial variation in resistivity for (a) CEM I concrete mix (same 

legend for all Figures); (b) CEM III/A concrete mix (Note: data lost for 5mm 

depth), and (c) CEM II/B-V. 

Fig. 6 Variation in (mean) cover-zone temperature for concrete mixes. 

Fig. 7 Data in Fig. 5(a) plotted in Arrhenius format. 

Fig. 8 Resistivity data in Fig. 5 standardised to a reference temperature of 25ºC using 

Ea/Rg values in Table 2 for (a) CEM I concrete mix; (b) CEM III/A concrete 

mix, and (c) CEM II/B-V (50mm depth has been omitted from (c) as it is 

considerably greater that 30kohm-cm). 
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