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Optimising design parameters of

enzyme-channelling biosensors
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Summary. Two mathematical models for an electrochemical biosensor are pro-
posed and compared with a view to determining the ratio of two immobilized en-
zymes which maximizes the amperometric signal amplitude.

Key words: Electrochemical biosensors, enzyme-substrate kinetics, diffusion
equations, nonlinear boundary conditions, equilibrium analysis.

1 Introduction

Biosensors are devices in constant development due to their wide use in
biomedical diagnostics and environmental monitoring. Of particular interest
to developing electrochemical immunosensors are enzyme channelling systems,
where two enzymes are brought in close proximity to an electrode surface thus
facilitating the fast conversion of initial substrate to final product. Moreover,
cascade schemes, where an enzyme is catalytically linked to another can pro-
duce signal amplification and therefore increase the device sensitivity.

This work investigates a biosensor employing the enzymes glucose oxidase
(GOX) and horseradish peroxidase (HRP), immobilized on an electrode mod-
ified with a conducting polymer. After the immobilisation, the electrode is in-
serted in a flow-cell for an amperometric flow-injection analysis where glucose
solutions at different concentrations are passed over the electrode and the sig-
nals recorded (see [KZZ99]). A mathematical model was proposed in [MKA07]
and numerical simulations were carried out in order to determine the ratio of
the two enzymes which maximizes current amplitude. In this paper, the op-
timal ratio of HRP and GOX, ξmax, is further investigated as a function of
the kinetic rate constants and two different parameter régimes are identified,
characterized by different qualitative behaviour of ξmax. A simplified model
is also introduced, which allows for an explicit formula for ξmax to be derived
and compared with the numerical simulations of the previous model.
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2 Spatially extended model

The flow effects are not explicitly modelled and the existence of the convec-
tive zone (where the glucose concentration is constant) is only reflected in
the boundary conditions imposed at the top of the diffusion layer. The im-
mobilized enzymes form a monolayer so all reactions can be assumed to take
place at the lower boundary of the diffusion domain. The equations are one-
dimensional, where the variable x measures the distance from the electrode.

A cascade reaction takes place at the electrode. Glucose oxidase cataly-
ses the oxidation of glucose to gluconic acid, with production of hydrogen
peroxide (H2O2). HRP is oxidised by H2O2 and then subsequently reduced
by electrons provided by the electrode. We model these reactions by a stan-
dard Michaelis–Menten kinetics scheme, (1), and we use the notation E1(t) =
first enzyme (GOX) concentration, E2(t) = second enzyme (HRP) concentra-
tion, S1(x, t) = first substrate (glucose), S2(x, t) = second substrate (H2O2),
C1(t) = first complex, C2(t) = second complex, P (x, t) = final product,

E1 + S1

k1

⇄
k
−1

C1

k2

−→E1 + S2, E2 + S2

k3

⇄
k
−3

C2

k4

−→E2 + P. (1)

We now write down the differential equations governing the behaviour
of the relevant chemical species. The two substrates, glucose and hydrogen
peroxide are free to diffuse throughout the domain, hence

∂Si

∂t
= Di

∂2Si

∂x2
, i = 1, 2, 0 ≤ x ≤ L, t ≥ 0 (2)

S1(L, t) = S0; S2(L, t) = 0, (3)

and the following boundary conditions hold on x = 0

D1

∂S1

∂x
(0, t) = k1E1S1 − k−1C1, (4)

D2

∂S2

∂x
(0, t) = k3E2S2 − (k2 + k−3)C1, (5)

dE1

dt
= −k1E1S1 + (k−1 + k2)C1,

dE2

dt
= −k3E2S2 + (k4 + k−3)C2, (6)

dC1

dt
= k1E1S1 − (k2 + k−1)C1,

dC2

dt
= k3E2S2 − (k4 + k−3)C2, (7)

dP

dt
= k4C2. (8)

The initial conditions are

S1(x, 0) = S0(x), S2(x, 0) = 0, P (x, 0) = 0,

E1(0) =
ξe

1 + ξ
, E2(0) =

e

1 + ξ
, C1(0) = 0, C2(0) = 0, (9)
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where e is the total amount of enzyme present on the electrode and S0(x) = S0

if x = L and 0 otherwise. The purpose of this study is to determine ξ, the
ratio of GOX to HRP on the electrode, which maximizes the signal at the
electrode. The measured current is given by the electron transfer rate, which
can be assumed proportional to the rate of formation of product P from (8).

3 Simplified model

In order to obtain an analytical expression for the dependence of the opti-
mal enzyme ratio on other system parameters, we consider a simplified model
which focuses on the kinetic surface processes, while neglecting transport of
chemical species to and from the electrode. The main limitation in this case
is failing to model the possibility of H2O2 to diffuse away from the electrode
therefore assuming that all the product from the first reaction is readily avail-
able for the second.

With the assumption that the concentration of glucose is maintained con-
stant at the reaction point, S1(t) = S0 for all t ≥ 0, the model in the previous
section now reduces to the following set of ordinary differential equations

dC1

dt
= − (k1S0 + k−1 + k2) C1 +

ξek1

1 + ξ
S0 (10)

dC2

dt
=

ek3

1 + ξ
S2 − k3S2C2 − (k−3 + k4)C2 (11)

dS2

dt
= k2C1 + k−3C2 −

ek3

1 + ξ
S2 + k3S2C2, (12)

with the initial conditions C1(0) = C2(0) = S2(0) = 0. There is a unique
equilibrium point at (C∗

1
, C∗

2
, S∗

2
), where

C∗

1
=

ξe

1 + ξ

k1S0

k1S0 + k−1 + k2

, C∗

2
=

ξe

1 + ξ

k1k2S0

k4 (k1S0 + k−1 + k2)
,

S∗

2
=

ξk1k2(k−3 + k4)S0

(k1k4S0 + k−1k4 + k2k4 − ξk1k2S0) k3

.

The necessary condition for this equilibrium to be stable and positive is

ξk1k2S0 < k4 (k1S0 + k−1 + k2)

and so, the value of ξ which yields the highest C∗

2
value is

ξmax =
k4

k2

(

1 +
K1

M

S0

)

(13)

where K1

M
= (k−1 + k2)/k1 is the Michaelis constant of the first reaction.

Hence, the simplified model shows that the optimal GOX:HRP ratio depends
on the ratio of the turnover rates for the two consecutive reactions, as well as
the number 1 + K1

M
/S0 (the factor by which the velocity of the first reaction

differs from its maximal velocity).
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4 Numerical simulations and discussions

Numerical simulations were carried out to establish how different kinetic pa-
rameters affect the current magnitude and optimal enzyme ratio. The system
of equations (2)–(9) were integrated numerically using a standard finite dif-
ference method. In Fig. 1 we plot the steady state values of dP

dt
, a measure

of the amperometric signal, for different values of the molar ratio ξ, reaction
speed ratio k4/k2 and various orders of magnitude of K1

M
/S0. The optimal

GOX:HRP ratio, ξmax, is then plotted in Fig. 2 as a function of k4/k2.

Fig. 1. Dependence of current on ξ (electrode GOX:HRP ratio). From bottom to
top, the curves correspond to k4/k2 = 0.1, 0.5, 0.9, 2.1, 4.1 for K1

M/S0 = 0.001 and
k4/k2 = 0.1, 0.18, 0.26, 0.5, 4 for K1

M/S0 = 5.

Fig. 2. Optimal GOX:HRP ratio as a function of k4/k2. Comparison of simplified
model (straight line) and spatially extended model (curve)

When K1

M
/S0 ≪ 1 (see Fig. 1(a)), the signal amplitude will increase with

ξ, reach a maximum and then decrease. This is due to the fact that when
the concentration of GOX increases, more H2O2 is produced. However, with
increased production of hydrogen peroxide (as well as the reduced amount
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of HRP at higher values of ξ), there is a point where diffusion effects will
dominate the second reaction and the resulting signal will decrease. This decay
is faster when the second reaction is slow (small k4) which explains why the
lower curves in Fig. 1(a) are steeper than the higher ones. As a consequence,
for high k4, the optimal enzyme ratio is less relevant and the signal is not very
sensitive to the concentrations of immobilized enzymes. For large K1

M
/S0 in

Fig. 1(b) the optimal ξ value seems to be the same for most values of k4.
This can be explained by noting that since GOX is already idle, due to a
relatively low amount of substrate, increasing its concentration will not result
in increased production of hydrogen peroxide and will therefore not improve
the efficiency of the system, regardless of how fast the second reaction is.

The main conclusion of these numerical simulations is the existence of two
parameter régimes, K1

M
/S0 ≪ 1 and K1

M
/S0 = O(1), characterized by differ-

ent qualitative behaviour of the current amplitude and optimal enzyme ratio,
ξmax, as functions of the kinetic system variables. Moreover, for K1

M
/S0 ≪ 1,

there is good agreement between the one-point model and the spatially ex-
tended model, as the optimal ratio increases almost linearly with k4/k2. The
slight divergence of results observed in Fig. 2(a) is only apparent since, for
high values of k4/k2 it is more appropriate to speak of optimal ξ intervals,
rather than values. A rigorous asymptotic study of these parameter regions
will be published separately.

Mathematical modelling is an excellent tool for biosensor design as it pro-
vides a theoretical framework through which to explore all the variables of
a system without immediate recourse to experiment. For example, the high
substrate concentration régime, K1

M
/S0 ≪ 1, is more difficult to achieve ex-

perimentally due to limitations imposed by the physical solubility of glucose.
In addition, our model can also assist in establishing values for constants that
are difficult to establish experimentally. For instance, although an enzyme
may possess a known ideal kinetic rate constant from solution-phase studies,
this may change significantly when the enzyme is deposited on a surface.
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