2012

Singular Solutions of Cross-coupled EPDiff Equations: Waltzing Peakons and Compacton Pairs

Colin Cotter
Imperial College London

Darryl Holm
Imperial College London

Rossen Ivanov
Technological University Dublin, rossen.ivanov@tudublin.ie

James Percival
Imperial College London

Follow this and additional works at: https://arrow.tudublin.ie/scschmatcon

Part of the Dynamic Systems Commons, Non-linear Dynamics Commons, Numerical Analysis and Computation Commons, Ordinary Differential Equations and Applied Dynamics Commons, and the Partial Differential Equations Commons

Recommended Citation

1. EPDiff equations. Let us define an one-parametric group of diffeomorphisms of \(\mathbb{R}^n \) with elements that satisfy

\[
\frac{\partial X(x, t)}{\partial t} = u(X(x, t), t), \quad X(x, 0) = x,
\]

or \(\dot{X} = u \circ X \) with \(x \in \mathbb{R}^n, \ t \in \mathbb{R}, \ X \in \text{Diff}(\mathbb{R}^n) \). Let us consider motion in \(\mathbb{R}^n \) with a velocity field \(u = \dot{X} \circ X^{-1} \); \(u(x, t): \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \) and define a momentum variable \(m = Qu \) for some (inertia) operator \(Q \) (for example the Helmholtz operator \(Q = 1 - \partial_t \partial_t = 1 - \Delta \), where \(\partial_t = \frac{\partial}{\partial x^t} \)). Let us further define a Lagrangian

\[
L[u] = \frac{1}{2} \int m \cdot u \, d^n x.
\]

Since the velocity \(u = u^i \partial_i \in \text{Vect}(\mathbb{R}^n) \) is a vector field, \(m = m_i dx^i \otimes d^n x \) is a \(n + 1 \)-form density, we have a natural right-invariant bilinear form

\[
\langle m, u \rangle = \int m \cdot u \, d^n x.
\]

The Euler-Poincaré equation for the geodesic motion in this case is \([5, 6]\)

\[
\frac{d}{dt} \frac{\delta L}{\delta u} + \text{ad}_u^* \frac{\delta L}{\delta u} = 0, \quad u = G \ast m,
\]

where \(G \) is the Green function for the operator \(Q \). The corresponding Hamiltonian is

\[
H[m] = \langle m, u \rangle - L[u] = \frac{1}{2} \int m \cdot G \ast m \, d^n x,
\]

and the equation in Hamiltonian form \((u = \frac{\delta H}{\delta m}) \) is

\[
\frac{\partial m}{\partial t} = -\text{ad}_m^* \frac{\delta H}{\delta m} m.
\]
The left Lie algebra of vector fields is \([u, v] = -(u^k(\partial_k v^p) - v^k(\partial_k u^p))\partial_p\). For an arbitrary vector field \(v\) one can write [6]
\[
\langle ad_u m, v \rangle = \langle m, ad_u v \rangle = \langle m, [u, v] \rangle = -\int m(x) (u^k(\partial_k v^p) - v^k(\partial_k u^p))d^n x.
\]
and therefore (6) has the form, known as EPDiff equation:

\[
\frac{\partial m}{\partial t} + (u \cdot \nabla)m + m \cdot \partial_p u + m_p \text{div} u = 0.
\] (7)

Due to the invariance of the Hamiltonian under the right action of the group Diff(\(R^n\)) there is a momentum conservation law according to the Noether’s Theorem (which can be verified directly with (1)):

\[
m_i(X(x, t), t)\partial_j X_i(x, t) \text{det} \left(\frac{\partial X}{\partial x} \right) = m_j(x, 0),
\] (8)

where \(\frac{\partial X}{\partial x}\) is the Jacobian matrix.

The Lie-Poisson bracket is

\[
\{A, B\}(m) = \langle m, \left[\frac{\delta A}{\delta m_k}, \frac{\delta B}{\delta m_i} \right] \rangle = -\int m(x) \left(\frac{\delta A}{\delta m_k} \frac{\partial \delta B}{\partial m_i} - \frac{\delta B}{\delta m_k} \frac{\partial \delta A}{\partial m_i} \right) d^n x.
\] (9)

When \(n = 1\) the algebra (9), associated with the bracket is the algebra of vector fields on the circle. This algebra admits a generalization with a central extension, which is the famous Virasoro algebra [6, 8]. In two dimensions, \(n = 2\), the algebra, associated with the bracket is the algebra of vector fields on a torus [1].

2. Singular solutions. The Camassa-Holm (CH) equation [2] can be considered as a member of the family of EPDiff equations in \(n = 1\) dimension [5]:

\[
m_t + 2u_x m + um_x = 0, \quad m = u - u_{xx}.
\] (10)

The CH equation possesses the so-called \(N\)-peakon solution in the form

\[
u(x, t) = \frac{1}{2} \sum_{i=1}^{N} p_i(t) \exp(-|x - x_i(t)|),
\] (11)

provided \(p_i\) and \(x_i\) evolve according to the following system of ordinary differential equations:

\[
\dot{x}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial x_i}.
\] (12)
where the Hamiltonian is $H = \frac{1}{4} \sum_{i,j=1}^{N} p_i p_j \exp(-|x_i - x_j|)$. The momentum is singular,

$$m(x, t) = \sum_{i=1}^{N} p_i(t) \delta(x - x_i(t)), \quad (13)$$

it defines the so-called singular momentum map, [5]. CH is an integrable equation and is very well studied - see e.g. the review article [4].

The singular momentum map (13) suggests the following measure-valued singular momentum solution Ansatz for the $n-$dimensional solutions of the EPDiff equation:

$$m(x, t) = \sum_{a=1}^{N} \int \mathbf{P}^a(s, t) \delta(x - \mathbf{Q}^a(s, t)) \, ds.$$

These singular momentum solutions, called “diffeons,” [7] are vector density functions supported in \mathbb{R}^n on a set of N surfaces (or curves) of codimension $(n - k)$ for $s \in \mathbb{R}^k$ with $k < n$. They may, for example, be supported on sets of points (vector peakons, $k = 0$), one-dimensional filaments (strings, $k = 1$), or two-dimensional surfaces (sheets, $k = 2$) in three dimensions.

3. Cross coupled CH equations and waltzing peakons. The Lagrangian for cross coupled CH (CCCH) is [3]

$$l(u, v) = \int_{\mathbb{R}} (uv + u_x v_x) \, dx.$$

The corresponding two-component EP equations in 1D on \mathbb{R} are

$$\partial_t m = -a d_{h/\delta h m} m = -(vm)_x - mv_x \quad \text{with} \quad v := \frac{\delta h}{\delta m} = K \ast n,$$

$$\partial_t n = -a d_{h/\delta h n} n = -(un)_x - nu_x \quad \text{with} \quad u := \frac{\delta h}{\delta n} = K \ast m,$$

with $K(x, y) = \frac{1}{2} e^{-|x-y|}$ being the Green function of the Helmholtz operator. The CCCH Hamiltonian is

$$h(n, m) = \int_{\mathbb{R}} n K \ast m \, dx = \int_{\mathbb{R}} m K \ast n \, dx.$$

This Hamiltonian system has two-component singular momentum maps

$$m(x, t) = \sum_{a=1}^{M} m_a(t) \delta(x - q_a(t)), \quad n(x, t) = \sum_{b=1}^{N} n_b(t) \delta(x - r_b(t)).$$

The total momentum of CCCH is conserved, namely

$$\partial_t (u + v) + \partial_x (uv + K \ast (2uv + u_x v_x)) = 0.$$

3
4. Peakon solutions of the cross-flow equations. The CCCH equations are deformations of CH that support two different types of peakons, with velocities
\[u(x, t) = \frac{1}{2} \sum_{a=1}^{M} m_a(t) e^{-|x-q_a(t)|}, \quad v(x, t) = \frac{1}{2} \sum_{b=1}^{N} n_b(t) e^{-|x-r_b(t)|}, \] (14)
and momenta,
\[m(x, t) = \sum_{a=1}^{M} m_a(t) \delta(x - q_a(t)), \quad n(x, t) = \sum_{b=1}^{N} n_b(t) \delta(x - r_b(t)). \] (15)
The $2M+2N$ variables (q_a, m_a), $a = 1, \ldots, M$, and (r_b, n_b), $b = 1, \ldots, N$, are governed by the Hamilton’s canonical equations for the Hamiltonian function,
\[H = \frac{1}{2} \sum_{a,b=1}^{M,N} m_a(t)n_b(t)e^{-|q_a(t)-r_b(t)|}, \] (16)
for the positions of the peakons, and
\[\dot{m}_a(t) = -\frac{\partial H}{\partial q_a} = \frac{1}{2} m_a \sum_{b=1}^{N} n_b(t)e^{-|q_a(t) - r_b(t)|} = -m_a \frac{\partial v}{\partial x} \bigg|_{x=q_a}, \] (19)
\[\dot{n}_b(t) = -\frac{\partial H}{\partial r_b} = -\frac{1}{2} n_b \sum_{a=1}^{M} m_a(t)e^{-|q_a(t) - r_b(t)|} = -n_b \frac{\partial u}{\partial x} \bigg|_{x=r_b} \] (20)
for their canonical momenta. Conserved quantities include the energy H and the total momentum $\sum_a (m_a + n_a)$.

5. The coupled peakon pair. The simplest possible case is $M = N = 1$. Introducing the new variables $X = \frac{q + r}{2}$, $Y = q - r$, respectively the mean position of the peaks and their separation distance. The evolution equations in terms of the new variables are
\[\dot{X} = \frac{(m + n)}{4} e^{-|Y|}, \quad \dot{Y} = \frac{n - m}{2} e^{-|Y|}. \]
Thus we can define the behavior of the exponential function of the absolute separation of the peaks,
\[\frac{d}{dt} e^{\frac{|Y|}{2}} = \text{sgn}(Y) \frac{n - m}{2}, \] (21)
From (19) - (20)
\[\dot{m} = -\dot{n} = \text{sgn}(Y) \frac{mn}{2} e^{-|Y|} = \text{sgn}(Y)E, \]
where \(E = H|_{t=0} \) is the (constant) value of the Hamiltonian, that is to say the total energy of the coupled pair. Differentiating (21) again with respect to time gives
\[\frac{d^2}{dt^2} (e^{Y|}) = -\text{sgn}^2(Y)E + 2\delta(Y)(n - m)^2. \]
On integrating for a particular signature of \(Y|_{t=0} = Y_0 \neq 0 \),
\[e^{Y|} = -\frac{1}{2} m_0 n_0 e^{-|Y_0|} t^2 + \frac{1}{2} \text{sgn}(Y_0)(n_0 - m_0) t + e^{Y_0}, \]
where
\[m_0 = m|_{t=0}, \quad n_0 = n|_{t=0} \quad Y_0 = Y|_{t=0}. \]
If \(m_0 \) and \(n_0 \) have the same signature then eventually we will have \(|Y| = 0 \), regardless of the value of \(|Y_0| \). Thus, when \(m_0 \) and \(n_0 \) share the same signature the half period of their waltzing motion can be found by setting \(Y_0 = 0 \) and looking for when \(e^{Y|} \) attains unity, namely \(t = 2\frac{n_0 - m_0}{m_0 n_0} \).

It will be noted that at this time
\[m|_{t=2\frac{n_0 - m_0}{m_0 n_0}} = m_0 + m_0 n_0 \left(\frac{m_0 - n_0}{m_0 n_0} \right) = n_0, \]
and similarly
\[n|_{t=2\frac{n_0 - m_0}{m_0 n_0}} = m_0, \]
so that the two types of peakons do indeed exchange momentum amplitudes over a half cycle, see Fig. 1. The explicit solutions as well as other examples with waltzing peakons and compactons are given in [3].

6. Cross-coupled EPDiff in higher dimensions. The straightforward generalization to higher dimensions is
\[l = \int (u \cdot v + (\nabla u) \cdot (\nabla v)) \, d^n x, \]
\[\frac{dm}{dt} = -ad_{\delta t / \delta m} m = -v \cdot \nabla m - (\nabla v)^T \cdot m - m \text{ div } v, \quad m = u - \Delta u, \]
\[\frac{dn}{dt} = -ad_{\delta t / \delta n} n = -u \cdot \nabla n - (\nabla u)^T \cdot n - n \text{ div } u, \quad n = v - \Delta v. \]
Numerical studies in \(n = 2 \) dimensions show that the waltzing pairs also appear in higher dimensions. In the case with rotational symmetry the two concentric waves \(u \) and \(v \) have 'waltzing' fronts and also rotate with respect to each other.

Acknowledgements The work of R.I. is supported by the Science Foundation of Ireland (SFI), under Grant No. 09/RFP/MTH2144.
Figure 1: Plot showing velocity fields of a peakon-peakon pair with $m_0 = 5$, $n_0 = 0.5$, $l_0 = 0$ (solid lines). The dotted path indicates the subsequent path of the two peaks in the frame travelling at the particles mean velocity $\dot{X} = \frac{\partial z}{\partial t}$. For these initial conditions the total period for one orbit of the cycle is $T = 3.6$. Also shown is the form of the two peakons at subsequent times $t = 0.45 + 1.8n$, $n \in \mathbb{Z}$.

References

