A Systematic Study of the Effect of Silver on the Chelation of Formic Acid to a Titanium Precursor and the Resulting Effect on the Anatase to Rutile Transformation of TiO2

Nicholas Nolan
Technological University Dublin, nicholas.nolan@tudublin.ie

Michael Seery
Technological University Dublin, michael.seery@tudublin.ie

Steve Hinder
University of Surrey, S.Hinder@surrey.ac.uk

Linda Healy
Technological University Dublin, lindahealy1@gmail.com

Suresh Pillai
Technological University Dublin, suresh.pillai@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/cenresart
Part of the Materials Chemistry Commons, and the Physical Chemistry Commons

Recommended Citation

This Article is brought to you for free and open access by the Crest: Centre for Research in Engineering Surface Technology at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
A Systematic Study of the Effect of Silver on the Chelation of Formic Acid to a Titanium Precursor and the Resulting Effect on the Anatase to Rutile Transformation of TiO₂

Nicholas T. Nolan,§ Michael K. Seery,*† Michael J. Hinder,§ Linda F. Healy,† and Suresh C. Pillai*‡

School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, Centre for Research in Engineering Surface Technology, Focas Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, and The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, GU2 7XH, United Kingdom

Received: February 23, 2010; Revised Manuscript Received: May 17, 2010

Anatase to rutile transition in an unmodified synthetic titania usually occurs at a temperature range of 600—700 °C. Various methods such as addition of metallic and nonmetallic dopants and modifying the precursor have previously been reported to influence the anatase to rutile transition temperature. In the current study, the effect of addition of increasing amounts of silver to the extent of chelation of a formate group to a titanium precursor and the resulting effects on the transformation of anatase to rutile has been studied. The addition of silver (0, 1, 3, and 5 mol %) on the anatase to rutile transformation temperature has been systematically followed by Fourier transform infrared (FTIR), Raman, X-ray diffraction (XRD), differential scanning calorimetry, and X-ray photoelectron spectroscopy (XPS) studies. From the FTIR and Raman spectroscopy studies it was observed that the incorporation of silver caused a reduction in the intensity of the COO⁻ stretches indicating that the titanium formate bridging complex is becoming weaker in the presence of silver. XRD studies indicated an early rutile formation for the silver-doped samples. XRD of the samples calcined at 700 °C showed that 5 mol % Ag TiO₂ contained both anatase (46%) and rutile (54%), whereas the undoped sample primarily consists of anatase (95%). At 800 °C all silver doped samples converted to 100% rutile and the undoped TiO₂ consisted of both anatase (55%) and rutile (45%). XPS analysis showed that Ag⁰ and Ag₂O have been formed on the surface of the titanium formate complex without calcination (>100 °C) indicating that photo-oxidation has occurred. FTIR, Raman, and XPS studies confirmed that the presence of silver in the xerogel before calcination may be responsible for the reduction of the titanium formate bridge. It was concluded that the presence of silver (Ag₂O and Ag⁰) hindered bridging ligands, which resulted in a weakened titanium gel network. This structurally weakened gel network could easily be collapsed during calcination, and it favors an early rutile formation.

Introduction

Titanium dioxide semiconductor photocatalysis has attracted the attention of several researchers in the past decade due to its environmental applications such as air purification and water remediation.¹⁻¹⁰ Anatase, rutile, and brookite are the three polymorphs of TiO₂ and differ only in arrangement of their [TiO₆]²⁻ octahedra; anatase (tetragonal) consists of octahedrals sharing vertices; rutile (tetragonal) is connected by edges, and in brookite (orthorhombic) both edges and vertices are connected.¹¹⁻¹³ Rutile is found freely in nature, but all three can be synthetically prepared. Rutile is the thermodynamically stable phase, while anatase and brookite are both metastable, transferring to rutile under heat treatment at temperatures typically ranging between 600—700 °C.¹¹ Anatase is widely regarded as the most photocatalytically active of the three crystalline structures.¹³⁻¹⁵ Titanium dioxide is the most widely investigated photocatalyst because of its ease of preparation, availability, strong oxidizing power, non-toxicity, and long-term stability.⁷,¹⁶ However, because of its large band gap (3.2 eV for anatase), TiO₂ can only be activated upon irradiation with a photon of light <390 nm, limiting its use under solar irradiation.¹⁶⁻¹⁸ Because of this, researchers have been focusing their attention on ways to improve the photocatalytic efficiency of TiO₂ under irradiation with visible light (>400 nm).

Asahi et al. have reported nitrogen doped TiO₂ promoting photocatalytic activity up to λ = 520 nm claiming that the presence of nitrogen narrows the band gap of TiO₂ thus making it capable of performing visible light driven photocatalysis.¹⁹ However, Ihara et al. suggested that it is the oxygen vacancies that contributed to the visible light activity, and the doped nitrogen only enhanced the stabilization of these oxygen vacancies.²⁰ They also confirmed this role of oxygen vacancies in plasma-treated TiO₂ photocatalysts.²⁰ In addition the structural oxygen vacancies causing visible light photocatalytic activity was also reported by Martyanov et al.²¹ Further studies with nonmetal dopants, S,²² C,²³ I,²⁴ Br, and Cl,²⁸ also showed red shifts in band gap edge of TiO₂.

Transition metal doping has also given promising results for visible light activated TiO₂ by extending the absorption spectra into the visible region. Much research has focused on the transition metal ion Fe³⁺,²⁵⁻²⁹ whereby its incorporation into the crystal lattice results in the formation of new energy levels.

10.1021/jp1016054 © XXXX American Chemical Society
between the valence band and the conduction band.30 Deposition of noble metals Ag, Au, Pt, and Pd on the surface of TiO$_2$ enhances the photocatalytic efficiency by acting as an electron trap, promoting interfacial charge transfer and therefore delaying recombination of the electron–hole pair.27,31–34

Many researchers have focused on modifying TiO$_2$ with Ag. For example, Chao et al. reported the effect of Ag doping on the phase transformation and grain growth of sol–gel TiO$_2$ powder.35 Kuo et al. showed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) that silver on TiO$_2$ surface coatings was easily oxidized into silver oxide (Ag$_2$O) and that the addition of silver causes a reduction in photoluminescence (PL) intensity as found by PL spectroscopy.36 This group previously showed enhanced visible light photocatalysis with Ag modified TiO$_2$.37 Choi et al. controlled the ratio of anatase and rutile phases through the addition of surfactants.38

The effect of precursor chelation on anatase to rutile transition has also been reported previously. Acetic acid,39 formic acid,40 urea,33 sulfuric acid,42 and ammonium sulfate43 have previously been employed to study the effect of a chelating agent on the anatase to rutile transformation in the TiO$_2$ photocatalyst. However, there are no systematic studies on the effect of silver doping on chelation and anatase to rutile transformation.

The current paper reports a systematic study on how the addition of increasing amounts of silver affects the extent of chelation of a formate group to a titanium precursor and how the resulting reduction in formate chelation causes early transformation of anatase to rutile. The effect of the addition of silver on structural changes is investigated by characterizing the sample in its amorphous state (i.e., before it is calcined) with XPS, IR, and Raman studies. XRD was used to determine the crystalline phase of the calcined samples, and differential scanning calorimetry (DSC) was employed to examine the thermal events of the sample through heat treatment. The effect of silver on the electronic transitions of crystalline TiO$_2$ is shown through UV–vis and PL spectroscopy. To the best of the authors’ knowledge this is the first paper to report the effect of silver on a titanium formate complex before calcination and the subsequent effects of the presence of silver upon calcination.

Experimental Section

Titanium tetraisopropoxide (TTIP) (97%), formic acid (98%), and silver nitrate (99%) were purchased from Aldrich and used without further purification. Deionized water was used in all experimental preparations. The samples were prepared by a modified sol–gel route.30 Titanium tetraisopropoxide (36 mL) was added to formic acid (19 mL) under stirring. Water (9 mL) was added, and a thick paste was formed. The TTIP, formic acid, and water were used in 1:4:4 molar ratios. The mixture was stirred for 2 h and filtered, and the filtrate was dried in an oven at 100 °C for 12 h. To prepare silver doped titania, the above procedure was repeated, including silver nitrate (1, 3, and 5 mol %) in the water before it was added to the TTIP/formic acid mixture. The dried powders were calcined at 300, 500, 700, and 900 °C for 2 h at a ramp rate of 3 °C/min. A Siemens D 500 X-ray diffractometer, with a diffraction angle range 2θ = 20–80° using Cu Kα radiation, was used to collect XRD diffractograms. The mass fraction of rutile (X_R) in the calcined samples was calculated using the Spurr equation44 (eq 1)

$$X_R = \frac{1}{1 + 0.8(I_A/I_R)} \quad (1)$$

where I_A is the main intensity of anatase (101) peak and I_R is the main intensity of rutile (110) peak.

The crystallite size (T) was estimated using the Scherrer equation37 (eq 2)

$$T = \frac{0.92}{\beta \cos \theta} \quad (2)$$

where T is the crystalline size, λ is the X-ray wavelength, θ is the Bragg angle, and β is the line broadening.

A Perkin-Elmer Lambda 900 UV–vis absorption spectrophotometer was used to record absorption and diffuse reflectance spectra; samples were mixed in KBr (1:20 sample/KBr) and pressed into a tablet; a KBr tablet made under the same conditions was used as a reference. IR spectra were obtained using a Perkin-Elmer GX FTIR spectrometer and recorded as a KBr disk (1:10 sample/KBr); Raman spectra were recorded on an ISA Labram, employing an argon laser (514.5 nm) as an excitation source. PL was recorded on a Perkin-Elmer LS55 luminescence spectrometer using an excitation wavelength of 320 nm. Approximately 5 mg of sample was placed into an aluminum sample pan for DSC using an empty aluminum pan as a reference. All DSC were recorded on a Shimadzu DSC-60 between 25 and 600 °C at a ramp rate of 20 °C/min.

Results and Discussion

XRD. XRD was carried out on the calcined samples in order to determine the crystalline phase of the samples. All samples calcined at 300 °C were amorphous. Crystalline anatase TiO$_2$ was present for all samples calcined at 500 and 600 °C. However, at 700 °C the diffractogram (Figure 1) showed that 5 mol % Ag TiO$_2$ contained both anatase (46%) and rutile (54%), but TiO$_2$ without silver consisted mainly of anatase (95%). This indicated that the presence of increased amounts of silver promotes the anatase to rutile transformation.

Promotion of phase transformation by the addition of silver is believed to be caused by the following factors.35 Decreasing anatase grain size (Figure 2) results in an increase in the total boundary energy for the TiO$_2$ powder. The driving force for rutile grain growth is therefore increased, which promotes anatase to rutile phase transformation.45 As the transformation of anatase to rutile is a mechanism of nucleation and growth,46,47 an increased amount of nucleation sites would favor rutile formation. Phase transformation is also governed by such effects as defect concentration48 and grain boundary concentration.49
Anatase to Rutile Transformation of TiO₂

Figure 2. Variation in the nanocrystallite size (from XRD) as a function of increase in concentration of silver, at different calcination temperatures.

Figure 3. XRD of 0 and 5% Ag TiO₂ powders calcined at 800 °C.

Figure 4. IR spectra of TiO₂ powders with different mol % silver content after aging at 100 °C.

The presence of which can be expected to be increased with greater surface areas. Rutile nucleation is thus enhanced as the presence of defect sites is increased. Therefore, an increase in the number of defect sites promotes anatase to rutile transformation at lower temperatures. At 800 °C, the undoped TiO₂ sample consisted of both anatase (55%) and rutile (45%), whereas the silver-doped samples were all 100% rutile (Figure 3). A higher Ag concentration promotes earlier phase transformation. Figures 1 and 3 show that the presence of silver promotes the formation of rutile. The radius of Ag⁺ ion (126 pm) is much larger than that of the Ti⁴⁺ ion (68 pm) and so Ag⁺ ions cannot enter the lattice of anatase TiO₂. However, migration of the Ag⁺ ions from bulk anatase grains to the anatase grain surface can occur during calcination. With Ag migrating to the TiO₂ surface, surface defects in the anatase grains will increase. This results in a greater number of nucleation sites for the formation of rutile, again, promoting phase transformation. Oxygen vacancies may also influence the anatase to rutile transformation. Previous reports indicate that the concentration of oxygen vacancies at the surface of anatase increases with Ag doping. This favors the ionic rearrangement necessary for the structure changes associated with rutile phase formation. An alternate effect that the silver may have on early rutile formation is that Ag cations may be easily reduced. The reduced Ag⁺ ions can spread on the anatase surface to Ag⁰ by heat. Photo reduction of the Ag⁺ ions may also occur as the samples were never protected from light irradiation. Oxygen vacancies will occur for charge compensation caused by Ag⁺ reduction, and again these oxygen vacancies are favored for the formation of rutile. To further investigate the role silver plays in altering the transformation temperature of TiO₂ in this study, it is necessary to understand the structure of the oligomer before aging. To gain insight on this, DSC, IR, Raman, and XPS were carried out on the powders before calcination.

IR Spectroscopy. The influence of silver on the structure of the TiO₂ powders was investigated before calcination using IR and Raman spectroscopy. Figure 4 shows IR spectra of the doped and undoped powders. Symmetric and asymmetric COO⁻ stretches at ~1360 and 1540 cm⁻¹, respectively, indicated that the formic acid forms a bidentate bridge with the titanium precursor. After both samples are aged at 100 °C for 12 h there is a significant reduction in the bridging formate COO⁻ stretches of the 5% silver doped sample, whereas the TiO₂ sample without silver does not show a significant reduction in the carboxylate stretches. Since the boiling point of formic acid is 101 °C, it is possible that the formic acid is displaced by the presence of silver and is then evaporated upon aging.

Raman Spectroscopy. Raman spectroscopy analysis was carried out on the powders before they were calcined to support IR spectroscopy results. The Raman spectra of the doped and undoped TiO₂ samples, (Figure 7) supports the IR results. As the silver content is increased, the asymmetric and symmetric COO⁻ stretches (1570 and 1390 cm⁻¹) decrease accordingly. The addition of silver
also causes significant changes in the TiO region of the spectra (0–1000 cm\(^{-1}\)). The presence of peaks at 160, 420, 515, and 620 in the Raman of the silver doped TiO\(_2\) are indicative of the four peak pattern that would be expected for anatase.\(^{57–59}\)

However, without the presence of silver, this four-peak pattern is not as distinctive, again providing further evidence that silver effects the titanium formate complex before crystallization has occurred.

It is agreed that the use of a chelating agent gives stability to the hydrolysis and condensation reactions associated with the sol–gel process in the production of TiO\(_2\) from titanium alkoxides.\(^{54,60–64}\) IR and Raman spectroscopy have shown that formic acid forms a bridging ligand with titania.\(^{55,65–68}\) Previous reports have shown that similar chelating agents remain bound to the central titanium atom, while the isopropoxy (OR) groups are preferentially hydrolyzed. The bridging ligands remain throughout much of the condensation process,\(^{54,56}\) altering the condensation pathway and promoting the formation of linear polymers composed of edge sharing octahedral.\(^{39,56}\) The system may be destabilized through the addition of water, which leads to a structurally weak network that can easily collapse upon calcination to form rutile.\(^{69,70}\)

From the spectroscopy results it can be seen that the addition of silver causes a reduction in the intensity of the COO\(^{-}\) stretches indicating that the titania formate bridging complex is becoming weaker in the presence of silver. This may lead to a structurally weak oligomer that upon calcination easily forms rutile at lower temperatures.

DSC. DSC was carried out to investigate the thermal events associated with the doped and undoped TiO\(_2\) samples before and after aging.

The DSC curve of the undoped TiO\(_2\) powder analyzed before aging (Figure 8) is almost identical to the same sample after aging (Figure 9). It reveals an endothermic peak at \(\sim\)100 °C attributed to the elimination of unbound water and formic acid from the surface of the TiO\(_2\) powder. The same peak for the silver doped sample reveals as expected, a smaller enthalpy of
−420 J/g compared with −636 J/g for the undoped sample, indicating that formic acid is easier to remove in the presence of silver. This is in agreement with the previously proposed mechanism from the FTIR and Raman spectroscopy results, that silver inhibits formic acid and it is thus removed upon aging at 100 °C therefore, allowing the oligomer structure to readily collapse and form rutile upon calcination.

In Figures 8 and 9 an endothermic peak at ∼250 °C is due to the removal of isopropanol formed through the condensation step. The removal of isopropanol indicates that the condensation step is complete. Comparing the DSC curves of the samples before (Figure 8) and after (Figure 9) aging shows that the endothermic isopropanol peak is present in both the 0 and 5 mol % silver sample before aging. But after aging the isopropanol peak at 250 °C is only present with 0% Ag TiO₂. This provides further explanation for the formation of rutile at lower temperatures, since when the condensation step is near completion, the crystallization temperature is lowered and so too is the anatase to rutile transformation temperature.

The appearance of the first exothermic peak in all DSC curves is the transition from amorphous TiO₂ to crystalline anatase, and as expected this peak occurs earlier with silver doped TiO₂ than with TiO₂ only. Figure 8 shows that crystallization occurs at 320 °C for 5% Ag TiO₂ but does not occur until 350 °C for the undoped sample. This can also be seen in Figure 9 where crystallization of 5% Ag TiO₂ takes place at 320 °C but for the undoped sample crystallization does not occur until 385 °C.

XPS. To determine more information on exactly how the silver is interacting with the titanium formate complex, XPS was carried out on the silver doped and undoped samples before calcination to establish the titanium structure, the chemical state of the silver particles, and also for further evidence of the reduction in the carboxylate species. XPS spectra were recorded of the samples precalcination (as with IR and Raman) and XPS was also carried out on the crystalline titania after calcination. The spectra of C1s and O1s of TiO₂ without silver show the presence of the carboxylate group at 289.171 and 532.3 eV, respectively (parts a and b of Figure 10). As the silver content is increased the intensity of these peaks decreases in a similar manner as those of the IR and Raman results, again indicating that with increased silver content, the formation of a titania formate bridging complex becomes increasingly difficult to form.

Figure 11 shows the XPS narrow scans for Ti 2p and Ag 3d peaks. The XPS spectrum of Ti 2p is unchanged with increasing amounts of silver, the Ag 3d spectrum of 1% silver TiO₂ gives a weaker signal than the 3% shown in figure 11b and the Ag 3d scan of 5% silver TiO₂ results in a spectrum similar to 3% silver TiO₂. The fact that increasing amounts of silver does not affect the Ti 2p spectra indicates that central titanium atom has not been reduced. In Figure 11a, a Ti 2p peak at 459.1 eV is representative of Ti in its tetravalent state in an octahedral environment. The absence of a Ti³⁺ peak at 457.4 eV leads to the following observations.

(1) Ti has not been reduced to Ti³⁺ which may indicate an absence of surface oxygen vacancies. However, if TiO₃ (n < 2) is formed it may not be present in detectable amounts.

(2) Ag₂O or Ag⁻⁻ incorporation into the TiO₂ lattice may give rise to a signal at 457.4 eV representative of Ti³⁺. From the
XPS there was no evidence of Ag TiO2 bond formation, which can be expected due to the differences in atomic radius.

The Ag 3d scan (Figure 11b) shows two large peaks. A Gaussian fit of the main peak (∼368 eV) showed that it was made up of two signals at 367.9 and 368.2 eV, representing the chemical bonding states of Ag2O and Ag0, respectively.36 Therefore, it has been shown that Ag0 and Ag2O have formed on the surface of the titania formate complex, before heat treatment above 100 °C. Spectroscopic (FTIR, Raman, and XPS) studies of the carbonyl species have shown a reduction in the titanium formate bridging complex with increased amounts of silver. The Ag 3d scan of a sample (before calcination) containing silver (Figure 11b) shows the presence of Ag2O (Ag2+, 367.8 eV) and Ag0 (368.2 eV).36 Therefore, the presence of Ag2O and Ag0 in the powders before calcination may be responsible for the reduction of the titanium formate bridging complex which leads to an altered condensation pathway and therefore low temperature formation of rutile.

Figure 12 shows the narrow scan XPS spectra for O 1s of TiO2 without silver calcined at 900 °C (a) and with 3% silver calcined at 700 °C (b).

Figure 13. Ti 2p XPS spectra of TiO2 without silver calcined at 900 °C (a) and with 3% silver calcined at 700 °C (b).

XPS shows that Ag0 and Ag2O block the formation of the titanium formate bridge. The resulting titanium complex can then collapse readily upon calcination to form rutile.

Gaussian fits of the narrow scan Ti 2p XPS spectra (Supporting Information) of all samples before calcination reveals two signals. The intensity of the signals accordingly varies with the increasing presence of silver, further indicating that Ag6+ and AgO are interacting with titanium,84 thus facilitating the removal of formate species and allowing for the collapse of the Ti−O bonds.
Anatase to Rutile Transformation of TiO₂

SCHEME 1: Illustration of Blocking Mechanism of Silver on the Titanium Formate Bridge

To estimate the band gap distance, UV–vis spectroscopy was employed. The results show that silver does improve visible light absorbance of TiO₂ due to silver plasmon absorption; moreover, a blue shift was observed for the band gap separation of the TiO₂ materials upon increased silver addition.

Figure 14 shows the diffuse reflectance spectra for 0, 1, 3, and 5 mol % Ag TiO₂. It can be seen that unmodified TiO₂ has a smaller band gap than the silver modified TiO₂. The blue shift of the silver modified materials can be attributed to the presence of additional silver.

Figure 15 shows a diffuse reflectance spectrum of silver nanoparticles where a strong absorbance is observed at ~335 nm. The band gap of the TiO₂ nanomaterials can therefore not be accurately determined because of the strong silver absorption. It is also clear that the presence of increased amounts of silver (3 and 5 mol %) facilitates visible light absorbance. This can also be seen from Figure 15 through strong visible light absorption of the silver nanoparticles. The proposed mechanism for the visible light absorbance of Ag TiO₂ is shown in Figure 16.

Figure 17 shows diffuse reflectance spectra of 0, 1, 3, and 5% Ag TiO₂ calcined at 700 °C. In comparison of Figure 18 with Figures 14 and 17, silver does not have the same influence in causing the blue shift. The mechanism of anatase to rutile transformation is one of nucleation and growth; therefore, rutile particles are significantly larger than those of anatase. The larger particles may result in a significant reduction in the influence of silver on the band gap of the materials.

Conclusions

A systematic study of the effect of silver on the anatase to rutile transformation temperature of TiO₂ has been carried out. By use of XRD, FTIR, Raman, DSC, and XPS it was proposed that the addition of silver blocks the formation of a titanium...
carboxylate bridging ligand. This was clearly shown through the carboxylate stretches in FTIR, Raman and XPS. Without the formation of this bridging ligand the condensation pathway is altered, and the resulting titania polymer network is weakened. When calcined, this weakened structure can readily transform from anatase to rutile due to a greater atomic mobility. The sample with no silver present maintained anatase at greater temperatures than those that contained silver. This was due to the formation of a strong carboxylate bridge that promoted a more organized structure throughout the condensation process. The more ordered oligomer network of the sample without silver was present. This was clearly seen from the XRD patterns. Without silver the anatase to rutile transition of TiO2. In the proposed mechanism, silver blocks the formation of a bridging ligand with the titanium alkoxide precursor. This is clearly shown in FTIR, Raman, and XPS spectra, and the resulting lower formation of rutile is clear from XRD and DSC.

Acknowledgment. The authors would like to thank the EPA for funding and DIT, focas, and CREST for materials and resources. The authors would also like to thank Aisling Kirwan for FESEM images. This paper is dedicated to Professor John M. Kelly, C. Chem. FRSC, on the occasion of completing 37 years of teaching and research at Trinity College Dublin, Ireland.

Supporting Information Available: Figures depicting Ti 2p XPS spectrum of 0, 1, 3, and 5% Ag before calcination and 5 % silver loading on TiO2 calcined at 700 and 800 °C. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

Anatase to Rutile Transformation of TiO$_2$

