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Abstract 

 

The applications of vibrational spectroscopy to the examination of human blood 

serum are explored. Although FTIR spectra can be recorded in aqueous solutions at 

(gelatin) concentrations as low as 100mg/L, the high-wavenumber region remains 

obscured by water absorption. Using Raman spectroscopy, high quality spectra of 

gelatine solutions as low as 10mg/L can be achieved, also covering the high-

wavenumber regions. In human serum, spectral profiles are weak and partially 

obscured by water features. Dried deposits are shown to be physically and chemically 

inhomogeneous resulting in reduced measurement reproducibility. Concentration of 

the serum using commercially available centrifugal filter devices results in an 

improvement in the spectral intensity and quality. Additionally, in Raman 

spectroscopy, reduced background and significantly enhanced signal collection is 

achievable by measurement in an inverted geometry. The improved protocols for 

spectroscopic measurement of human serum are applicable to a range of bodily fluids 

and should accelerate potential clinical applications. 

 

Keywords: Infrared spectroscopy, Raman spectroscopy, bodily fluids, human serum, 

centrifugal filtration 



1. Introduction 

Vibrational spectroscopic techniques, both Raman and Infrared absorption 

spectroscopy, have significant potential in the field of biomedical analysis, as they can 

give molecularly specific biochemical information without the use of extrinsic labels 

and without being invasive or destructive to the system studied. They are routine 

techniques for fingerprinting and identifying chemicals and act as standard methods in 

analytical chemistry and pharmacy
[1]

. Both techniques being truly label-free, since the 

inherent vibrational signature of the biochemistry of the cell or tissue is being 

observed
[2]

, their potential for diagnostic applications has been well investigated and 

demonstrated, notably in dermal applications 
[3-6]

 but also for many other anatomical 

sites, including cervix 
[7, 8]

, skin
[9-11]

, lung 
[12, 13]

, brain 
[14]

, oesophagus 
[15, 16]

, colon 

[17]
, prostate 

[18]
, nasopharynx 

[19]
, larynx 

[20]
, oral 

[21]
, breast 

[22, 23]
 and liver 

[24]
. The 

detailed information of the molecular structure and composition of the tissue provided 

by Raman and Fourier Transform Infrared absorption (FTIR) spectroscopy ultimately 

promises an analysis of disease origin and progression. Thus, they offer additional 

information, potentially valuable for diagnosis, that is not provided by, for example, 

X-ray or MRI techniques
[22]

. However, although often referred to as complementary 

techniques, Raman and FTIR spectroscopy are based on very different fundamental 

physical phenomena, and thus present different relative advantages and 

disadvantages, and indeed technical challenges to their clinical implementation 
[25, 26]

. 

For example, Raman microspectroscopy presents several advantages for the study of 

live cells, combining molecular analysis with optical imaging. The specific 

information contained in the Raman spectra can be related to changes to the 

physiology as a result of external stimuli
[27-30]

. The spatial resolution is of the order of 

0.5-2 m, providing access to the subcellular organisation of the cells at a molecular 



level
[31-35]

. In the case of FTIR spectroscopy, the spatial resolution is limited to some 

5-10 m in free space applications, although this can be reduced to 1-2 m using high 

numerical aperture microscopic objectives, as in the case of Attenuated Total 

Reflection (ATR) FTIR microspectroscopy. The water contribution to the data 

collected remains a critical difference between the techniques. Whereas dry samples 

are often required for FTIR analysis of tissue sections, Raman microspectroscopy is 

perfectly compatible with water immersion measurement which enhances the signal to 

background ratio and the collection of higher quality data 
[36, 37]

. The weak 

contribution from water offers the possibility to study cells in an aqueous environment 

and thus to keep them alive for the duration of the measurement
[2, 31, 38]

, whereas the 

strong absorption from water means that such measurements in infrared can only be 

performed with high brightness sources such as synchrotrons 
[39]

. 

Although widely applied to cell and tissue analysis, new challenges are presented by 

applications of vibrational spectroscopic techniques to bodily fluids, for diagnosis and 

health monitoring, which would present a less invasive approach than performing 

biopsies of organs for example during cancer screening
[40]

. In this context, blood 

serum presents a promising candidate for the application of vibrational spectroscopy. 

The analysis of the proteins present in the blood stream can potentially deliver crucial 

information on patient health and indicate the presence of numerous pathologies 
[41]

.  

Blood serum contains >20,000 different proteins ranging from 50 g.L
-1

 (serum 

albumin) 
[42, 43]

, to less than 1 ng.L
−1

 (troponin) 
[44]

, with an overall protein 

concentration of ~1 mM. Although other components such as lipids (lipoproteins) can 

also be found, protein sensing remains the main challenge for diagnostic purposes. 

The low molecular weight fraction of the serum, referring to by the term “peptidome”, 

is of particular interest for the potentially rich cancer-specific diagnostic information 



it contains. Bound to high-abundance proteins such as albumin, it represents a 

fingerprint of the molecular events taking place within different organs or tissues 

related to the presence of cancers but also modification to their close micro-

environment 
[45, 46]

.  Therefore, the analysis of protein imbalances in the serum can be 

directly related to, and indicative of, disease states 
[47-50]

. Due to the complex 

composition of the serum, different tools can be employed for the detection of 

proteins levels, such as electrophoresis or 2D-SDS-PAGE. The use of monoclonal 

antibodies can also be useful for detection of small quantities of proteins. Recently, 

fluorescence based sensing methods using nanoparticles have been developed for 

more sensitive and cost effective evaluation of proteins levels in the serum 
[51, 52]

.  

The potential of FTIR and Raman spectroscopy has been widely investigated for 

diagnostic purposes for cell and tissue analysis and the feasibility to use them for 

serum sensing has been suggested and applied to a wide range of body fluids 
[53]

 

ranging from serum 
[54-57]

, tears 
[58]

 urine or saliva 
[59-61]

. In both Infrared and Raman 

spectroscopic studies, to date the analysis has predominantly been performed on air 

dried drops of serum deposited on spectroscopically neutral substrates such as CaF2
[62, 

63]
. The main reasons is the relatively low concentration of analytes in the serum, 

leading to poor signal to noise ratios from liquid body fluids (Raman spectroscopy) or 

the strong contribution of water in the spectra collected (Infrared spectroscopy). 

Although commonly used, the question of sample homogeneity and measurement 

reproducibility is of concern. Already highlighted in the literature in the case of serum 

and tears analysis 
[58, 63, 64]

, the deposition of a drop following by air drying (also 

referred as drop coating) doesn’t necessarily generate a homogenous film of proteins 

on the substrate. Therefore, the repeatability and accuracy of such studies remains 

limited, often leading to statistically non relevant results. As drying of the liquid 



samples is accepted as a routine procedure, many efforts have been devoted to the 

development of robust and complex multivariate analysis methods in order to 

statistically discriminate the datasets 
[65, 66]

, rather than improving and adapting the 

protocols used for sample preparation.  

There is a dearth of vibrational spectroscopic studies using liquid samples for in the 

literature 
[62, 67-69]

 and limitations due to the presence of water are often quoted in 

recently published materials 
[70]

. Therefore, in the present study, different approaches 

will be described and proposed as alternatives in order to demonstrate and highlight 

the feasibility to record high quality data without the requirement for water free 

samples. The application of vibrational spectroscopy to human serum has been taken 

as an example, although they are ultimately adaptable to any of the human body 

fluids. Concentration dependent measurements of solutions of pure biochemical 

compounds are used to explore the spectral ranges available to both FTIR and Raman 

spectroscopy as well as the relative sensitivities and detection limits. Sample 

concentration by centrifugal filtration significantly improves the spectral quality in 

both spectral modalities, but further improvements can be achieved in Raman 

spectroscopy by tuning the acquisition protocols, and notably, the spectral integrity in 

the higher wavenumber region is retained.   

 

2. Materials and Methods 

2.1 Sample preparation 

 

 

L-proline (Sigma Aldrich, Ireland P4655) and glycine (Sigma Aldrich, Ireland 

G8898) were first analyzed in the powder form. Additional samples were prepared by 

dilution in distilled water ranging from 25 mg/mL up to 300 mg/mL. Gelatin (BDH, 



Ireland, 44045) was also analysed in both the powder form and after dilution in 

distilled water at concentrations from 10 mg/mL - 400 mg/mL. Solutions were either 

analyzed in the liquid form or after deposition on a CaF2 window, after which they 

were air dried.   

Sterile filtered human serum from normal mixed pool (off the clot) was purchased 

from TCS Biosciences (Ireland). Samples were prepared either by deposition of 20 µL 

of the serum on a CaF2 window (Crystran Limited, UK) followed by air drying or 

filtration of 0.5 mL of the serum using Amicon Ultra-0.5ml centrifugal filter devices 

(Merck, Germany). In the case of centrifugally filtered devices, the 3K device was 

employed, and 0.5 mL of the serum was placed in the device and centrifuged at 

14,000 x g for 30 mins.  The filtrate is mostly composed of water and molecules 

smaller than 3K molecular weight, while the remainder of the serum (concentrate) is 

retained in the filter device. The filter device is then placed upside down in a new 

Eppendorf and spun down at 1 000g for 2 mins. The resultant is a concentration by a 

factor of 10 for the remaining serum, with a resultant concentrate volume of ~50 μL. 

2.2 FTIR Instrumentation 

IR absorption measurements were carried out using a Perkin Elmer Spotlight 400N 

FTIR imaging system. For comparison, the data have been collected using both the 

transmission mode and ATR mode. 

 

2.2.1 Data collection using the transmission mode 

 

The system is equipped with an AutoImage microscope system operating with a x 40 

Cassegrain objective, and can operate in transmission or reflection mode. FTIR data 

acquired in transmission mode were collected over the nominal free-scanning spectral 

range with an interferometer speed of 1.0 cm/s using a liquid nitrogen cooled mercury 



cadmium telluride (MCT-A) line detector. Spectral measurements were acquired with 

a pixel size of 25 μm x 25 μm at a spectral resolution of 4 cm
-1

. Background 

measurements were acquired on a blank substrate with 120 scans per pixel whereas 8 

scans per pixel were recorded from the sample. 20 µL of the prepared solution was 

deposited on a CaF2 window and air dried before recording.  

2.2.2 Data collection using the UATR 

ATR spectra were recorded with the Perkin Elmer Spotlight 400N Universal 

Attenuated Total Reflectance (UATR) accessory of the spectrometer. In ATR mode, 

spectral data were the result of 4 scans, with a spectral resolution of 4 cm
-1

. Either 1 

mg of the powder or 20 µl of the solution for the different compounds tested was 

deposited on the crystal for recording. Prior to recording, a background spectrum was 

recorded and automatically subtracted by the software.  

2.3 Raman spectroscopic measurements 

A Horiba Jobin-Yvon LabRAM HR800 spectrometer was used throughout this work. 

The spectrometer can be coupled to either an Olympus BX41 upright or an Olympus 

IX71 inverted microscope. For the measurements, a x60 water immersion objective 

(LUMPlanF1, Olympus) was employed, providing a spatial resolution of ~1-2m at 

the sample with a laser intensity of between 35 – 40 mW for each microscope. The 

confocal hole was set at 100m for all measurements, the specified setting for 

confocal operation. The 785 nm laser line was used in this work, and the system was 

spectrally calibrated to the 520.7 cm
-1

 spectral line of silicon.  

In the following experiments, the 300 lines/mm grating was used, providing a spectral 

dispersion of approximately 1.5 cm
-1

 per pixel with the 785 nm laser line. The 

backscattered Raman signal was integrated for 2 x 30 seconds over the spectral range 



from 400 to 1800 cm
-1

. The detector used was a 16-bit dynamic range Peltier cooled 

CCD detector.  

 

3. Results and discussion 

 

3.1 Infrared spectroscopy of pure chemicals 

    

The feasibility of recording infrared spectra from solutions of pure biochemical 

compounds using FTIR spectroscopy has been evaluated using gelatin (figure 1A), 

proline and glycine (data not shown) diluted in water at different concentrations. 

Figure 1A (red spectrum) shows a spectrum recorded from the gelatin powder using 

the UATR accessory in the range from 2400-4000 cm
-1

. The spectrum of gelatin is 

rich in this region, the main features being located at 3281 cm
-1

, 3074 cm
-1

, 2938 cm
-1 

and 2877 cm
-1 

(figure 1A: Red spectrum). In aqueous solution, however, these 

features are swamped by the water contributions (Figure 1A Black) and even at 

concentrations of 400mg/mL, which was close to the saturation point of solubility of 

gelatin in water, no features of the gelatin can be clearly identified (figure 1A Blue). 

In the fingerprint region, however, the contributions of water are significantly less, 

and the features of the gelatin are readily observable. Figure 1B displays spectra 

obtained from gelatin solutions ranging from 100 mg/mL up to 400 mg/mL, along 

with that of pure water. The spectral profiles evolve according to the concentration, 

especially in the fingerprint region where the specific peaks of the gelatin 

systematically increase, the best visualization of the spectral profile being reached for 

the 400 mg/mL solution.  

In this spectral range, the water exhibits only a single feature at 1638 cm
-1

, 

overlapping with the amide I band, characteristic of protein rich samples, and also 



partially overlapping with the amide II band region (1580-1490 cm
-1

). However, when 

increasing the concentration of the solution, the different features of the gelatin can be 

seen to systematically evolve. The amide I band appears gradually shifted from 1638 

cm
-1

 to 1630 cm
-1

 and the amide II band at 1551 cm
-1

 becomes better defined. 

Different features can also be seen in the spectral window 1500-1000 cm
-1

, the main 

peaks being localised at 1453 cm
-1

 1407 cm
-
1, 1336 cm

-1
, 1284 cm

-1
, 1246 cm

-1
, 1202 

cm
-1

, 1163 cm
-1

, 1081 cm
-1

 and 1034 cm
-1

. The evolution of the features as a function 

of concentration fits well with a Lambert-Beer like response, as shown in Figure 2 for 

the case of the integrated areas of the Amide I and Amide II bands. Error margins for 

the measurements are those of the spectral measurement and the concentration 

determination, both of the order ±5%. The solid lines show a linear regression fit to 

the absorbance data. At the lowest concentration measured (100) mg/mL, water 

accounts for ~ 85% and ~71% of the absorption in the amide I and amide II regions 

respectively (dotted horizontal lines). Notably, extrapolation of the regression to the 

intercept with the water integrated water absorbance for the respective regions 

indicates a sensitivity of <10mg/mL.  

 

3.2 Infrared spectroscopy of Human serum 

 

 

A commonly employed approach to analyzing the composition of biological fluids 

using FTIR is to deposit a drop of the solution on a suitable substrate such as CaF2 

and air dry the sample before collection of spectra in transmission mode 
[62, 63, 70, 71]

. 

The process concentrates the analytes from the solution, potentially allowing better 

signal to noise, but results in a physically and chemically inhomogeneous sample and, 

as demonstrated in the previous section, the spectra of the constituent molecular 

components can be significantly altered in the condensed form. Figure 3 (top) 



presents an infrared transmission image collected from a 20 μL drop of human serum 

after air drying on a CaF2 window. Three examples of spectra taken from different 

regions of the drop from the inner to the outer region are also displayed. After drying, 

the serum forms a highly concentrated thin film on the substrate, leading to the 

saturation in the absorbance read. The maximum absorbance is observed in the center 

of the deposit. Thus, in order to record infrared spectra from dry serum, a dilution has 

to be applied. Figure 3 (bottom) presents the infrared image obtained from a dried 

deposit after dilution of the serum by a factor of 15 using distilled water. After 

dilution, a ring of highly concentrated proteins is located on the outer part of the 

deposit. As the central area gives little or no absorbance, it is not usable for chemical 

characterization. The main limiting aspect of depositing and air drying the serum 

remains the inhomogeneity of the resulting deposit. The different serum proteins have 

differing affinities for adsorption onto the substrate surface which results in varying 

rates of deposition and therefore physical and chemical inhomogeneity in the 

deposited layer – the so-called Vroman effect.
[72]

 The spectra A, B and C in figure 3 

(bottom) illustrate the variation in the spectra collected from the inner, middle and the 

outer part of the ring. For better visualization, the region 1500-1000 cm
-1

 has been 

plotted. The dotted lines indicate shifts in the features, while the arrows highlight a 

change in the band intensity ratios depending of the location of the spectra. Thus, the 

use of serum deposited and dried on a substrate will generate variations in the spectral 

features due to physical and chemical inhomogeneities and, given the uncertainties in 

the results, is not a satisfactory protocol for diagnostic applications.      

However, as demonstrated in section 3.1, the recording of Infrared spectra from 

aqueous solutions, at least in the fingerprint region, is possible and is thus the best 

candidate for the study of human serum. As highlighted in figure 1, however, the use 



of highly concentrated solutions is required for infrared spectroscopy in order to 

reduce the water/protein ratio in the spectra collected, but the fully condensed solid 

phase results in physically and chemically inhomogeneous samples. Therefore a 

method of controlled systematic concentration of the serum samples is desirable. 

Commercially available, Amicon ultra-0.5 centrifugal filter devices (Merk) provide, 

as described by the manufacturer, “a fast ultrafiltration, with the capability for high 

concentration factors and easy concentrate recovery from the dilute and complex 

matrices”. The centrifugal filter devices can be purchased for different cutoffs 

(Nominal Molecular Weight Limit ranging from 100K to 3K). In the present study, 

the feasibility to analyse the whole serum was explored, and thus the 3K (3000 

NMWL) was employed, which means any molecule with a molecular weight higher 

than 3K will be retained in the devices and present in the final concentrate used for 

spectroscopic analysis. 0.5 mL of the serum was placed in the device and centrifuged 

at 14 000 x g for 30 mins, giving a concentrating factor of 10 with a resultant 

concentrate volume of ~50 μL.  

After recovery, 20 μL of the final concentrate was deposited on the UATR accessory 

and an infrared spectrum was collected. Figure 4II compares the infrared spectra 

recorded from human serum using the UATR accessory, in its pristine liquid state 

(figure 4IIB) and after concentration using centrifugal devices (figure 4IIA). In the 

pristine liquid state, the signal obtained remains dominated by the water band and 

only small protein related features are observable. After centrifugal filtration, 

however, strong features of the serum begin to dominate the spectrum. The major 

bands are visible at 1637 cm
-1

 (Amide I band), 1445 cm
-1

, 1452 cm
-1

, 1402 cm
-1

, 1312 

cm
-1

, 1244 cm
-1

, 1170 cm
-1

 and 1080 cm
-1

, consistent with observations made on air 

dried serum, despite the lack of accuracy due to the in-homogeneity in the data 



collected after air drying. An increase of the absorbance of all features (above the 

level of the water absorbance) by a factor of approximately 5 in the finger print region 

can be observed. Therefore, the use of centrifugal filter devices can bring new 

expectations regarding the application of Infrared spectroscopy for the analysis of 

human serum with the possibility to strongly reduce the water contribution and thus 

better visualize the presence of the different features related to the complex 

composition of the serum. However, even at these concentration factors, the spectral 

range 2800-3700 cm
-1

 remains dominated by the water features, as shown in figure 4I. 

The serum recorded after ultrafiltration displays only weak features between 3000-

2600 cm
-1 

(figure 4I red spectrum) and is still dominated by the strong absorbance of 

the remaining water in the sample (figure 4I spectrum black and blue). Therefore, the 

main limitation to FTIR spectroscopic analysis of bodily fluids remains the restriction 

in the accessible spectral range as, although the finger print region remains the most 

informative regarding the molecular composition of the samples, the high 

wavenumber spectral range could bring relevant information for more specific 

chemical characterization.  

 

3.3 Raman microspectroscopy of pure chemicals 

 

 

The relatively weaker signal from water in Raman spectroscopy presents many 

advantages compared to infrared spectroscopy, especially for the analysis of live cells, 

which is facilitated by the use of a water immersion objective to be able to collect 

Raman spectra directly from cells maintained alive in a saline solution or medium 
[31]

. 

However, although the water contribution is weak, it can still contribute over an 

important part of the final spectrum collected. As seen for Infrared spectroscopy, the 

Raman spectroscopic technique has a limit of detection for molecules diluted in an 



aqueous solution. As an example, the recent work conducted on 3D collagen gels 

demonstrated that the fibrous protein forming the gel upon which to grow the cells 

was still too low in concentration to be detected with Raman spectroscopy
[73]

. The 

main question is to evaluate the capacity of Raman spectroscopy to record spectra 

from human serum.  

Figure 5I displays examples of spectra recorded from gelatin solutions ranging from 

200 mg/mL to 10 mg/mL (figure 5I B-E) compared to a spectrum of gelatin recorded 

from the lyophilized form before preparation of the solution (figure 5IF) and a 

spectrum of de-ionised water (figure 5IA).  As seen for the FTIR analysis, the 

intensities of the Raman peaks increase systematically with concentration, although 

notably the Raman spectra are strikingly richer in spectroscopic detail. The spectrum 

of figure 5IE is very similar to the one obtained from the gelatin powder (figure 5IF), 

while the gelatin features are significantly diminished in the spectrum collected from 

the solution at 10 mg/mL which displays a stronger contribution of the water (figure 

5IB).    

 

In Raman spectroscopy, the finger print region between 400-1800 cm
-1

 is strongly 

influenced by the presence of a slowly varying, broad background generating an 

offset of the spectra but also influencing the signal to background ratio and thus the 

relative band intensity. Thus, the exact evaluation of the water contribution to the 

final spectra in the region of the amide I band remains difficult. However, the high 

wavenumber region between 2800-3700 cm
-1

 is not influenced as strongly by this 

background and can provide a more precise estimation of the water contribution 

(figure 5II), which is notably significantly less intense than that observed in FTIR 

(figure 1). The spectral range 2845-3040 cm
-1

 exhibits features related to the presence 

of proteins and lipids in the samples (in the case of gelatin, only protein related) and 



notably, whereas they are swamped by the water absorptions at 400mg/mL in FTIR, 

they are clearly discernible in the Raman spectra of solutions as dilute as 25mg/mL 

(figure 5II red spectrum).  

 

 

As in the case of FTIR spectra of solutions, a linear dependence of the integrated 

bands are observed, as shown in Figure 6 for the case of the high wavenumber region 

(2820 cm
-1

 – 3020 cm
-1

), the amide I band (1560 cm
-1

 -1715 cm
-1

) and the region 

between 1215 cm
-1

 -1290 cm
-1

. Again, error margins for the measurements are those 

of the spectral measurement and the concentration determination, both of the order 

±5%. The solid lines show a linear regression fit to the absorbance data. Notably, in 

comparison to the FTIR data, at a concentration of 100mg/mL, the contributions of 

water to the respective regions are reduced to 44%, 64% and 7%. 

 

Whereas FTIR absorption spectroscopy measures the light absorbed by the sample, 

Raman spectroscopy measures the light (inelastically) scattered by the sample, and 

thus significant improvements in signal quality can be achieved by improved signal 

acquisition protocols. The Raman signal intensity is directly correlated with the 

amount of backscattered light captured by the objective and redirected to the detector 

over time. Thus, increasing the acquisition time will induce an increase in the overall 

spectral intensity but is also accompanied by an improved signal to noise (S/N) ratio. 

In order to illustrate this effect, the solution of gelatin at 10 mg/ml has been recorded 

using an acquisition time of 150s. Using a spectrum of distilled water as a reference 

and recorded under the same conditions, it is possible to remove the background 

present in the spectrum by subtraction to better visualize the gelatin features (figure 

5IG). Increased source power can also be used to increase the S/N ratio, and therefore, 

Raman microspectroscopy can potentially detect chemicals present in a solution at 



much lower concentrations compared to FTIR. The use of a more powerful laser 

source would effectively further reduce the required acquisition time, allowing rapid 

collection of data from solutions with high signal to noise ratio.  

 

 

3.4 Raman microspectroscopy of Human serum 

 

 

3.4.1 Instrumental set up  

 

Figure 7IC shows a Raman spectrum of human serum recorded in the upright 

geometry using a x60 objective. Protein like features can be clearly seen above the 

water background, although in comparison to, for example, the gelatin solution 

spectrum of figure 5I, the spectral features are relatively poorly defined. 

 

When performing measurements with Raman spectroscopy, different objectives can 

be employed with different characteristics related to the magnification desired. In 

order to achieve the highest spatial resolution, the X100 objective can be employed on 

dry cells or tissue sections. As presented in figure 7II, the sample is usually placed on 

top of a suitable substrate such as CaF2, allowing to focus the laser on its surface. 

Using a MplanN objective with a numerical aperture (NA) of 0.9, the working 

distance is about 0.21 mm. However, when working in immersion using a x60 or 

x100 water immersion objective with a NA of 1, the working distance is increased to 

about 2 mm. Although the recording of Raman spectra from the human serum stock 

solution can be performed directly by immersing the lens in the solution using the 

upright microscope (as performed in section 3.3 for gelatin solutions), such an 

approach can be limited when collecting data from smaller volumes, as in the case of 

concentrated serum. When deposited on a CaF2 window, the focal point of the laser is 

outside the drop, as illustrated schematically in figure 7IIB. In order to better analyse 



the serum, the distance between the sample and the objective has to be increased. This 

is achievable by using an inverted microscope (figure 7IIC). Coupling a thin CaF2 

(thickness 0.15 mm) to the water immersion objective, the collection of Raman 

spectra from the serum can be performed. A drop of water is used to reduce the 

variation in the refractive indexes between the objective, substrate and serum. 

Notably, as they are outside the focus of the beam, the water drop does not contribute 

to the spectra collected and only an insignificantly weak signal form the CaF2 can be 

seen.  

Figure 7IB shows a Raman spectrum of human serum stock solution measured using 

such an inverted geometry. In comparison to the same measurement performed in the 

inverted geometry, the spectrum is significantly enhanced and the spectral features are 

considerably better defined.  

 

3.4.2 Impact of centrifugal filtration 

 

 

Figure 7IA presents a spectrum of human serum after filtration using an Amicon 

ultra-0.5 centrifugal filter device (Merk). As in the case of the FTIR, significant 

improvements in the sample signal can be achieved by increasing the analyte 

concentration in the solution using centrifugal filtration, as can be seen by comparison 

with the spectrum of non-unfiltered serum measured under identical conditions (figure 

7IB). The spectrum of figure 7IA exhibits dramatic improvements in the spectral 

intensities and quality. Moreover, the difference in intensity between the pure 

deionised water and the spectrum collected from the concentrated serum clearly 

indicates that minimal contribution from the water occurs with such samples (data not 

shown).  



The improvements of the Raman spectrum achievable by filtration are equally evident 

in the high number region, as shown in figure 7III. Spectrum A of 7III has been 

collected from distilled water as a reference while the spectrum B has been recorded 

from the serum. The intensity of the band of the water located at 3210 cm
-1

 is 

significantly decreased with the apparition of 2 peaks at 2930 cm
-1

 and 2875 cm
-1

. 

After centrifugal filtration, the band of the water is strongly reduced to almost the 

same intensity of the background, whereas the peaks at 2930 cm
-1

 and 2875 cm
-1

 have 

significantly stronger intensities and an additional peak is clearly discernible at 3060 

cm
-1 

(figure 7IIIC).        

4. Discussion 

 

The analysis of human serum but also body fluids can be performed using the 

immersion lens. As for the analysis of live cells, the water immersion objective can be 

directly dipped into the analyte solution, minimising the intensity loss in the spectra 

collected by optimizing the optical coupling between the lens and the liquid sample. 

For measurement of centrifugally filtered serum, the recovery volume is the main 

limiting factor in such approach. The working distance of the water immersion lens 

being about 2 mm, the effective thickness of the serum drop after deposition on the 

CaF2 substrate was found to be too low and also not consistent. The interaction of the 

concentrate serum with the surface of the substrate varies between samples thus, 

although the concentrate recovery volume remains quite consistent, the drop size and 

shape can vary quite considerably.  

The use of the inverted geometry improves the reproducibility of the measurements of 

concentrated serum, which will allow standardization. The size and shape of the drop 

have little impact on the data collected. The laser being focused on the interface 



between the deposited liquid sample and the CaF2 substrate, as little as 20 µL of the 

concentrated serum can be used for the analysis. Although this work was a proof of 

concept based on Ultra-0.5 centrifugal filter devices (Merck, Germany) with a 

Nominal Molecular Weight Limit (NMWL) of 3K, it is important to point out that 

many different cut off point are available on the market to specifically separate 

proteins with high molecular weight. For example, as specified by the manufacturer, 

centrifugal devices with NMWL of 10K, 30K, 50K or 100K have higher 

concentrating capacities but this is also associated with smaller recovery volume in 

the order of 20 µL. Such small volumes cannot easily be recorded using the upright 

set up can be much more readily analysed using an inverted microscope. 

Moreover, although in the present study, the human serum is healthy and free of any 

infection, the ultimate aim is to perform analysis of serum taken from patients for the 

identification of specific biomarkers for diagnostic purposes. Thus, it is important to 

design a set up compatible with health and safety legislation. Direct contact between 

the lens and the serum itself would require appropriate cleaning between 

measurements. Inverted measurement through a substrate reduces the cleaning and 

sterilization requirements without worrying about damaging the immersion objective. 

Human serum is composed of up to 10,000 proteins, although most are present at very 

low relative abundances. Serum, derived from plasma with clotting factors removed, 

contains 60–80 mg of protein/mL in addition to various small molecules including 

salts, lipids, amino acids, and sugars
[42]

. The use of centrifugal filters raises the 

question of alteration of the serum composition. The NMWL of the devices means 

any molecules of less than 3000 g/mol will be wholly or partially removed from the 

concentrate which remains in the filter, and are passed through as filtrate. For 

example, Glucose, with a molecular mass of 180 g/mol should be effectively removed 



by centrifugation. Recent studies suggest that low molecular weight (LMW) proteins 

are particularly interesting for the use of serum for diagnostic applications 
[74]

. 

Notably, Hands et al
[75]

 have recently demonstrated the use of centrifugal filtration of 

serum samples for the diagnosis of gliomas using FTIR spectroscopy of the lower 

molecular weight filtrate (<10kDa). Although the molecular weight of LMW proteins 

remains close to the cutoff point of the centrifugal devices used in this work, 

commercially available devices with lower NMWL can be purchased, retaining 

molecules with LMW down to 2K. Moreover, although some LMW (low molecular 

weight) proteins can be filtered out and lost in the process, the use of such filtering 

devices offers the advantage of removal of undesirable substances from the serum, 

such as salts and sugars which can potentially spectroscopically interfere with the 

proteome analysis. As the principal objective of this work was the demonstration of 

improved measurement protocols rather than in depth analysis of the serum proteome, 

the 3K Amicon centrifugal devices have been considered suitable. However, for 

future investigation, the use of lower NMWL devices should be investigated.          

 

Rohleder et al.
[62]

 have undertaken a comparison of FTIR and Raman spectroscopies 

for the quantitative analysis of human serum, also in relation to other common clinical 

enzymatic analysis techniques. Multivariate regression was employed to analyse the 

glucose content in spiked patent samples and root mean square errors of prediction of 

14.7 and 17.1 mg/dl for mid-infrared and Raman spectroscopy, respectively were 

achieved. The study concluded that the accuracy of current clinical analytical methods 

is substantially better than that of vibrational spectroscopies and that vibrational-

spectroscopy based quantification appears to be limited to accuracies in the 0.1 

mmol/L range, regardless of the particular choice of the spectroscopic technique. 

Notably, in this study, samples for FTIR measurement were taken from dried samples 



whereas those for Raman spectroscopy were taken from unfiltered unconcentrated 

serum.  

In the study presented here, it has been demonstrated that FTIR measurements of 

biochemical species can be made in water solution. Although the high wavenumber 

region is effectively unusable due to water absorption, clear absorption features are 

visible in the fingerprint region of gelatin solutions as low as 100mg/mL. The average 

molecular mass of gelatin is ~50kg/mol, and thus this corresponds to 2mmol/L.  In the 

case of human serum, concentration by a factor of ten by centrifugal filtration results 

in a ten fold increase in absorbance of all features in the fingerprint region, although 

the high wave number region remains obscured by water absorption, even at these 

elevated concentrations. Critically, the ability to measure human serum in the solution 

phase at higher concentrations should significantly reduce the measurement 

predictability, identified by Rohleder et al.
[62]

 as a lower limit on the prediction errors 

in mid-infrared spectroscopy.  

In Raman spectroscopy the interference of water in the spectral signatures of 

biochemical species is less than for FTIR. In gelatin solutions, clear spectral features 

are observable at concentrations as low as 10mg/mL, notably in both the fingerprint 

and high wavenumber regions. Significant improvements in signal to noise are 

achievable by prolonged acquisition times, and detailed, high quality spectra of 

10mg/ml gelatin solutions are achievable after 6-7 minutes, indicating that Raman 

spectroscopy holds significantly higher potential for applications to analysis of bodily 

fluids.  

In recent years, there has been increased interest in blood serum analysis using 

Surface Enhanced Raman Spectroscopy (SERS), which can compensate for the low 

Raman scattering efficiency, especially limiting in the case of liquid samples
[76]

. 



Reported studies applied to blood serum
[77]

 for the detection of gastric 
[78, 79]

 , 

colorectal 
[80]

 , pancreatic
[81]

 and naso-pharyngeal cancers 
[82]

 highlight the interest 

and potential of such approaches. However, the use of nano-particles or appropriate 

metallic based substrates
[83]

 is required, and while the approach is promising, 

reproducibility in the data collected remains a challenge 
[84]

. Moreover, the question 

of selectivity and sensitivity are questionable, especially in presence of high 

molecular weight proteins
[85]

.  

Therefore, the development of more suitable protocol for Raman microspectrsocopy 

remains crucial for the analysis of body fluids leading to a better detection of the 

Raman signatures in liquid samples. Thus, as presented in the present study, for the 

case of human serum, sample concentration by a factor of 10 by centrifugal filtering 

dramatically improves the spectral intensity and signal to noise without the 

requirement of further signal enhancement with nano-particles. Although the standard 

upright measurement geometry can be employed, reduced background is achievable 

by measurement in an inverted geometry, using an immersion objective. Enhanced 

signal intensities allow reduced acquisition times with the promise of high throughput 

in routine screening applications. Ultimately, in clinical environment, such a 

geometry has the advantage that it provides improved signal quality through 

immersion, without the danger or inconvenience of contact of the objective with the 

sample. 

 

5. Conclusion 

 

Although vibrational the spectroscopic techniques of infrared absorption and Raman 

scattering have been widely explored for diagnostic applications in tissues ex vivo and 

cellular analysis in vitro, their applications to bodily fluids has largely been limited 



due to weak spectral signatures of the relevant analytes in pristine fluids, and the 

physical and chemical inhomogeneities of solid deposits. Concentration dependent 

measurements of pure biochemicals in aqueous solution demonstrates, however, that 

both methodologies can be employed for sensitive quantitative measurements, 

although the high wavenumber region the spectral features of the analytes are 

obscured by those of water in the case of FTIR. In the case of human serum, both 

FTIR and Raman spectroscopy give relatively weak signals, but the signal to 

background ratios are considerably enhanced by the used of commercially available 

devices ultra-0.5 centrifugal filter devices (Merck, Germany) which result in a 

concentration of the analytes by a factor of ~10, and a consequent increase in the 

spectral signatures. Although the high wavenumber region is still obscured by water 

in the case of FTIR, the full spectral region is dominated by protein features in the 

case of Raman spectroscopy. Collection efficiency for immersion Raman 

spectroscopy can be further enhanced by the use of an inverted geometry. Using 

centrifugal filtration devices to remove of low molecular weight proteins, enhances 

signals and intrinsic spectral reproducibility. These improved spectral acquisition 

protocols opens up the potential applications of real clinical applications for 

spectroscopic analysis of bodily fluids. 
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Figure legends 

 

 

 
Figure 1: Example of spectra recorded using the UATR accessory of the Perkin Elmer 

Spotlight 400N. A: high wavenumber region from water (black); gelatin at 400 

mg/mL (blue) and gelatin powder (Red). B: finger print region from gelatin solutions 

at a concentration of 100 mg/mL (blue), 200 mg/mL (red), 300 mg/mL (green) and 

400 mg/mL (black). For comparison, a spectrum of distilled water has been added 

(pink) No offset or correction has been applied. 

 

 



Figure 2: A: Area under the Amide I band (1740-1580 cm
-1

) and B: Area under the 

Amide II band (1580-1500 cm
-1

). The dotted lines are the respective integrated 

intensities recorded from de-ionised water. 

 

 

 

 

 
Figure 3: Top: Infrared transmission image collected from a 20 µl drop of human 

serum after air drying with the corresponding spectra extracted from the labeled 

regions A, B and C. Bottom: Infrared image collected for a 20 µl drop of human 

serum diluted 1/15 after air drying. Spectra collected in the region A, B and C are also 

presented. The spectra have been baseline corrected and vector normalised.  

 

 

 

 



 
Figure 4: Infrared spectra recorded using the UATR accessory of the Perkin Elmer 

Spotlight 400N. I: Black: infrared spectra from distilled water; Blue: Infrared spectra 

from human serum; Red: Infrared spectra from human serum after centrifugal 

filtration. II: A: Infrared spectrum from human serum after centrifugal filtration; B: 

Infrared spectrum from human serum; C: infrared spectra from distilled water; No 

offset or corrections have been applied to the spectra.   

 

 

 

 

 
Figure 5 I: Spectra recorded using the 785 nm laser line. A: deionised water; B: 

gelatin 10 mg/mL; C: gelatin 25 mg/mL, D: gelatin 100 mg/mL E: gelatin 200 

mg/mL, F: Lyophilized gelatin and G: gelatin 10 mg/mL (2x150s – 60x water 

immersion objective) after water subtraction (intensity x8 for comparison). Spectra 

have been offset for clarity. II: Raman spectra recorded in the high wavenumber 

region of gelatin solutions at a concentration of 200 mg/mL (pink), 100 mg/mL 

(green), 25 mg/mL (red) and 10 mg/mL (blue). For comparison, a spectrum of 

distilled water has been added (light blue) No offset or correction has been applied. 

 

 



 
Figure 6: Area under the curve of the protein features in the high wavenumber region 

(2820cm
-1

-3020cm
-1

), the amide I band, and the region between 1215 cm
-1

 -1290 cm
-1 

of gelatin solutions at a concentration of 200 mg/mL), 100 mg/mL, 25 mg/mL  and 10 

mg/mL. The dotted lines represent the integrated baseline contributions of pure water 

in each frequency region.  

 

 

 

 

 

 



 
Figure 7: Raman spectra recorded from human serum using Labram HR 800. I: Using 

the inverted set up after centrifugal filtration; B: In the standard upright position using 

a X60 immersion objective and C: Using the inverted microscope couple to the 

immersion X60 objective. II: Examples of different settings used for the analysis of 

human serum using Labram HR 800. A: in the standard upright position; B: In the 

standard upright position using a X60 immersion objective and C: Using the inverted 

microscope couple to the immersion X60 objective. III: A: Raman spectrum recorded 

using the inverted set up from distilled water; B: Raman spectrum recorded from the 

Human serum; C: Raman spectrum recorded from the Human serum after 

ultrafiltration using the Amicon ultra-0.5 centrigugal filter devices 3K. No offset or 

correction has been applied. 
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