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Abstract

Hearing impairment, and specifically sensorineural hearing loss, is an increasingly prevalent

condition, especially amongst the ageing population. It occurs primarily as a result of damage

to hair cells that act as sound receptors in the inner ear and causes a variety of hearing percep-

tion problems, most notably a reduction in speech intelligibility. Accurate diagnosis of hearing

impairments is a time consuming process and is complicated by the reliance on indirect measure-

ments based on patient feedback due to the inaccessible nature of the inner ear. The challenges

of designing hearing aids to counteract sensorineural hearing losses are further compounded by

the wide range of severities and symptoms experienced by hearing impaired listeners.

Computer models of the auditory periphery have been developed, based on phenomenological

measurements from auditory-nerve fibres using a range of test sounds and varied conditions.

It has been demonstrated that auditory-nerve representations of vowels in normal and noise-

damaged ears can be ranked by a subjective visual inspection of how the impaired representations

differ from the normal. This thesis seeks to expand on this procedure to use full word tests

rather than single vowels, and to replace manual inspection with an automated approach using a

quantitative measure. It presents a measure that can predict speech intelligibility in a consistent

and reproducible manner. This new approach has practical applications as it could allow speech-

processing algorithms for hearing aids to be objectively tested in early stage development without

having to resort to extensive human trials.

Simulated hearing tests were carried out by substituting real listeners with the auditory

model. A range of signal processing techniques were used to measure the model’s auditory-nerve

outputs by presenting them spectro-temporally as neurograms. A neurogram similarity index

measure (NSIM) was developed that allowed the impaired outputs to be compared to a reference

output from a normal hearing listener simulation. A simulated listener test was developed,

using standard listener test material, and was validated for predicting normal hearing speech

intelligibility in quiet and noisy conditions. Two types of neurograms were assessed: temporal

fine structure (TFS) which retained spike timing information; and average discharge rate or

temporal envelope (ENV). Tests were carried out to simulate a wide range of sensorineural

hearing losses and the results were compared to real listeners’ unaided and aided performance.

Simulations to predict speech intelligibility performance of NAL-RP and DSL 4.0 hearing aid

fitting algorithms were undertaken. The NAL-RP hearing aid fitting algorithm was adapted

using a chimaera sound algorithm which aimed to improve the TFS speech cues available to

aided hearing impaired listeners.

NSIM was shown to quantitatively rank neurograms with better performance than a rela-

tive mean squared error and other similar metrics. Simulated performance intensity functions

predicted speech intelligibility for normal and hearing impaired listeners. The simulated listener

tests demonstrated that NAL-RP and DSL 4.0 performed with similar speech intelligibility



iv

restoration levels. Using NSIM and a computational model of the auditory periphery, speech

intelligibility can be predicted for both normal and hearing impaired listeners and novel hearing

aids can be rapidly prototyped and evaluated prior to real listener tests.
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1
Introduction

1.1 Thesis outline

This thesis seeks to develop a novel approach to prediction of speech intelligibility using a

computational model of the auditory periphery. The auditory periphery is composed of bio-

mechanics that pre-filter and attenuate acoustic stimuli in the outer and middle ear before

presenting the signal to frequency-tuned hair cells along the basilar membrane in the cochlea.

The hair cells vibrate causing an electro-chemical potential difference that innervates an impulse

firing electrostatic signal along an auditory nerve fibre. The combined firings along multiple

fibres reacting to hair cells along the frequency tuned range provide a spectral slice of information

on the input stimuli signal and, when evaluated temporally, these auditory nerve firings provide

a spectro-temporal signal of the acoustic stimuli which is then presented to the central nervous

system and brain. We call this process hearing.

The signal processing involved in the path from a speech stimuli input to an auditory nerve

fibre output can be modelled using a computational model of the auditory periphery. Such a

model is used here to experiment how signal processing techniques can be applied in novel ways

to assess auditory nerve outputs and predict speech intelligibility for listeners under a variety of

conditions and with varying degrees of hearing impairment.

The practical application of this is to allow speech-processing algorithms for hearing aids to

be objectively tested in early stage development, without having to resort to extensive human

trials. The proposed strategy is to harness the work that has been done in developing realistic

computational models of the auditory periphery and to apply it in a process to quantitatively

1
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predict speech intelligibility. This could be used to design hearing aids by restoring patterns

of auditory nerve activity to be closer to normal, rather than focusing on human perception of

sounds. Sachs et al. [72] showed that auditory-nerve discharge patterns in response to sounds

as complex as speech can be accurately modelled, and predicted that this knowledge could be

used to test new strategies for hearing-aid signal processing. They demonstrated examples of

auditory-nerve representations of vowels in normal and noise-damaged ears and discussed, using

subjective visual inspection, how the impaired representations differ from the normal. This

work seeks to automate this inspection process using an objective measure that ranks hearing

losses based on auditory-nerve discharge patterns. It develops a procedure to link the objective

ranking measure to listener speech discrimination scores and validates the procedure in a range

of conditions for a range of hearing impairments.

The remainder of this thesis is organised as follows:

Chapter 2: Background

The background provides a context for the thesis, describing the physiology of the auditory

periphery and how computational models have been developed over the last four decades. Neu-

rograms, a visualisation of the output from the auditory nerve model, are defined and details

are presented on how they are created and assessed. Assessment methodologies for measuring

speech intelligibility are reviewed along with the image similarity metrics used in this thesis to

predict speech intelligibility. Hearing impairment, sensorineural hearing loss and hearing aids

are also introduced.

Chapter 3: Speech Intelligibility from Image Processing

Traditionally, hearing loss research has been based on perceptual criteria, speech intelligibility

and threshold levels. The development of computational models of the auditory-periphery has

allowed experimentation, via simulation, to provide quantitative, repeatable results at a more

granular level than would be practical with clinical research on human subjects. The responses

of the auditory nerve model used in this thesis have been shown, by the model developers, to

be consistent with a wide range of physiological data from both normal and impaired ears for

stimuli presentation levels spanning the dynamic range of hearing.

The model output can be assessed by examination of the spectro-temporal output, visualised

as neurograms. The effect of sensorineural hearing loss (SNHL) on phonemic structure was

evaluated in this study using two types of neurograms: temporal fine structure (TFS) and

average discharge rate or temporal envelope (ENV). This chapter proposes a new systematic

way of assessing phonemic degradation using the outputs of an auditory nerve model for a range

of SNHLs. The structural similarity index (SSIM) is an objective measure originally developed to

assess perceptual image quality. The measure is adapted here for use in measuring the phonemic

degradation in neurograms derived from impaired auditory nerve outputs. A full evaluation of
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the choice of parameters for the metric is presented using a large amount of natural human

speech.

The metric’s boundedness and the results for TFS neurograms indicate that it is a superior

metric to standard point to point metrics of relative mean absolute error and relative mean

squared error. SSIM as an indicative score of intelligibility is also promising, with results similar

to those of the standard Speech Intelligibility Index metric.

Chapter 4: Speech Intelligibility prediction using a Neurogram Similarity In-

dex Measure

Discharge patterns produced by fibres from normal and impaired auditory nerves in response to

speech and other complex sounds can be discriminated subjectively through visual inspection.

Similarly, responses from auditory nerves, where speech is presented at diminishing sound levels,

progressively deteriorate from those at normal listening levels. This chapter presents a Neuro-

gram Similarity Index Measure (NSIM) that automates this inspection process, and translates

the response pattern differences into a bounded discrimination metric.

The Performance Intensity function can be used to provide additional information over mea-

surement of speech reception threshold and maximum phoneme recognition, by plotting a test

subject’s recognition probability over a range of sound intensities. A computational model of

the auditory periphery is used to replace the human subject and develop a methodology that

simulates a real listener test. The newly developed NSIM is used to evaluate the model outputs

in response to Consonant-Vowel-Consonant (CVC) word lists and to produce phoneme discrim-

ination scores. The simulated results are rigorously compared to those from normal hearing

subjects. The accuracy of the tests and the minimum number of word lists necessary for re-

peatable results are established. The experiments demonstrate that the proposed Simulated

Performance Intensity Function (SPIF) produces results with confidence intervals within the

human error bounds expected with real listener tests. This represents an important step in

validating the use of auditory nerve models to predict speech intelligibility.

Chapter 5: Comparing hearing aid algorithm performance using Simulated

Performance Intensity Functions

In this chapter, simulated performance intensity functions are used to quantitatively discrimi-

nate speech intelligibility through phoneme discrimination assessment. Listener test results for

subjects with a wide range of sensorineural hearing losses are simulated using an auditory nerve

model and are compared to real listeners’ unaided and aided performance. Simulations of NAL-

RP and DSL 4.0 fitting algorithms are compared. The NSIM metric developed in Chapter 4

is used to quantify neurogram degradation. In this chapter, simulated responses to consonant-

vowel-consonant word lists in a quiet environment, at a range of presentation levels, are used

to produce phoneme discrimination scores. This chapter validates the use of auditory nerve
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models to predict speech intelligibility for different hearing aid fitting methods in a simulated

environment, allowing the potential for rapid prototyping and early design assessment of new

hearing aid algorithms.

Chapter 6: Hearing Aids and Temporal Fine Structure

The results presented in Chapter 5 demonstrated that, for a range of hearing impairments, the

Neurogram Similarity Index Measure (NSIM) could be used to simulate Performance Intensity

(PI) functions that reproduced the results for human listeners when measured on ENV neuro-

grams. This chapter looks at the results from the same simulated listener tests, using NSIM to

measure TFS neurogram similarity. The results for unimpaired listeners, and those of listeners

with gently sloping mild, flat moderate and flat severe SNHLs are compared in unaided and

aided scenarios. A second experiment looks at a novel approach with an adapted hearing aid

fitting algorithm and aims to improve the TFS information available for aided hearing impaired

listeners. In addition, the experiment demonstrates the potential application of auditory nerve

models in the development of new hearing aid algorithm designs.

Chapter 7: Conclusions

The final chapter reviews the central themes, applications and contributions of this thesis before

looking at some potential directions for future work.

1.2 Contributions of this thesis

This thesis developed the Neurogram Similarity Index Measure (NSIM), a novel, image process-

ing based measure to compare the similarity between auditory nerve discharge patterns. Using

this measure and a computational model of the auditory periphery, speech intelligibility can be

predicted for both normal and hearing impaired listeners. The contributions are summarised by

chapter in the list below.

Chapter 3

Demonstrated that the AN model can rank progressive SNHLs

Presented the first large scale test for speech with the AN model, using a variety of speakers

and a range of presentation levels

Identified the potential for the use of an image similarity measure (SSIM) rather than a

basic point-to-point error metric in neurogram comparison

Chapter 4

Developed the Neurogram Similarity Index Measure (NSIM), an optimised similarity met-

ric for speech neurogram assessment
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Proposed a methodology for simulating performance intensity function measurements in

quiet and noise to predict speech intelligibility for normal hearing listeners

Validated the reliability of simulating performance intensity function’s phoneme discrimi-

nation predictions in normal hearing listeners and compared results with SII

Chapter 5

Validated the reliability of simulating performance intensity functions using NSIM for a

range of SNHLs

Compared the predicted speech intelligibility improvements provided by two hearing aid

fitting prescriptions

Chapter 6

Compared the loss of fine timing cues compared to envelope cues for a range of SNHLs

Proposed a new hearing aid fitting algorithm to optimise both envelope and fine timing

cues and simulated tests to predict the speech intelligibility compared to a standard fitting

algorithm

1.3 Publications

Portions of the work described in this thesis have appeared in the following publications:

1.3.1 Journal

A. Hines and N. Harte. Speech intelligibility from image processing. Speech Communica-

tion, 52(9):736–752, 2010.

A. Hines and N. Harte. Reproduction of the performance/intensity function using image

processing and a computational model (A). International Journal of Audiology, 50(10):

723, 2011.

A. Hines and N. Harte. Speech intelligibility prediction using a Neurogram Similarity

Index Measure. Speech Communication, 54(2):306–320, 2012.

1.3.2 Conference Papers

A. Hines and N. Harte. Measurement of phonemic degradation in sensorineural hearing

loss using a computational model of the auditory periphery. In Irish Signals and Systems

Conference (IET), UCD, Dublin, 2009.

A. Hines and N. Harte. Error metrics for impaired auditory nerve responses of different

phoneme groups. In Interspeech, pages 1119–1122, Brighton, 2009.
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A. Hines and N. Harte. Evaluating sensorineural hearing loss with an auditory nerve model

using a mean structural similarity measure. In European Signal Processing Conference

(EUSIPCO ’10), Aalborg, Denmark, August 2010.

A. Hines and N. Harte. Comparing hearing aid algorithm performance using Simulated

Performance Intensity Functions. In Speech perception and auditory disorders, Int. Sym-

posium on Audiological and Auditory Research (ISAAR), Denmark, 2011.

A. Hines and N. Harte. Simulated performance intensity functions. In Engineering in

Medicine and Biology Society Conference (EMBC), EMBS (IEEE), Boston, USA, 2011.

1.3.3 Other Conference Posters and Presentations

Oral presentation at the British Society of Audiology Conference, Manchester, UK, August

2010.

Poster presented at IHCON 2010 International Hearing Aid Research Conference, Lake

Tahoe, CA, USA, August 2010.
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Background

Evolution has developed the internal ear into a biological sub-system that is miniaturised and

optimised for both performance and efficiency. Modern behind-the-ear hearing aids are similar

in size to the mechanics of the auditory periphery. They are powered by small batteries that

need to be replaced every few days at 1.4V with power dissipation of around 5mW and up to

10kHz frequency range. The ear uses about 14 microwatts of power at 150 mV levels and a

frequency span of 10 octaves. The magnitude of the gulf between the biological and electronic

is massive on every metric of efficiency and accuracy.

Despite the inner ear complexity, research into the mechanisms of hearing has helped with

understanding the purpose and mechanism of the peripheral auditory system. Over the last

four decades, advances in modelling have allowed computational simulations to be designed that

can imitate the reaction from sound stimulus in to auditory nerve firing out with remarkable

accuracy. The main contributions of this thesis are focused on speech intelligibility prediction

through automated analysis of model outputs. This chapter seeks to introduce the auditory

periphery and a corresponding computational model at a high level, while still providing enough

detail to allow an appreciation of the model’s features.

2.1 Peripheral Auditory Anatomy and Physiology

Auditory anatomy is usually divided into four distinct parts: the outer, middle and inner ear

make up the auditory periphery and the final part is the central auditory nervous system (Fig.

2.1). While the central auditory nervous system and operation of the brain are critical in speech

7
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Figure 2.1: Illustration of the structure of the peripheral auditory system showing outer, middle

and inner ear. Reproduced from Moore [61], original illustration from Lindsay and Norman [49]

perception, little is known about how sound is processed into intelligible speech. According to

Shamma and Micheyl [76] the number of studies that look to investigate where and how auditory

streams are formed in the brain has increased enormously in the last decade. Neural correlates

have been found in areas traditionally unassociated with auditory processing, leading to sug-

gestions that wider neural networks are involved than was previously thought. Conversely, the

peripheral auditory system has been studied in detail and is well understood from an anatomical

perspective. It can essentially be treated as a mechanical system and hence its operation can

be modelled.

2.1.1 Outer and Middle Ears

The outer ear consists of the pinna: the visible part of the ear made of skin and cartilage;

the concha or cave: the central cavity portion of the pinna; the external auditory canal: the

opening leading to the eardrum; and the tympanic membrane or eardrum which is constructed

of layers of tissue and fibres and is the boundary between the outer and middle ear. The primary

purpose of the outer ear is to collect acoustic energy. It also provides protection, amplification

and localisation functions.

The middle ear is made up of a cavity called the tympanum; the promontory, which is a

wall of bone between the middle and inner ear; and three ossicles, or middle ear bones, called

the malleus, incus and stapes. The middle ear operates mechanically on vibrations, providing



2.1. Peripheral Auditory Anatomy and Physiology 9

Figure 2.2: Cross-section of the cochlea, showing inner and outer hair cells and basilear mem-

brane. Reproduced from Moore [61], original illustration from Davis [20]

pressure equalisation and impedance matching. It transfers the stimulus received from the outer

ear via bone conduction, changes in air pressure and through the osscile bone chain.

2.1.2 Inner Ear

The inner ear structure is designed to transform input mechanical stimulus into neural informa-

tion which is passed to the central auditory nervous system. This is achieved using a complex

system of mechanical filtering, hydrodynamic distribution and electrochemical transduction.

Anatomically, the inner ear is made up of the vestibule and cochlea (Fig. 2.2). It also contains

the semi-circular canals which, although located in the ear, are used for balance rather than

hearing. The cochlea contains the basilar membrane, spiral ligament, oval and round windows

as well as three ducts or scala: scala vestibuli, scala tympani and, separating them, the scala

media. The vestibule contains hair cells that act as sensory receptor cells. In response to weak

sounds, the outer hair cells (OHCs) increase the amount of vibration and sharpen the tuning

in the basilar membrane. Inner hair cells (IHCs) transform vibrations in the basilar membrane

into action potentials through exciting an electro-chemical reaction that causes firings in the

auditory nerve. The hair cells are so called because of the hair-like tufts called stereocilia which

grow on them. There are approximately 30,000 stereocilia in humans which can be broken down
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into around 12,000 OHCs per ear and 3500 IHCs. The hair cells are connected to auditory nerve

fibres with approximately 20 fibres innervated by each IHC and 6 fibres per OHC.

2.1.3 Tuning on the Basilar Membrane

When a sound pressure wave enters the cochlea through the oval window it sets up a travelling

pressure wave along the basilar membrane which is tuned along its length to different frequencies

from high to low as it gets further from the stapes. At any given point, it will vibrate with

its largest displacement to a best frequency known as its characteristic frequency (CF). Tuning

curves can be measured showing the sound intensity level required to maintain a constant velocity

on the basilar membrane for a range of frequencies. Such curves can measure the increase in

sound pressure required to excite higher frequencies when auditory filters broaden with hearing

loss.

2.1.4 Auditory Nerve Characteristics

Without acoustic stimulation, auditory neurons will fire randomly at what is termed their spon-

taneous rate. According to Liberman [47], these neurons can be classified into three groups

with low, medium and high minimum firing rates. These groupings are also correlated with the

minimum thresholds of sound intensity to which the neuron is sensitive, with high spontaneous

rate neurons having thresholds close to 0 dB SPL and low spontaneous rates having a minimum

threshold of 80 dB SPL or more [61]. The dynamic range, when referring to auditory neurons,

is the intensity range at which a sound pressure wave will stimulate firing. It also varies with

low or medium spontaneous rate having a dynamic range between approximately 50 and 60 dB

and high spontaneous rate having a smaller range between 30 and 40 dB SPL [70].

When a sinusoidal waveform stimulation is presented, nerve firings or spikes tend to occur

during the positive half cycle of the stimulus period. This phenomenon is known as phase-

locking [68]. While every fibre does not fire on every cycle they will fire on integer multiples

of the stimulus period, meaning that a single neuron will provide definitive information about

the period of the stimulus by thorough analysis of its temporal firing pattern. This can be seen

by plotting a histogram of the interspike interval, as the frequency of the sinusoidal waveform

stimulation will determine the histogram distribution. An interspike interval histogram allows

the time interval between successive neural spikes to be measured with the time between spikes

on the x-axis and the number of spikes on the y-axis.

At the onset of a stimulus, the spike discharge rate rapidly rises over the first few milliseconds.

It then drops to a lower steady state for the duration of the stimulus period, which is known as

adaptation and can be illustrated using a poststimulus time histogram (PSTH), which graphs the

number of discharges at a given time for a repeated stimulus. Fig. 2.3 illustrates a PSTH output

for a tone burst generated from an auditory nerve model. As noted by Delgutte and Kiang [21],

adaptation is important in complex sounds such as speech where AN response over time is
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influenced by the prior stimuli as it increases the contrast in phoneme spectral characteristics,

irrespective of frequency.

Two-tone suppression is a reduction in the response of auditory nerve neurons to a tone

due to a secondary tone at a different frequency. The secondary tone suppresses the primary

tone, especially if it is at a higher intensity level. It can be demonstrated with a pair of tones:

an excitor and suppressor [71]. Even if the suppressor does not excite fibres directly itself, the

excitor tone may be suppressed. Suppression due to lower frequency sounds have a greater effect

than higher frequency suppressors.

Sinusoidal Input Stimulus: 10kHz, 50ms
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Figure 2.3: Post Stimulus Time Histogram (PSTH) to 1200 repetitions of a sinusoidal 10KHz

tone burst of 50ms with 5ms ramp-times (tone illustrated above). More discharges occur at the

onset of the tone before settling down (adaptation). After the burst there is a drop in activity

before spontaneous activity recovers (seen here from 120ms). This PSTH was created using the

Zilany et al. [102] model but shows the same characteristics as shown in AN fibre tests by Kiang

[46].

2.1.5 Beyond the Auditory Periphery

The functionality of the auditory periphery is well understood. The mechanisms at each stage

from the outer ear through to the auditory nerve have been studied and explained in more detail

than the central auditory system. A full understanding of how the central auditory system

translates the neural inputs into information remains elusive, as does a complete understanding

of the importance of individual components for speech intelligibility, source localisation and

attribution.
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2.2 Sensorineural Hearing Loss

There are two types of hearing impairments, conductive and sensorineural hearing loss (SNHL).

Conductive hearing loss can occur for a variety of reasons, such as a perforation of the tympanic

membrane or a tumour, or other blockage, in the ear canal. This can result in sound being poorly

conducted through the outer or middle ear, or a combination of both. Conductive hearing loss

does not impact the discrimination of sound and hence simple amplification can generally restore

conductive hearing loss.

Sensorineural hearing loss occurs when parts of the inner ear or auditory nervous system are

damaged. SNHL mainly occurs as a result of damage to hair cells within the inner ear. It is

sometimes broken down into either cochlear hearing loss, where the damage is to components

within the cochlea, or retrocochlear hearing loss, where the damage is to the auditory nerve or

higher levels of the auditory pathway, or both [61]. It can occur as a result of environmental or

genetic problems, or infection, but most commonly occurs with age. Using the World Health

Organization definition of hearing loss, which incorporates a number of hearing-related measures,

hearing loss prevalence in the United States in patients aged seventy and older is over 60% [48].

Increased life-expectancy has raised the overall numbers affected and recent studies have found

that it is also becoming more prevalent across the entire US adult population age range [1]. The

problem is significantly larger amongst the older population with prevalence doubling for each

age decade [31]. A recent study of data from 2005-2006 by Shargorodsky et al. [78] exhibits a

worrying trend with data for 12-19 year olds showing a one-third increase in hearing loss suffers

from a previous study a decade earlier.

SNHL results in a number of challenges that impair the ability to successfully discriminate

sounds. Damage to the outer hair cells can elevate hearing thresholds while damage to the inner

hair cells reduces the efficiency of information transduction to the auditory nerve. Inner hair cell

damage can also increase the amount of basilar membrane vibration required to reach threshold

levels resulting in elevated absolute thresholds.

SNHL has a number of symptoms; it can cause decreases in audibility, dynamic range,

frequency resolution, temporal resolution or a combination of these impairments. Decreased

audibility results in sounds below a threshold not being heard. This can cause serious speech

intelligibility problems, as speech is interpreted by the brain decoding the energy patterns in

particular frequency ranges. Decreased audibility may mean that critical components of some

phonemes are missed completely. Dillon [24] presents a good example: consider the vowels /oo/

and /ee/ which are indistinguishable by their first formant. A loss in audibility above 700Hz,

masking their second and higher formant frequencies, would leave both vowels audible but

sounding almost identical. Other phonemes, e.g. fricatives, would become completely inaudible.

This is illustrated in Fig. 2.4.

While decreased audibility could be counteracted with simple amplification, it is usually

accompanied by a second symptom of SNHL: decreased dynamic range. The dynamic range
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Figure 2.4: Illustration of decreased frequency resolution as the auditory filters broaden and fail

to distinguish between two independent peaks. The vowels /oo/ and /ee/ are indistinguishable

by their first formant. A loss in audibility above 700Hz, masking their second and higher formant

frequencies, would leave both vowels audible but sounding almost identical. (a) Input sound

spectrum with two peaks; (b) excitation experienced in auditory system for normal (dotted) and

SNHL impairment (solid line). Adapted from Dillon [24].

refers to the intensity range at which sound can be heard, meaning the range from the softest

sound perceived to the level of discomfort. This range decreases as the threshold level increases,

while the upper threshold of loudness discomfort remains static. Using simple amplification

to boost the audibility above the lower threshold ensures that weak sounds are not missed.

Unfortunately, this also causes sounds that would have normally been at a comfortable medium

or loud range to overshoot the upper boundary and become uncomfortably loud.

Hearing aids can be used to address these problems, using amplification of the signal to

counter the threshold degradation and by using limiting filters and compression to ensure the

signals are within a reduced dynamic range. However, decreased frequency resolution and tem-

poral resolution pose a more challenging problem.

Decreased frequency resolution is a reduction in the ability to separate and distinguish be-

tween different sounds at similar frequencies. This is due to decreased sensitivity in outer hair

cells and is particularly problematic in noisy situations, as the signal is interpreted as a single

broad frequency response, rather than as a number of tuned frequency peaks, as in Fig. 2.4.

This decreased ability to discriminate between harmonics and isolate formants, often referred to

as “the cocktail party effect” [14], is problematic as it causes a reduction in speech discrimination

ability.

Masking can also occur temporally, where stronger intensity sounds are followed or preceded

by weaker sounds. SNHL causes a reduction in temporal resolution resulting in increased hearing

difficultly in background noise, where the ability to pick out speech during the lulls in background

intensity decreases.
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When the inner hair cells in an area of the cochlea cease to function completely there will

be no transduction of basilar membrane vibration from that region. This has been termed a

“dead region” by Moore [60]. Dead regions can be described in terms of the characteristic

frequencies (CFs) of the surviving IHCs and neurons that are immediately adjacent to the dead

region. Basilar membrane vibration in a dead region can be detected via a spread of vibration

to adjacent regions. Hence, the true hearing loss at a given frequency may be greater than

suggested by the audiometric threshold at that frequency.

2.2.1 Thresholds and Audiograms

The absolute threshold is the minimum detectable level of a sound in the absence of any other

external stimulus (i.e. noise). There are a number of ways of defining and measuring a subject’s

sensitivity to sound. Free field measurements are usually done in a sound proof, reflection-

minimising anechoic room with speakers presenting the stimulus to yield a minimal audible field

(MAF) measurement. Real ear measurements are done using a probe microphone placed in

the auditory canal while the subject wears earphones or headphones which yields a minimum

audible pressure (MAP). Both MAF and MAP are absolute measurements and are plotted as

an absolute threshold (dB SPL) on the vertical axis versus frequency (Hz) on the horizontal

axis. These differences, along with whether a subject is tested binaurally or monaurally, are

important calibration factors as they have significant impact on baseline hearing threshold.

The audiogram is the common method of defining thresholds in audiology. While it can be

defined in terms of an absolute threshold, it is usually specified relative to the average threshold

of a young, healthy adult with unimpaired hearing. The general convention for audiograms is

to specify the relative hearing level offset from the normal, in dB HL, descending on the vertical

axis, and frequency in 8 octaves from 250 Hz to 8 kHz on the horizontal axis. Sometimes

audiologists will also measure hearing threshold levels at half octaves: 750, 1.5, 3 and 6 kHz.

An example audiogram is shown in Fig. 2.5.

2.3 Auditory Periphery Model

Modelling the auditory periphery can be approached in different ways. The auditory nerve (AN)

model can be a phenomenological based model, i.e. it matches its responses to experimental re-

sults measured for physiological tests. As physiological tests on the auditory nerve are invasive,

they are generally carried out on animals with similar auditory anatomies and response charac-

teristics as humans, such as cats or chinchillas. An alternative is to carry out psychoacoustic

tests on humans and develop a model that is perceptually, rather than physiologically, derived.
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Figure 2.5: Sample audiogram showing hearing thresholds for a subject with a moderate sen-

sorineural hearing loss.

2.3.1 Phenomenological Models

This work used the cat AN models which were developed and validated against physiological data

by Zilany and Bruce [97] and Zilany et al. [102]. The ultimate goal of the models is to predict

human speech recognition performance for both normal hearing and hearing impaired listeners

[100]. To date, no model claims to fully implement all the current knowledge of physiological

characteristics, specifically: fibre types, dynamic range, adaptation, synchronisation, frequency

selectivity, level-dependent rate and phase responses, suppression, and distortion [51]. This AN

model builds upon several efforts to develop computational models including Deng and Geisler

[22], Zhang et al. [96] and Bruce et al. [11]. A schematic diagram of the model is presented in

Fig. 2.6. Zilany and Bruce [97] demonstrated how model responses matched physiological data

over a wider dynamic range than previous models by providing two modes of basilar membrane

excitation to the inner hair cell rather than one.

The Deng and Geisler [22] design sought to account for synchrony capture but was unable

to deal with longer duration signals due to round-off errors accumulating. It sought to model

both suppression and adaptation but not two-tone suppression or basilar membrane (BM) com-

pression. The Zhang et al. [96] model featured non-linear tuning with compression. Two tone

suppression was handled through a broad control path with respect to the signal path. Com-

pression (level dependant gain) was also implemented. The signal path was implemented with a

fourth order gammatone filter. The choice of filters used to implement filterbanks in AN models

has changed with each iterative improvement, seeking to compromise between providing filter

asymmetry that matches the cochlea, while at the same time having a simplicity of description,

controllable bandwidth, stability and peak-gain variation [54].
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The design of Bruce et al. [11] modelled both normal and impaired auditory peripheries. It

looked at aspects of the damage within the periphery such as inner hair cells (IHC) and outer hair

cells (OHC) damage and the effects on tuning versus compression. Two-tone rate suppression

and basilar membrane compression were supported and a middle ear filter was added.

The Zilany and Bruce [97] model, used in Chapter 3, built upon the previous designs and

was matched to physiological data over a wider dynamic range than previous auditory models.

This was achieved by providing two modes of basilar membrane excitation to the IHC rather

than one. The gammatone filter was replaced by a tenth order chirp filter. The model responses

are consistent with a wide range of physiological data, from both normal and impaired ears, for

stimuli presented at levels spanning the dynamic range of hearing. It has been used in recent

studies of hearing aid gain prescriptions [25] and optimal phonemic compression schemes [9].

The model development has continued and it has been extended and improved. In Chapter

4, their new model [102] was used, which includes power-law dynamics as well as exponential

adaptation in the synapse model. Changes to the AN model, to incorporate human cochlear

tuning (e.g. those used by Ibrahim and Bruce [39]), were not implemented as currently a

difference in tuning between the human cochlea and that of common laboratory animals has not

been definitively shown [94].

The schematic diagram of the AN model (Fig. 2.6) illustrates how model responses match

physiological data over a wider dynamic range than previous models by providing two modes of

basilar membrane excitation to the inner hair cell rather than one. The new power law additions

are shown in the grey box.

The model is composed of several modules each providing a phenomenological emulation of

a particular function of the auditory periphery. First, the stimulus is passed through a filter

mimicking the middle ear. The output is then passed to a control path and a signal path. The

control path handles the wideband BM filter, followed by modules for non-linearity and low-pass

filtering by the OHC. The control path feeds back into itself and into the signal path to the

time-varying narrowband filter. This filter is designed to simulate the travelling wave delay

caused by the BM before passing through the IHC non-linear and low-pass filters. A synapse

model and spike generator follow, allowing for spontaneous and driven activity, adaptation,

spike generation and refractoriness in the AN. The model allows hair cell constants CIHC and

COHC to be configured, which control the IHC and OHC scaling factors and allow SNHL hearing

thresholds to be simulated.

The code for the 2007 model [10] and 2009 model [101] are shared by the authors and are

available for download. It should be noted that no attempt was made in this work to extend

or validate the AN model. It was treated as a black box system and used as provided. Where

required for free field listening simulation, signals were filtered to simulate out-ear gains from

Wiener and Ross [91] before presentation to the AN model.
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Figure 2.6: Schematic diagram of the AN model. Adapted from Zilany and Bruce [97]. The

grey area is the additional power law module added by Zilany et al. [102] and used in Chapters

4 - 6. In this thesis, speech signals are presented as the stimulus and the output is a series of AN

spike times that are used to create neurograms. The model is composed of a number of modules

simulating the middle ear, inner and outer hair cells, synapse and a pseudo-random discharge

spike generator.

2.3.2 Perceptual Models

Although not used in this work, other researchers have used perceptual models to predict speech

intelligibility. Models such as those of Meddis [58] and Dau et al. [19] were developed with the

goal of having a model that matched human perceptions. Thus, tests were carried out on humans

which were then matched to the model outputs.

The Dau model uses a gammatone filterbank to simulate the frequency selectivity within

the cochlea. It acts as a bandpass filter, and segments the input signal into equally spaced

1-ERB bandwidth (equivalent rectangular bandwidth [62]) between 100 and 8,000 Hz. As with

the phenomenological models, each band is then processed separately. The basilar membrane

transformation of potential differences on inner hair cells is simulated with half-wave rectification

and low-pass filtering. Adaptation is simulated using five non-linear adaptation loops with cut-

off frequencies that were determined using psychoacoustic masking experiments. The original

model did not handle upward spread of masking, two-tone suppression or combination tones.
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2.4 Neurograms

2.4.1 Speech Signal Analysis

Rosen [69] breaks the temporal features of speech into three primary groups: envelope (2-50 Hz),

periodicity (50-500 Hz) and temporal fine structure (600 Hz and 10kHz). The envelope’s relative

amplitude and duration are cues and translate to manner of articulation, voicing, vowel identity

and prosody of speech. Periodicity is information on whether the signal is primarily periodic or

aperiodic, e.g. whether the signal is a nasal or a stop phoneme. Temporal fine structure (TFS)

is the small variation that occurs between periods of a periodic signal or for short periods in an

aperiodic sound and contains information useful to sound identification such as vowel formants.

Others [52; 77; 80] group the envelope and periodicity and refer to it as envelope (E or

ENV). ENV speech has been shown to provide the necessary cues for greater than 90% phoneme

recognition (vowels and consonants) in quiet with as little as four frequency bands [77], where

the frequency specific information in a broad frequency was replaced with band limited noise.

Cochlear implants only contain in the order of eight to 16 electrodes. They provide users with

an ENV only input that lacks the finer temporal cues. This has led to recent studies focused

on the contributions of ENV and TFS. Smith et al. [80] looked at the relative importance of

ENV and TFS in speech and music perception, finding that recognition of English speech was

dominated by the envelope while melody recognition used the TFS. Xu and Pfingst [93] looked

at Mandarin Chinese monosyllables and found that, in the majority of trials, identification was

based on TFS rather than ENV. Lorenzi et al. [52] suggested that TFS plays an important role

in speech intelligibility, especially when background sounds are present, and that the ability

to use TFS may be critical for “listening in the background dips”. They showed that hearing

impaired listeners had a reduced ability to process the TFS of sounds and concluded that

investigating TFS stimuli may be useful in evaluating impaired hearing and in guiding the

design of hearing aids. Work by Bruce et al. [9] compared the amplification schemes of National

Acoustics Laboratory, Revised (NAL-R) and Desired Sensation Level (DSL) to find an optimal

single-band gain adjustment, finding that the optimal lay in the order of +10dB for envelope

evaluations but -10dB to optimise with respect to TFS. The relationship between the acoustic

and neural envelope and TFS was examined by Heinz and Swaminathan [34] where it was noted

that envelope recovery may occur due to narrowband cochlear filtering, which may be reduced

or not present for listeners with SNHL. Even though the underlying physiological bases have not

been established from a perceptual perspective, current research indicates that there is value in

analysing both ENV and TFS neurograms. While ENV is seen as more important for spoken

English, the importance of TFS to melody, Mandarin Chinese, and to English in noise, suggests

that, when looking to optimise hearing aids to increase speech intelligibility to those with SNHL

both ENV and TFS restoration should be measured.

As shown by Smith et al. [80], a signal decomposition into the product of a slowly changing

envelope and a rapidly varying fine temporal structure can be achieved using a Hilbert transform,
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Figure 2.7: A sample signal, the word “ship”. The top row shows the time domain signal. Below it, the

normalised envelope and temporal fine structure are presented, calculated using a 30 band filter.

where a signal, S(t), composed of N frequency bands

S(t) =
N

∑

k=1

Sk(t) (2.1)

can be separated into an amplitude ENV component, Ek(t), and a TFS instantaneous phase

component, cos(φk(t)), as

Sk(t) = Ek(t). cos(φk(t)) (2.2)

The ENV component here combines both the envelope and periodicity, using the terminology

defined by Rosen [69]. An example word, “ship”, is presented in Fig. 2.7, where the signal and

its extracted ENV and TFS components are shown. Fig. 2.8 shows a short segment of the

signal at the transition between the fricative (/sh/) and vowel (/ih/) phonemes. The changes

in both ENV and TFS are visually apparent, with both the higher frequency components and

noiselike randomness of the /sh/ at the beginning evident, followed by the more periodic and

lower frequency repetitions in the vowel.
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Figure 2.8: A snapshot of the previous figure showing the fricative vowel changeover time. This shows

the periodic nature of the vowel captured in the ENV and the TFS with the higher frequency component

of the /sh/ phoneme evident in the TFS.

2.4.2 Neurogram representations of speech

The subjective inspection of auditory-nerve discharge patterns for responses from single and

multiple AN fibres has been used as a methodology for assessing how representations from

those with sensorineural hearing loss (SNHL) differ from the normal [72]. AN models allow

repetitions and simulation on a scale that would be impractical for clinical testing with animals.

They also provide the capability to test in a time synchronised manner for the same signal

across a range of characteristic frequencies. Neurogram representations can be produced from

the AN model output. The AN model takes speech waveforms, resampled at 100kHz, with

instantaneous pressures in units of Pascal. These are used to derive an AN spike train for a

fibre with a specific characteristic frequency (CF). Running the model at a range of CFs allows

neurogram outputs to be generated. A neurogram is analogous to a spectrogram as it presents a

pictorial representation of a signal in the time-frequency domains using colour to indicate activity

intensity. In this work, neurograms with 30 CFs were used, spaced logarithmically between 250

and 8000 Hz. This closely tracks the cochlear frequency map [32]. The neural response at each

CF was created from the PSTH of 50 simulated AN fibres with varying spontaneous rates. In

accordance with Liberman [47] and as used for similar AN Model simulations [9; 25], 60% of the
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Figure 2.9: A sample signal, the word “ship”. The top row shows the time domain signal, with the

time-frequency spectrogram below it. The ENV and TFS neurograms are below.

fibres were chosen to be high spontaneous rate (>18 spikes/s), 20% medium (0.5 to 18 spikes/s),

and 20% low (<0.5 spikes/s). The spike train output from the AN model is used to create a

post-stimulus time histogram (PSTH) with 10µs and 100µs bin sizes. Fig. 2.10 shows example

PSTHs for the same fricative vowel transition shown in Fig. 2.8.

These two rates allow temporal frequency coding and average-rate intensity coding to be

analysed. The PSTH is normalised to spikes per second and the frequency response of the PSTH

over time is calculated as the magnitude of the discrete short-time Fourier transform (STFT),

smoothed by convolving them with a 50% overlap, 32 and 128 sample Hamming window, for

TFS and ENV responses respectively.

Both temporal fine structure (TFS) neurograms and average discharge rate or temporal

envelope (ENV) neurograms display the neural response as a function of CF and time. The TFS

neurogram retains the spike timing information showing fine timing over several microseconds;

while the ENV neurogram is an average discharge rate with time resolution averaged over several

milliseconds. The neurograms allow comparative evaluation of the performance of unimpaired

versus impaired auditory nerves.

An example signal, the word “ship”, presented to a normal AN, is presented in Fig. 2.9. The

top row shows the time domain signal. Below it, the spectrogram presents the sound pressure

level of a signal for frequency bands in the y-axis against time on the x-axis. ENV and TFS

neurograms are then shown. The colour represents the neural firing activity for a given CF
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band in the y-axis over time in the x-axis. The fine timing information of neural spikes is

retained and presented in TFS neurograms (Fig. 2.11), while the ENV neurogram smoothes the

information and presents an average discharge rate using a larger bin and a wider Hamming

window (Fig. 2.12). Figs. 2.11 & 2.12 illustrate how the phase-locking evident in the PSTH data

at the beginning of the vowel (transition between 0.38-0.39s) is visible in the TFS neurogram

but has been smoothed and averaged in the ENV neurogram.

When referring to neurograms, the terms ENV and TFS are distinct from, although related

to, the corresponding audio signal terms. Although the ENV and TFS neurograms allow au-

ditory nerve firing rates to be investigated at different time resolutions they are not the strict

isolating metrics of acoustic ENV and TFS [52; 80]. As the ENV neurogram is a smoothed

average discharge rate, only slow temporal modulations will be available, which allows the en-

velope information that is embedded to be assessed. TFS neurograms preserve spike timing

information and the synchronisation to particular stimulus phase, or phase-locking phenomenon

[94], allowing TFS cues to be examined.
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Figure 2.10: Above: PSTH (10µs bin); Below: PSTH (100µs bin). Both show the output

discharge rate (spikes/second) for 50 repetitions to models using varying spontaneous rate AN

fibres. In both PSTH, six of 30 simulated CF bands are shown. Phase locking can be seen in

the lower frequency bands as the vowel begins at around 0.38s. Comparing the two PSTHs, the

discharge rate information has been smoothed with the larger bin size.
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Figure 2.11: TFS Neurogram information after applying STFT and Hamming window to PSTH

to obtain DC intensity value. Above: Six of 30 simulated CF bands are shown, highlighting

how the individual spiking discharge information is retained. Below: TFS neurogram with 30

CF bands and the rate illustrated with colour from dark blue (low) to light blue (high).
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Figure 2.12: ENV Neurogram information after applying STFT and Hamming window to PSTH

to obtain DC intensity value. Above: Six of 30 simulated CF bands are shown, highlighting

how the individual spiking discharge information is lost and replaced with an average discharge

curve. Below: ENV neurogram with 30 CF bands and the rate illustrated with colour from blue

(low) to red (high). The low frequency vowel formants can be seen in red from 0.38s.
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Figure 2.13: Examples of phonemes from the 6 TIMIT phoneme groupings. For each example

phoneme, the pressure wave, signal spectrogram, ENV and TFS neurograms are shown. The

spectro-temporal similarities can be seen between similar sounding groups, e.g. affricates and

fricatives; glides and vowels. The relationship between the ENV neurogram and spectrogram is

also apparent with auditory nerve activity occurring in similar characteristic frequency bands

to the input signal intensity seen in the corresponding spectrogram frequencies.

2.5 Speech Perception and Intelligibility

2.5.1 Speech Perception

How we perceive speech can be better understood by looking at the components of the process,

from speech production through to language and reception in the auditory system. Thinking

in signal processing terms, it can be modelled as a transmitter, channel and receiver. In this

scenario, the stimulus is a complex speech waveform produced by air pressure along the vocal

chords and vocal tract. The pitch or fundamental frequency (f0) and formants (f1, f2, f3, ...) are

the components of the stimulus that help differentiate the different speech sounds, which are
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called phonemes. These basic units of speech can be arbitrarily grouped in different ways, but

they are generally categorised based on their structure. For example, the TIMIT test set [18]

groups them into 6 phoneme groups: fricatives, affricates, stops, vowels, semi-vowels and glides.

An example phoneme from each group is presented in Fig. 2.13. Formant transitions can be

seen in the spectrograms of signals over time, as the phoneme utterance changes. An example is

the difference between the spectrograms of /ba/ and /da/, where the consonant-vowel transition

is differentiated by an increase in F2 frequency for /ba/ and a decrease for /da/. An example

of the spectrograms are shown in Fig 2.14.
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Figure 2.14: Spectrograms for the sounds /ba/ and /da/. The consonant-vowel transition is

differentiated between t=0 and 0.1 seconds as a small increase in F2 frequency for /ba/ and a

decrease for /da/.

Speech perception relies on an interpretation of the acoustic properties of speech and the

previous example illustrates how speech uses formants and formant transitions to encode both

spectral and temporal cues. The mechanisms used to process this information through the

auditory system and present it to the brain was covered in Section 2.1.

Speech perception is a challenge for hearing impaired listeners with difficulties in discrim-

ination of speech increasing as the level of SNHL increases. While reduced audibility and an

increasing speech reception threshold (SRT) are the primary problem, other factors have been

the focus of research and debate for a number of decades. These are the challenges that make

dealing with hearing impairment more than a question of simply “turning up the volume”.

According to Moore [61], evidence from the body of research points towards audibility as the

primary factor for mild hearing losses with discrimination of supra-threshold stimuli a significant

added factor for severe and profound hearing losses.

2.5.2 Quantifying Audibility

The process of speech production and reception, when viewed as a functional block diagram,

can be seen as a number of distinct stages, as illustrated in Fig. 2.15. A message is created

and encoded in language within the speaker’s brain. It then undergoes a modulation into an



28 Background

channel

Speech Signal

(Tx.)

Auditory

Periphery

Vocal tract/

chords/mouth/

lips

brain brain

(Rx.)

(Modulate) (+Distortion/Noise) (Demodulate) (Decode)(Encode)

Idea

language language

Idea

Figure 2.15: A functional block diagram showing the transmission of an idea from a speaker to

a listener. The idea is encoded via language and modulated in vocalisation. It is transmitted

through a channel which distorts the signal with noise and is received via the auditory periphery

when it is demodulated and presented to the brain where the language is decoded and the idea

received. An AN model can be substituted for the auditory periphery, and the channel can be

thought of as including this functional block, thereby assessing the noise and distortions to the

signal after demodulation and presentation along the auditory nerve.

air pressure wave through the vocal chords, vocal tract and out of the mouth into a channel

medium. Depending on where the speaker is situated, e.g. inside a room, a quiet environment

or at a party with background babble, noise is added to the signal in the channel. The signal is

received by the pinna of the listener’s ear and uses the auditory periphery to demodulate and

presents the encoded signal along the auditory nerve to the listener’s brain where the signal

language is decoded by the brain.

An audio signal can be corrupted in the channel by static noise. For example, additive white

Gaussian noise can interfere with a signal by spectrally masking its features. Additionally, a

signal can be distorted temporally by corruptions such as reverberation.

Quantitative prediction of the intelligibility of speech, as judged by a human listener, is

a critical metric in the evaluation of many audio systems, from telephone channels through

to hearing aids. A number of metrics have been developed to measure speech intelligibility,

including static measures (AI/SII), temporal measures (STI) and measures taking account of

the physiological effects of the auditory periphery (e.g. STMI and NAI, which are introduced in

Sections 2.5.7 & 2.5.8). While SII and other measures have being adapted to allow prediction

of speech intelligibility, due to reduced thresholds as a result of SNHL, their formulae are based

on empirical findings rather than on a simulation of the impairment of the biological system.

The use of a model to simulate the auditory periphery allows effects beyond the channel into

the demodulation of the signal by the listener’s ear to be assessed and quantified.

2.5.3 Speech Intelligibility and Speech Quality

Speech can be assessed in terms of multiple factors and while this work focuses on intelligibility,

the distinction between intelligibility and a related but not equivalent factor, speech quality,
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should be addressed.

Speech quality is a very subjective factor as it can be evaluated differently from person to

person for the same speech sample. One person’s average can be another person’s good, making

it difficult to quantify consistently as the variability in the listener’s categorisation can be as

large as that of the quality range. Quality also takes into account features of the speech that

the listener may find annoying, e.g. too high pitched or too nasal, that influence the quality

score but not necessarily the recognition or intelligibility of the speech content.

At the extreme, both quality and intelligibility rankings will converge, as a speech signal

that is inaudible will rank poorly in terms of both quality and intelligibility. Correlates have

been examined by Voiers [86], who gives the example of infinite peak clipping as a form of

amplitude distortion that has relatively small impact on intelligibility but seriously affects the

aesthetic quality of speech. It should be noted that improving quality may not positively affect

intelligibility and could even reduce it, through filtering noise and impacting the speech cues at

the same time, making the quality better but the intelligibility worse.

The ITU standard for speech quality assessment, Perceptual Evaluation of Speech Quality

(PESQ) [40] was developed to quantify speech quality. Work to assess quality using an auditory

model has also been undertaken, e.g. the Hearing-Aid Speech Quality Index (HASQI), developed

by Kates and Arehart [45].

2.5.4 Speech Intelligibility Index and Articulation Index

The Articulation Index (AI) was developed as the result of work carried out in Bell Labs over

a number of decades. It was first described by French and Steinberg [27] and was subsequently

incorporated into the standard which is now entitled ANSI S3.5-1997 (R2007), “Methods for

the Calculation of the Speech Intelligibility Index” (SII) [2]. Additions to AI mean that SII

now allows for hearing thresholds, self-masking and upward spread of masking as well as high

presentation level distortions.

The AI measure is described as a range from 0 to 1 or a percentage, where 1 represents perfect

information transmission through the channel. As summarised by Steeneken and Houtgast [81],

computing the AI consists of 3 steps: calculation of the effective signal-to-noise ratio (SNR)

within a number of frequency bands; a linear transformation of the effective SNR to an octave-

band-specific contribution to the AI; and a weighed mean of the contributions of all relevant

octave bands. The original definition of AI summed over twenty equally spaced, with contiguous

frequency bands the equal 5% contributions , Wi, is

AI =
1

20

20
∑

i=1

Wi. (2.3)

SII extends AI to allow frequency bands to be spaced in a range of ways (e.g. octave, third-

octave, or critical bands) and to assign a weighting to each frequency band in terms of the band’s
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importance to carrying speech information.

SII is a useful tool in predicting audibility and the calculation methodology will account for

any masking of speech due to absolute hearing thresholds or noise masking. This allows the

amount of information being lost to be calculated and scored as a measure of intelligibility. The

SII score is not a percentage speech recognition predictor and in order to get a word or phoneme

recognition score from SII, a transfer function for the specific test material or word set needs to

be used. These have been calculated for several speech tests [2; 83].

2.5.5 Speech Transmission Index

Steeneken and Houtgast [81] proposed an alternative temporal metric, called the Speech Trans-

mission Index (STI). Like AI, STI was developed to predict speech intelligibility loss due to

channel effects and was validated for noise echoes and reverberation. It handles distortion in

the time domain using an underlying Modulation Transfer Function (MTF) concept for the

transmission channel. It is an indirect speech intelligibility metric as it is focused on how intel-

ligibility is affected by the channel between speaker and listener. The MTF, developed for STI,

was incorporated in the ANSI standard for SII.

2.5.6 Speech Intelligibility for Hearing Impaired Listeners

While SII has been shown to predict speech intelligibility for normal hearing listeners and rea-

sonably well for mild hearing losses [65], it tends to over-predict at high sensation levels and

under-predict for low sensation levels, especially for people with severe losses [15].

There have been a number of proposed changes to SII to allow speech intelligibility to be

predicted with better accuracy for hearing-impaired listeners, e.g. [15; 67], but SII remains,

fundamentally, a measure of audibility. An interesting point highlighted by Moore [61], based

on the results from Turner et al. [85], is that detection of speech may not drop as quickly

as intelligibility of speech because while detection requires audibility, intelligibility depends on

multiple cues over a wider frequency range.

An alternative approach has been to use models of the auditory periphery to simulate the

impairments that occur with SNHL as hair-cells deteriorate in performance and to measure the

simulated outputs and quantify the results into an intelligibility metric.

A number of metrics have been developed to measure speech intelligibility by taking account

of the physiological effects of the auditory periphery. The Perception Model (PeMo) of Jurgens

and Brand [42] uses phoneme based modelling to correlate simulated recognition rates with

human recognition rates. STMI and NAI also aim to predict speech intelligibility from internal

representations of speech produced from AN models.

2.5.7 Spectro-Temporal Modulation Index (STMI)

Elhilali et al. [26] presented a Spectro-Temporal Modulation Index (STMI) for assessment of
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speech intelligibility using biologically motivated techniques. Their primary motivation was to

employ an auditory model to allow the analysis of joint spectro-temporal modulations in speech

to assess the effects of noise, reverberations and other distortions.

STMI can be applied directly to a transmission channel or indirectly via noisy recordings of

a channel. As such, it is not a full reference measure that requires access to the channel to get

a clean standard to measure against. It carries out a short term Fourier transform (STFT) and

smoothing across 8 ms which puts it in the ENV category in terms of temporal resolution. The

effects of TFS are not addressed. The metric is a relative mean squared error of spectro-temporal

response fields between the noisy token (N) and clean template (T )

STMIT = 1 −
||T − N ||2

||T ||2
(2.4)

where ||T −N ||2 is taken to be the shortest distance between the noisy and clean token and

is taken relative to the clean token reference, ||T ||2. The superscript T is used to emphasize that

a speech template is used as the clean reference.

STI works best with separable distortions in terms of frequency and time, e.g. either static

white noise which distorts across the spectral bands or reverberation which distorts temporally.

STMI can deal with predictions where either or multiple distortions occur. Results were com-

pared to human tests as well as STI. STMI was shown to be sensitive to non-linear distortions

(e.g. phase jitter) to which simpler measures, like STI, were not sensitive.

STMI is a good example of using biologically inspired algorithms, in the form of the AN

model, to predict effects in the transmission channel. It was not used in this case to predict

hearing loss or to extend the channel definition to include the auditory periphery, however it

shows the potential of modelling to intelligibility prediction. Bruce et al. [9] used STMI in

combination with the AN model [97], to show that the metric was able to produce qualitatively

good predictions of rollover in intelligibility at high presentation levels. They also measured

audibility for unaided hearing impaired listeners and the effects of background noise.

2.5.8 Neural Articulation Index (NAI)

The Neural Articulation Index (NAI), developed by Bondy et al. [4], estimates speech intelligi-

bility from the instantaneous neural spike rate over time, produced when a signal is processed

by an auditory neural model. From a temporal resolution perspective, it is focused on dis-

charge rates at a TFS rather than an ENV level. The NAI uses band weightings and compared

favourably with intelligibility predictions of STI. The authors point out that, while NAI is more

computationally complex than STI, it can be used for hearing impairment intelligibility appli-

cations where AI and STI are only able to account for threshold shifts in hearing loss, and not

for sensorineural supra-threshold degradations. This was examined by Schijndel et al. [74] who

found that, for SNHL listeners, detection thresholds for distortions in spectral information were

significantly higher than for normal hearing listeners, while thresholds in intensity and temporal
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information distortion thresholds were not significantly different.

Testing was carried out with a consonant-vowel-consonant Dutch word corpus. The method-

ology was restricted to simulating high spontaneous rate fibres only and it ignored the effects

of neural refractoriness (i.e. the amount of time before another AN firing can occur) by using

the synaptic release rate to approximate the discharge rate. NAI measures over seven octave

frequency bands between 125 and 8000 Hz. These approximation restrictions to the simulation

were taken to avoid having to generate many spike trains when building up estimates of discharge

rates over each CF band. The neural distortion error (ǫij) for the ith frequency band and jth

impaired condition is calculated as a projection of the degraded (~d) instantaneous spike discharge

rate vector against the reference (~r) spiking rate vector and normalised with the reference

ǫij = |1 −
~ri

~dij
T

~ri~ri
T
| (2.5)

This is essentially a correlation metric that is then weighted as per band importance weighting

(similar to those used in STI but calculated specifically for neural representations) and summed

NAIj =
N

∑

i=1

αi · ǫi (2.6)

where αi is the band importance weighting and the ǫi is from eqn. 2.5.

The metric was used by Bondy et al. [3], in a study that aimed to design a hearing aid by

re-establishing a normal neural representation through a technique named neurocompensation.

The input stimulus used was long term average speech shaped (LTASS) noise. As NAI is not a

direct intelligibility metric, it was used to provide a relative indicator between the hearing aid

strategies tested.

2.6 Image Similarity Metrics for Neurogram Comparisons

The use of an AN model allows simulated neurograms to be created from inputs under a variety

of conditions. For example, neurograms from the same speech segment, produced at a variety of

intensities can be compared (i.e. the same speech input presented at different dB SPL levels).

This is illustrated in Fig. 2.16. The same can be done for speech signals masked by noise such

as reverberation, white noise or speech babble. It is also possible to configure the AN model

to simulate a hearing impairment, allowing neurogram outputs for normal hearing listeners to

be compared to those for a given set of SNHL thresholds. Inputs can be evaluated for different

impairments using identical input conditions to produce comparable output neurograms which

will be aligned in their time axis. As a result, a neurogram from an unimpaired AN model can

be treated as a reference image to compare neurograms for impaired hearing outputs. Example

ENV and TFS neurograms from an unimpaired AN model and a range of modelled SNHLs can

be seen in Figs. 3.1 and 3.2.
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Figure 2.16: A sample signal, the word “ship”. The top row shows the time domain signal, with the

time-frequency spectrogram below it. Three sample ENV neurograms for the same signal presented to

the AN model at 65, 30 and 15 dB SPL signal intensities are presented.

2.6.1 Mean Squared Error and Mean Absolute Error

Mean squared error (also know as Euclidean distance) is a commonly used full-reference quality

metric, i.e. a test image is measured against a known, error free, original image. It measures

the average magnitude of errors on a point to point basis between two images. It is a quadratic

score where the errors are squared before averaging which gives a higher weighting to larger

errors. Mean absolute error is a similar measure, the difference being that it is a linear score

where individual differences are weighted equally.

The relative mean absolute error (RMAE) metric was used in work by Bruce et al. [9] to

compare neurograms from an AN model. As MAE is an unbounded scale, comparatively, it is

meaningless without normalisation. Thus for a given unimpaired representation x(i, j), defined

on the integer time-frequency grid and an impaired representation y(i, j), the RMAE, calculated

relative to the mean unimpaired representation is,
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RMAE =

∑

|x(i, j) − y(i, j)|
∑

|x(i, j)|
(2.7)

For comparative purposes, a relative mean squared error (RMSE) can be calculated in a

similar fashion as:

RMSE =

√

∑

|x(i, j) − y(i, j)|2
∑

|x(i, j)|2
(2.8)

2.6.2 Structural Similarity Index (SSIM)

The structural similarity index (SSIM) was proposed by Wang et al. [90] as an objective method

for assessing perceptual image quality. It is a full-reference metric, so as with MSE, it is measured

against a known, error free, original image. The metric seeks to use the degradation of structural

information as a component of its measurement, under the assumption that human perception

is adapted to structural feature extraction within images. It was found to be superior to MSE

for image quality comparison and better at reflecting the overall similarity of two pictures in

terms of appearance rather than a simple mathematical point-to-point difference. An example

is shown in Fig. 2.17 for a reference image and 3 distorted versions of the same image. Each

of the distorted versions, although perceptually different when assessed by a human viewer,

has an almost identical MSE score. The SSIM scores are much closer to those that might be

expected from a human asked to subjectively compare the images to the reference and rank their

similarity. SSIM’s ability to measure similarity in neurograms can be illustrated in the same

manner. Fig. 2.18 demonstrates that a vowel neurogram, presented under a range of conditions

can have comparable RMSEs. Again, a subjective visual inspection would not rank the three

degraded neurograms equally, which SSIM predicts. Listening to the signals that created the

neurograms and subjectively ranking them yields the same results.

The SSIM between two images, the reference, r, and the degraded, d, is constructed as a

weighted function of luminance (l), contrast (c) and structure (s) as in (2.9). Luminance looks

at a comparison of the mean (µ) values across the two neurograms. The contrast is a variance

measure, and the structure component is equivalent to the correlation coefficient between the

neurograms (r) and (d). Luminance, l(r, d), looks at a comparison of the mean (µ) values across

the two signals. The contrast, c(r, d), is a variance measure, constructed in a similar manner to

the luminance but using the relative standard deviations (σ) of the two signals. The structure

is measured as an inner product of two N-dimensional unit norm vectors, equivalent to the

correlation coefficient between the original r and d. Each factor is weighted with a coefficient

> 0 which can be used to adjust the relative importance of the component, allowing the right

hand side of (2.9) to be expressed as (2.10). The SSIM metric has properties similar to RMAE

or RMSE, as it provides symmetry, S(r, d) = S(d, r), identity S(r, d) = 1 if, and only if, r = d.

However, in addition, it satisfies a desirable property of boundedness −1 < S(r, d) ≤ 1.
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Figure 2.17: SSIM comparison of images. Original reference image and 3 degraded versions of

the images which have roughly the same mean squared error (MSE) values with respect to the

original image, but very different perceived quality and SSIM scores (adapted from Wang et al.

[90]).

At each point, the local statistics and SSIM are calculated within the local window, producing

an SSIM map. The mean of the SSIM map is used as the overall similarity metric. Each

component also contains constant values (C1 = (0.01L)2 and C2 = (0.03L)2, where L is the

intensity range, as per Wang et al. [90]), which have negligible influence on the results but are

used to avoid instabilities at boundary conditions. The weighting coefficients, α, β and γ, can

be used to adjust the relative importance of the components, expressing SSIM as in eqn. (2.10).

See Wang et al. [90] for a complete description of the metric and its use in image comparisons.
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Figure 2.18: SSIM comparison of neurograms. Reference vowel ENV neurogram and three

neurograms for distorted signals (+5 SNR additive white Gaussian noise, Ref - 25 dB signal

in quiet, and -10 dB SNR speech shaped noise. All 3 distortions give comparable RMSE but

graded results in SSIM. (NSIM is a derivative metric of SSIM which is introduced in Chapter 4

and presented here for reference.)

S(r, d) = l(r, d)α · c(r, d)β · s(r, d)γ (2.9)

S(r, d) = (
2µrµd + C1

µ2
r + µ2

d + C1
)α · (

2σrσd + C2

σ2
r + σ2

d + C2
)β · (

σrd + C3

σrσd + C3
)γ (2.10)

The SSIM is calculated for each point on a neurogram. The overall SSIM similarity index

for two neurograms is computed as the mean of the SSIM index values computed for all patches
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of the two neurograms.

2.6.3 Structural Similarity Index for Neurograms

The SSIM metric is applied locally over a window rather than globally as, when comparing

images, the human observer can only perceive a local area in the image at high resolution at

one time instance. For a neurogram, let k be the CF band index, and m the index for the sub-

sampled smoothed auditory nerve output. As per Wang et al. [90], for each phoneme neurogram,

the local statistics (µr,σr,σxy) are computed within a local window, which moves pixel by pixel

(k = 1..K, m = 1..M) over the entire neurogram. MSSIM is the mean of the SSIM calculated

at each comparative point, but is usually just referred to as SSIM. The choice of window size

used by the SSIM for image processing is related to how a person perceives an image, or “how

closely they look”. The authors suggest values suitable for image comparison. SSIM is used in

this work to compare a reference neurogram to a neurogram for a degraded version of the same

signal. A sample MATLAB implementation of SSIM has been made available for download by

the original authors [88].

Wang et al. [90] point out that, as SSIM is a symmetric measure, it can be thought of

as a similarity measure for comparing any two signals, not just images. Kandadai et al. [44]

assessed audio quality, both temporally, using short and fixed time-domain frames, and spectro-

temporally, using a decomposed non-redundant, time-frequency map. They compared results

with human listener tests and found a best fit with weightings towards contrast (variance) and

structure, rather than the luminance (mean) component, particularly for their time-frequency

comparisons.

The neurograms created from the AN model output can be treated as images. The output

created by presenting words, at a conversational level, to a model of a normal hearing listener

can be used as a reference. Segregating the neurogram into images for each phoneme and

comparing the reference to degraded versions, allows an image similarity metric to assess the

level of degradation.

SSIM was developed to evaluate JPEG compression techniques by assessing image similarity

relative to a reference uncompressed image. It exhibited better discrimination than basic point

to point measures, i.e. relative mean squared error (RMSE) and relative mean absolute error

(RMAE), for image similarity evaluations carried out between neurograms of the reference and

degraded versions of phonemes. Unlike these measures, SSIM “looks” at images over a patch

or windowed area, rather than just using a simple point-to-point pixel comparison. As will be

shown in Chapter 3, the optimal window size is 3x3 pixels for both TFS and ENV neurograms

(covering three CF bands and a time of approximately 0.5ms and 20ms respectively).

SSIM uses the overall range of pixel intensity (L) for the image along with a measure of three

factors on each individual pixel comparison. The factors: luminance, contrast and structure, give

a weighted adjustment to the similarity measure that look at the intensity (luminance), variance
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(contrast) and cross-correlation (structure) between a given pixel, and those that surround it,

versus the reference image. In this work, the dynamic range (L) is set to the dynamic range of

the reference neurogram for each comparison tested.

An initial investigation of the component weightings in SSIM is undertaken in Chapter 3,

where the weightings proposed by Kandadai et al. [44] for auditory signal analysis are compared

to the un-weighted results over a range of SNHLs. As phoneme discrimination was significantly

poorer using the suggested weightings, when compared to the un-weighted SSIM results, un-

dertaking a full investigation was deemed necessary and Chapter 4 establishes the component

weights for SSIM that give the best correlation with human listener test results, when being

used to compare phoneme neurograms.

Fig. 2.18 illustrates the potential of SSIM over the relative mean squared error metric. As

with the images example in the same figure, a reference ENV neurogram was created for an

input signal. Three degraded inputs (signal plus additive white Gaussian noise, signal plus

speech noise and a lower intensity version of the signal in quiet conditions) were also used to

create neurograms. Again, as was done for the images, the neurograms were chosen because their

RMSE scores were almost identical. They represent very different scenarios with different SNR

levels, and a subjective visual inspection of the neurograms would score them as with a range

of different similarity scores when compared to the reference neurogram. Neurogram inspection

gives rankings similar to the SSIM scores and a subjective listening to the input audio signals

also ranks them in the order predicted by SSIM.

The example neurograms warrant some interpretation. Looking at the reference ENV neu-

rogram, the y-axis is a logarithmic scale of characteristic frequency bands (CFs), measured in

Hz, and the x-axis covers time measured in seconds from the onset to the end of a sample vowel.

The formants of the vowel can be seen in the large band between 200 and 500 Hz and an-

other narrower band at 2kHz. The first degraded neurogram has additive white Gaussian noise

(AWGN) added across all CFs so, as the y-axis is a log scale, the impact on higher frequency

CFs appears larger, as the apparent intensity of noise is compressed across higher levels due to

the logarithmic scale. In the neurogram for quiet, at a low presentation level, the formats are

still visible but at a much weaker intensity. The noise in the next neurogram is mainly at CFs

less than 4kHz as speech shaped noise is more focused in the lower frequencies. The neurogram

shows the activity is still present in similar CFs to the reference neurogram, but the formants

have lost their structure.

Subjectively, listening to the input signals that produced the neurograms yields rankings

similar to SSIM. The AWGN contains random noise in the high frequency bands that can be

clearly heard but as it is at a +5dB SNR, the vowel formants are not very masked and are

clearly audible. The speech shaped noise is -10dB SNR and as it is concentrated in the speech

frequency bands, it masks the formants, muffling the word but not sounding like noise. The

quiet intensity version is still audible but much weaker than the original, as it is presented close

to a normal hearing listener’s audibility threshold.



2.6. Image Similarity Metrics for Neurogram Comparisons 39

2.6.4 Neurogram SSIM for Speech Intelligibility

Subjective analysis of neurograms was predicted to correlate with intelligibility by Sachs et al.

[72]. Neurogram and other internal representations of simulated auditory nerve discharge infor-

mation have been quantified using point-to-point [9; 39], and correlation measures [34]. SSIM

combines intensity and correlation measurement. Other work sought to correlate the ranking

results with an intelligibility measure as a trend [4] but not as an absolute ranking that could

predict a word or phoneme recognition. This thesis aims to demonstrate that an image similarity

metric and a phoneme discrimination score can be quantitatively linked. Using the same speech

corpus as actual listener tests, the aim is to predict the speech intelligibility score using the AN

model and a neurogram similarity assessment technique.
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2.7 Hearing Aid Algorithms

2.7.1 History of Hearing Aids

Hearing aids have existed since the middle ages when horns were used to collect and funnel sound.

They have evolved from simple amplifiers with technology and by the 1930s, the recommended

gain levels mirrored the audiogram. This meant that prescribed gains matched the hearing

loss at each frequency level. It was soon recognised that background noise and a reduction

in dynamic range resulted in uncomfortable gain levels being prescribed for hearing impaired

users. Lybarger [53] proposed a half-gain rule theory in the 1940s which became the basis of

empirically based fitting methods.

Section 2.2 introduced the symptoms of sensorineural hearing loss, namely: decreases in

audibility, dynamic range, frequency resolution, temporal resolution or a combination of these

impairments. Hearing aids are devices that attempt to compensate for these symptoms by par-

tially overcoming these deficits. This is done by restoring audibility, limiting loudness within

dynamic range, and augmenting responses to help compensate for frequency and temporal res-

olution degradations.

Hearing aid amplification can be linear or non-linear. A linear hearing aid amplifies to fixed

insertion gains for each frequency band, irrespective of the input signal. With a non-linear

hearing aid, the output gain and frequency response vary with the input level. At a simple level,

a hearing aid amplifies a signal to ensure it is above the listener’s audibility threshold. As lower

intensity sounds will need more amplification than higher intensity ones to be audible, less gain

can be provided at higher levels by non-linear hearing aids. This is important for users with a

reduced dynamic range where a linear fitting algorithm could provide uncomfortable gains when

listening to sounds with high intensities. Compression is another option that can be applied to

reduce the effects of abnormal loudness.

The amount of amplification required can be represented graphically on a gain-frequency

response graph or on an input versus output (I-O) curve. Example fitting curves can be seen

in Chapter 5. The maximum insertion gain a hearing aid can produce is called the saturation

sound pressure level (SSPL).

2.7.2 Prescribing Hearing Aid Gains

Hearing aids are fitted based on a prescription that is a function of an empirically derived fitting

formula and measurements of a person’s audiometric thresholds and characteristics. The optimal

amplification is based on a trade-off of the most comfortable levels for listening and the insertion

gains and frequency responses that yield the best audibility over a range of sound intensities.

Amplification provided by a hearing aid can be measured in-ear or by using a coupler or ear

simulator. The two main ways of describing the gain provided by a hearing aid are by real ear

insertion gain (REIG) or real ear aided gain (REAG).
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Figure 2.19: The relationship between real ear aided gain (REAG) and real ear unaided gain

(REUG) shown above is the real ear insertion gain (REIG) shown below. Sample data from

Dillon [24]

REAG takes into account factors due to the coupler or simulator used and aims to assess the

sound pressure level at the eardrum. REIG measures the amount of additional sound pressure

gain that is added by the hearing aid above the natural amplification of the auditory periphery.

This natural amplification is called real ear unaided gain (REUG) and occurs as a result of the

physical ear shape. Their relationship is shown in Fig. 2.19, where the insertion gain is the

difference between the aided gain and unaided gain, i.e.

REIG = REAG − REUG (2.11)

This conversion shows that there is no difference in the choice of measurement. From a

practical perspective, REAG is a better choice for people with non-standard REUGs (whether

altered by deformity or surgical procedure) or for children, where REAG is easier to measure.

REIG is the more appropriate measure, from a hearing aid perspective, as it measures what

gains the hearing aid actually needs to produce.

Empirical testing has led to refinements of the basic half-gain rule based on a range of factors

such as optimising for speech intelligibility and for comfort [24].

2.7.3 NAL

The NAL (National Acoustics Laboratory, Australia) fitting algorithm was originally developed

by Byrne and Tonisson in 1976 to target maximising speech intelligibility over the frequency

range containing important cues for speech (i.e. 250-8000 Hz). Initially, it was based on the half-
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gain rule [53] that empirically showed that an insertion gain of approximately half the threshold

loss was desirable at each level. It has been revised and improved upon in several stages, with

NAL-R [12], NAL-RP [13].

2.7.4 DSL

The DSL (Desired Sensation Level; Seewald et al. [75]) fitting method is different from NAL

in a number of ways. Primarily, it is not based on insertion gain alone and aims to provide a

comfortably loud response but not necessarily an equally loud response at each frequency level.

It was originally conceived as a fitting method for infants and children and uses real ear aided

gain (REAG) instead of real ear insertion gain (REIG). Measuring the hearing thresholds at

the eardrum means the calculations are not impacted by the difference in ear canal resonance

in children and adults.

2.7.5 Non-linear Fitting Methods

NAL-NL1, NAL-NL2 (NAL nonlinear; Dillon [23]), and DSL[i/o] [17] seek to improve upon

the performance of their predecessor linear algorithms. The non-linear NAL algorithms do not

seek to normalise loudness across all frequency bands, instead, they try to maximise speech

intelligibility. This is done through use of a modification of the Speech Intelligibility Index and

recognition of the fact that, at high presentation levels, even normal hearing subjects exhibit

decreased intelligibility levels. NAL-NL2 also seeks to take account of SNHL phenomena such

as dead regions [60].

2.7.6 Hearing Aid Comparisons and the Contributions of this Thesis

A number of comparative studies have been carried out but, as Dillon [24] points out in his

review of hearing aid fitting methods, “Making up a procedure is easier, more fun, and less

discouraging than evaluating how well it works”. This observation reinforces the assertion that

an objective model based tool would be an invaluable asset in hearing aid development.

A major goal of this thesis is to examine the similarity between neural representations of

phonemes, under unaided and aided conditions, to ascertain whether such a comparison can

provide a quantitative measure of speech intelligibility. It would be impractical to subjectively

evaluate the quantity of neurograms necessary to draw useful conclusions so an automated metric

that can evaluate neurogram similarity in an objective manner is essential.

Chapter 3 looks at different metrics and whether they can differentiate and rank neurograms

for a range of SNHLs and begins to look at whether neurogram similarity can be linked to speech

intelligibility. Chapter 4 takes this a step further, optimising the metric for neurogram similarity

assessment and establishing a methodology to link neurogram similarity to speech intelligibility

for normal hearing listeners. In Chapter 5, tests for listeners with SNHL are modelled and the

performance of two hearing aid algorithms are compared using ENV neurograms. The NAL-
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RP and DSL 4.0 linear fitting algorithms were chosen as their algorithms have been published

and are available in Dillon [24]. The methodologies would be equally applicable to other fitting

techniques with non-linear or compression, however as these algorithms have not been published,

testing against proprietary methods has not been attempted.

Neurogram similarity assessment may ultimately provide novel insights into the impact of

hearing aids on internal speech representation. The results for listeners with SNHL that were

presented in Chapter 5 are examined for TFS neurograms in Chapter 6 where the predicted

results show that while the ENV neurogram results correlate closely with the speech intelligibility

performance of the listener tests, TFS neurograms paint a very different picture of internal

neurogram representation for SNHL listeners. Chapter 6 also looks at a novel adaptation of

a hearing aid fitting algorithm and uses the methodology and metric developed to predict the

effect for aided hearing impaired listeners.
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3
Speech Intelligibility from Image Processing

3.1 Introduction

Hearing loss research has traditionally been based on perceptual criteria, speech intelligibility

and threshold levels. The development of computational models of the auditory-periphery has

allowed experimentation, via simulation, to provide quantitative, repeatable results at a more

granular level than would be practical with clinical research on human subjects.

Several models have been proposed, integrating physiological data and theories from a large

number of studies of the cochlea. The model used in this chapter is the cat AN model of Zilany

and Bruce [98] which was introduced in Section 2.3.

This chapter examines a systematic way of assessing phonemic degradation using the outputs

of an auditory nerve (AN) model for a range of SNHLs. Sachs et al. [72] showed that auditory-

nerve discharge patterns in response to sounds as complex as speech can be accurately modelled

and predicted that this knowledge could be used to test new strategies for hearing-aid signal

processing. They demonstrated examples of auditory-nerve representations of vowels in normal

and noise-damaged ears and discussed, from a subjective visual inspection, how the impaired

representations differ from the normal. Manual inspection is simply not feasible due to the

volume of data required to evaluate the impact of a particular speech processing approach

across a large population of AN fibres. Comparable neurogram examples are displayed in Figs.

3.1 & 3.2 for individual phonemes. This work seeks to create an objective measure to automate

this inspection process and ranks hearing losses based on auditory-nerve discharge patterns.

Image similarity metrics were introduced in Section 2.6. This chapter explores whether

45
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changes in the neurograms for phonemes due to SNHL are captured by a range of similarity

metrics. While mean absolute error (MAE) has previously been used to compare neurograms

[9; 35] this work is the first to investigate the potential of the structural similarity index measure

(SSIM)[90]. SSIM is a statistical metric, popular in image processing, that was originally de-

veloped to estimate the reconstruction quality of compressed images. It was chosen as a metric

with good potential for a number of reasons, including its ability to reflect human perceptual

judgement of images and use in audio quality assessment. This is discussed in detail in Section

2.6.3.

Neurogram ranking is also compared with results using the Speech Intelligibility Index (SII)

standard ANSI [2] which was introduced in Section 2.5.

3.2 Background

3.2.1 Tuning the Structural Similarity Index (SSIM)

In order to evaluate the choice of window size and weightings that best suit the proposed

application, the following criteria were defined. It should correctly predict the order of hearing

losses i.e. the metric should deteriorate with increased hearing loss. Secondly it should minimise

variance between error metrics for a given phoneme type, given a fixed presentation level and

hearing loss. Thirdly, the chosen parameters should make sense in terms of the physiological and

signal processing boundaries on the system, e.g. the choice of window size, which has practical

limits in terms of allowing different types of phonemes to be measured by being short enough

in the time axis to allow a measurement but long enough to take into account the structural

points of interest on longer phonemes.
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Figure 3.1: Sample ENV (left) and TFS (right) neurograms for fricative /sh/ with progressively

degrading hearing loss. Signal level is 65 dB SPL in (A) and 85 dB SPL in (B). For reference

purposes, the top rows in (A) and (B) show the signal, with the time axis shown at a greater

resolution in the TFS compared to the ENV. The next row displays the neurograms from the

AN model with unimpaired hearing. The bottom three rows are progressively impaired hearing

loss neurograms. It can be seen that the amount of information contained in the neurogram

diminishes rapidly with hearing loss in (A), as would be expected at 65dB SPL by examining the

audiogram thresholds in Fig. 3.4 for these hearing losses. The RMAE, RMSE and SSIM metrics

comparing each impaired neurogram to its corresponding unimpaired references are displayed.
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Figure 3.2: Corresponding samples to Fig. 3.1 ENV and TFS neurograms for a vowel (/aa/)

with progressively degrading hearing loss. The TFS neurograms in (A) show that at lower

presentation levels the vowel degrades with progressive hearing loss of fine timing information.

In (B), it can be seen that at 85 dB SPL not only is information being lost, phase locking and

a spread of synchrony across CF bands is causing the addition of erroneous information with

progressive hearing loss.
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Figure 3.3: Block diagram summarising the methodology. Preparing the input stimulus involved

loading the signal wave file, scaling to a presentation level, resampling to 100kHz and applying

an outer ear gain. The AN Model processes the input signal and, based on the audiogram,

simulates an unimpaired or impaired ear for each signal, at each presentation level.

3.3 Method

The following description of the process of collecting and analysing the data is summarised in

Fig. 3.3.

3.3.1 Test Corpus

The TIMIT corpus of read speech was selected as the speech waveform source [18]. The TIMIT

test data has a core portion containing 24 speakers, 2 male and 1 female from each of the 8

American dialect regions. Each speaker reads a different set of SX sentences. The SX sentences

are phonetically-compact sentences designed to provide a good coverage of pairs of phones, while

the SI sentences are phonetically-diverse. Thus, the core test material contains 192 sentences, 5

SX and 3 SI for each speaker, each having a distinct text prompt. The core test set maintains

a consistent ratio of phoneme occurrences as the larger “full test set” (2340 sentences). The

speech provided by TIMIT is sampled at 16 kHz.

TIMIT classifies fifty seven distinct phoneme types and groups them into 6 phoneme groups

(Table. 3.1) and 1 group of “others” (e.g. pauses). There are 6854 phoneme utterances in the

core test set and the number of occurrence of each group is given in Table 3.1. The TIMIT corpus

of sentences contains phoneme timings for each sentence which were used in the experiments

presented here to analyse neurograms at a phonetic level.
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Phoneme Group Number in Phoneme labels

core test set

Stops 1989 b d g p t k dx q

tcl bcl dcl pcl kcl gcl

Affricates 82 jh ch

Fricatives 969 s sh z zh f th v dh

Nasals 641 m n ng em en eng nx

SV/Glides 832 l r w y hh hv el

Vowels 2341 iy ih eh ey ae aa aw ay ah

ao oy ow uh uw ux er ax ix axr ax-h

Table 3.1: TIMIT phoneme groups. (Stop closures annotated with cl, e.g. tcl)

3.3.2 Audiograms and Presentation Levels

The audiograms used in this work match the samples which were presented by Dillon [24] to

illustrate prescription fitting over a wide range of hearing impairments. The hearing loss profiles

selected were mild, moderate and profound. Two flat hearing losses 10 and 20 dB HL were also

included in testing to investigate the ability to discriminate between unimpaired and very mild

losses in hearing thresholds.
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Figure 3.4: Audiograms of hearing losses tested

For comparative analysis of responses, it was necessary to create and store AN responses for

each of the 192 test sentences. The original TIMIT sentence was resampled to the stimulated
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minimum sample rate for the AN Model (100kHz) and scaled to 2 presentation levels 65 and 85

dB SPL (denoted P65/P85) representing normal and shouted speech. The head related transfer

function (HRTF) from Wiener and Ross [91] for the human head was used to pre-filter the

speech waveforms, mimicking the amplification that occurs prior to the middle and inner ear.

This technique has been used in other physiological and simulation studies [98].
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Figure 3.5: Illustrative view of window sizes reported on a TFS vowel neurogram. Note that

time scale in TFS neurogram is changed (zoomed in on vowel). The neurograms display the

sound over logarithmically scaled CF bands in the y-axis against time in the x-axis. The colour

represents the intensity of stimulus.

The response of the AN to acoustic stimuli was quantified with neurogram images. 30 CFs

were used, spaced logarithmically between 250 and 8000 Hz. The neural response at each CF was

created from the responses of 50 simulated AN fibres. In accordance with Liberman [47] and as

used for similar AN Model simulations [9], 60% of the fibres were chosen to be high spontaneous

rate (>18 spikes/s), 20% medium (0.5 to 18 spikes/s), and 20% low (<0.5 spikes/s). Two

neurogram representations were created for analysis, one by maintaining a small time bin size

(10µs) for analysing the TFS and another with a larger bin size (100µs) for the ENV. The TFS

and ENV responses were smoothed by convolving them with 50% overlap, 32 and 128 sample

Hamming window respectively. Section 2.4 presents a detailed overview of how neurograms are

created.

The phoneme timing information from TIMIT was used to extract the neurogram information

on a per phoneme basis at P65 and P85. This yielded a pair of neurograms for each phoneme

utterance representing the original, distortion free reference TFS and ENV images from the

unimpaired AN model, and pairs of progressively deteriorating images. The SSIM measure was
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Figure 3.6: Left: Vowels; Right: Fricatives. Data points represent hearing loss levels compared to

unimpaired, beginning from SSIM of 1 for comparison with unimpaired and progressing through

FLAT10, FLAT20, MILD, MODERATE and PROFOUND losses. Top Row (A): varying SSIM

window in time; Middle Row (B): varying SSIM window in CF; Bottom Row (C): Varying SSIM

weighting (α, β, γ)W1 = (1, 1, 1)W2 = (0, 0.8, 0.2)W3 = (0, 0.2, 0.8), window size fixed at 3x3.

calculated between the unimpaired reference image and each of the impaired images. The basic

metric described in Wang et al. [90] was used varying the window sizing parameter. A modified

version of Wang’s published SSIM code for MATLAB (The MathWorks, Natick, MA) was used

to allow variations on α, β and γ weightings.

Treating a neurogram as a picture, each neurogram was a standard height of 30 pixels (one
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Figure 3.7: Left: Vowels; Right: Fricatives. Comparison of SSIM with RMAE and RMSE (which

are error levels and hence have a 0 data point for unimpaired and increase with hearing loss, i.e.

read SSIM top to bottom and RMAE/RMSE bottom to top.)

per CF band) and varied in width with the duration of the phoneme. Due to the natural

variation in duration of phonemes, the length varied considerably in the region of 3-30 pixels for

ENV neurograms and from 100-1200 pixels for TFS neurograms. To assess the impact of these

parameters, the SSIM was calculated across the full data set and an average SSIM and standard

deviation were calculated and aggregated by phoneme group, as per Table. 3.1, for each hearing

loss. The window size was assessed by altering its size in CF from 3 to 30 and then in time

coverage from 3 to 11 as illustrated in Fig. 3.5. The weights α, β & γ were investigated, using

the weightings proposed for audio in Kandadai et al. [44], specifically, α = 0, β = 0.8 & γ = 0.2.

3.4 Results & Discussion

3.4.1 SSIM Window Size

The data in Fig. 3.6 shows results from a subset of the full suite of tests for vowels and fricative

phoneme groups. The figure is split into six panels with the left-hand column showing vowels

and the right-hand column showing fricatives. Each panel in rows A and B present 3 different

NxM windows where N is frequency and M time resolution. The top row, A, shows windows

with CF fixed and time varying. The SSIM at any data point represents the similarity between

the unimpaired and impaired neurograms for a phoneme group with a particular SSIM window

size. The middle row, B, shows results with time fixed and CF window size varying. Each

panel shows results for both the TFS and ENV neurograms. For each window size, the SSIM

for both TFS(P65:◮;P85:◭) and ENV(P65:N;P85:H) can be seen progressively deteriorating for

the hearing loss: flat 10, flat 20, mild, moderate and profound loss. The error bars show one

standard devation around the metric as an indication of spread.

Fig. 3.6A shows the results for progressively longer time samples in the SSIM window. The

TFS is relatively insensitive to increases in the time window in both vowels and fricatives.
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However, the ability to differentiate between SNHL levels reduced in the vowel ENV results as

they clustered over a smaller range as the time window expanded. This can be seen in moving

from 3x3 to 3x11 in Fig. 3.6A. The choice of ENV window size was further influenced by the

number of samples in the neurogram as some phonemes, stops in particular, may only be 3 pixels

wide.

The effect of including progressively more CF bands is shown in Fig. 3.6B. The SSIM is stable

for frequency windows of 3-5 pixels for the TFS for both vowels and fricatives, as shown in B,

but the ability to distinguish between moderate and profound losses in fricatives diminished for

the larger 11x3 window size. The ENV results became marginally more clustered in both vowels

and fricatives as the number of CF bands in the window size increased. Results for the other

phoneme groups are presented in Appendix A. A detailed examination of plots from the other

phoneme groups revealed broadly similar behaviour to changes in window size. This led to the

overall conclusion that a suitable window size is 3-5 pixels wide for comparing both the TFS

and ENV neurograms. Intuitively this makes sense insofar as the resolution of both has been

determined in the choice of window size used to construct the neurograms. In frequency, the

SSIM is looking at information in just 1 or 2 CF bands around the ‘ideal’ band and the time

resolution is ±20µs for TFS and ±200µs for ENV. Overall, the noticeable difference between

Flat 10 and Flat 20 is interesting as it demonstrates the ability of the metric to reflect even

small changes in the AN response. The significant drop in scores between unimpaired and Flat

10 can be explained by the test design. The unimpaired test neurograms were the same as the

reference neurograms. This accounts for the perfect match score for the unimpaired results.

Chapter 4 shows that in reality, a maximum similarity score of between 0.7 and 0.8 for SSIM is

achieved for comparisons of unimpaired neurograms under the reference conditions.

3.4.2 SSIM Weighting

Fig. 3.6C shows the SSIM for vowels and fricatives with a fixed 3x3 window where luminance,

contrast and structure weightings, α, β & γ from equation (2.10) in Section 2.6, were varied.

W1 is the unweighted SSIM with α = β = γ = 1. W2 shows the results with the optimal

time-frequency audio weightings as found by Kandadai et al. [44]. Their results found that a

zero weighting for luminance (α) and dominance of contrast (β) over structure (γ) provided the

best correlation with listener tests. W3 shows an alternate weighting to W2 keeping α = 0 but

switching the dominance to structure rather than contrast.

Altering the α, β and γ weightings resulted in the variance increasing for the TFS results

(Fig. 3.6C). However it also shifted the scale by reducing the error difference between unimpaired

and the flat 10 loss. The ENV results clustered over a smaller range for the alternative W2 and

W3 weightings which can be seen for both vowels and fricatives. It is clear that the weightings

are important and in Chapter 4, results are correlated with listener tests to find an optimal

weighting balance for neurogram assessment.
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3.4.3 Comparison of SSIM to RMAE/RMSE

Fig. 3.7 compares the 3x3 unweighted SSIM measure to RMAE and RMSE noting that for RMAE

and RMSE the metric is 0 for the equality and increasing, i.e. the reverse to SSIM. The error bars

again show one standard deviation around the metric. As observed in prior work, RMAE has

difficulties in accurately capturing the degradation occurring in some phonemes’ TFS behaviour

[35]. This caused a re-evaluation of the RMAE and RMSE error metrics for TFS comparisons.

The RMAE metric has been expressed as a fraction of the normal unimpaired response’s average

power, presuming that with a degradation of the AN response, less information will be present

and hence the impaired neurogram will be lower in power than the unimpaired neurogram.

While this is true overall, examination of fine timing of vowels shows that the choice of error

measure may cause unexpected results particularly at high presentation levels. The situation

can arise where due to a spread of synchrony (which generally occurs above 80 dB SPL), AN

fibres start to show synchrony to other stimulus frequency components with fibres responding

to stimulus at lower frequencies than their own characteristic frequency(CF) [92].

3.4.4 Effect of Hearing Loss on Neurograms

Figs. 3.1 & 3.2 show sample ENV and TFS neurograms at P65 and P85 presentation levels for

unimpaired and progressively impaired hearing losses. The fricative example, Fig. 3.1, illustrates

that the intensity diminishes as the hearing loss increases; from a neurogram perspective, there is

less information in the plot. The vowel example, Fig. 3.2, illustrates a different behaviour. The

TFS neurogram for the unimpaired model shows a strong periodic response pattern in the low

frequency range. It is rich with fine timing information and has speckled power gradient. The

moderate loss neurogram shows similar periodic information in the lower frequencies but has lost

much of the fine timing response in between. In the higher frequencies the low power information

has been lost and the onset of synchrony spread is apparent. Finally, for the profound loss, it

can be seen that most of the lower frequency and fine timing data has been lost. Phase locking

has occurred, along with a spread of synchrony, with the phase locking to the formant frequency

and erroneous power spreading across higher frequency bands. The SSIM addresses this and

captures the degradation in a bounded metric, with a range of -1 to +1, limiting phonemic

group comparisons within a common range. The results in Fig. 3.7 demonstrate the wide

variation in vowels for RMAE and RMSE, which occurs because the spread of synchrony is not

as pronounced in every instance as it is in the illustrated case. The variation in SSIM is much

smaller as it appears to classify the profound losses with moderate or severe synchrony spread

as a similarly poor result.

Examining the ENV examples illustrates that, for fricatives, all three metrics capture the

loss of activity within the progressively degrading neurograms at both P65 and P85 (Fig. 3.1).

At P65, the vowel degraded in a similar manner to the fricative. At P85, the spreading and

phase locking has kept the ENV neurogram’s average discharge rate up.
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Figs. 3.8 & 3.9 show SSIM results for all phoneme groups. A spider plot representation has

been used to allow trends to be clearly seen. Each plot shows the SSIM for the 6 phoneme groups

with the different coloured rings depicting hearing loss (from blue flat 10 to red profound). The

scale has been reversed, going from 1 in the axis centre out to 0 to allow for visual comparison to

RMAE and RMSE. The RMAE and MSE results go from 0 and are unbounded, so the scales have

been set to display all results. The SSIM performance was consistent across phoneme groups,

presentation levels and neurogram resolution (ENV/TFS). For SSIM, there is good delineation

of each HL level. For P85, the ENV shows almost no difference between flat 10 and flat 20 for

vowels and SV/glides. The problems highlighted in Fig. 3.7 are also illustrated in the spider

plots where MAE displays vowel errors for TFS neurograms which are much larger than the

errors in other phoneme groups. Vowels and SV/Glides RMAE displayed similar RMAE errors

and this behaviour was compounded in the RMSE results.

3.4.5 Comparison to NAI

The NAI, an alternative metric described in Section 2.5.8, evaluates spectro-temporal outputs,

looking at bands over time. It is a phenomenological metric based on empirical data and, like

STI, it uses band weightings and a redundancy factor across bands. In contrast, SSIM is a full-

reference comparative metric, looking at the spectro-temporal information and does not rely

on prior knowledge of which frequency bands carry important speech cues to calculate speech

intelligibility. The choice of component weighting, window size, and neurogram resolutions (i.e.

number of CF bands tested; using ENV and TFS) are critical factors in configuring SSIM for

this application, but it does not introduce prior knowledge of the importance of one CF band

over another for the intelligibility of a particular phoneme.

3.4.6 Limitations of SSIM

While SSIM is a more promising metric of phonemic degradation than either RMAE or RMSE,

it is worth commenting on some of its limitations. Computationally, it is more expensive than

RMAE. The full reference nature of the metric means that it will not handle even small timing

mismatches, limiting its potential use to utterances of the same word. Practically, this means it

is not suitable for comparing different utterances of the same phoneme even by the same speaker.

There is an alternate version, CW-SSIM [89], that uses complex wavelets to handle offsets and

rotations in pictures, however, this is significantly more computationally intensive and has not

been tested in this study.

3.4.7 Towards a single AN fidelity metric

This study sought to investigate the suitability of an SSIM based metric for quantifying SNHL

degradations through neurogram comparisons. This was done for ENV and TFS neurograms

and their effectiveness at distinguishing losses for progressively deteriorating audiograms was
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Figure 3.8: Results for all phoneme groups at 65 dB SPL. Coloured lines represent audiograms

(blue to red: flat 10 to profound). (A): SSIM. Scaled inverted (1 to 0) to allow trend comparison

with RMAE and RMSE; (B): Relative Mean Absolute Error (RMAE); (C): Relative Mean

Squared Error (RMSE)

measured and evaluated for different phoneme groups. Ultimately, a single, weighted measure

that can compare auditory nerve outputs yielding a single comparative metric is desirable.

Steeneken and Houtgast [82] found that CF frequency weightings do not vary significantly

for SNR or gender, but other studies found that the test speech material used resulted in

different frequency weightings depending on whether the tests used nonsense words, phonetically

balanced words or connected discourse. The results presented in this paper are measures at a
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Figure 3.9: Results for all phoneme groups at 85 dB SPL. Coloured lines represent audiograms

(blue to red: flat 10 to profound). (A): SSIM. Scaled inverted (1 to 0) to allow trend comparison

with RMAE and RMSE; (B): Relative Mean Absolute Error (RMAE). Range > 1 for Vowel TFS

at P85 ; (C): Relative Mean Squared Error (RMSE). Range > 1.5 for Vowel TFS at P85

phoneme group level. Fig. 3.10 shows the SII as calculated using various nonsense syllable tests

where most English phonemes occur equally often (as specified in Table B.2 of [2]). By equally

weighting and combining the results by phoneme group into a single metric, the comparable

plots for TFS and ENV neurogram can be seen in Fig. 3.11 for SSIM and RMAE. The first two

plots show the ENV and TFS followed by a combined ENV/TFS plot where the mean of the

ENV and TFS value is plotted. Comparing the SII to the combined SSIM, the main difference
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is the large drop from unimpaired to Flat 10.

It can also be seen that the higher presentation level has a lower SII score for mild hearing

losses. This is caused by a phenomena known as the rollover effect [41; 84], so called because over

a range of increasing presentation levels the intelligibility score reaches a maximum and then

declines as the level continues to increase. This characteristic appears to have been captured by

SSIM in the ENV neurogram but not by RMAE as can be seen in Fig. 3.11 which shows flat

10 with lower scores for P85 than P65 in SSIM but not in RMAE.

UNIMP F10 F20 MILD MOD PROF
0

0.2

0.4

0.6

0.8

1
SII in quiet free−field

Hearing Loss Audiogram

S
II

 

 

normal (60 dBSPL)
shouted (78 dBSPL)

Figure 3.10: SII as calculated using various nonsense syllable tests where most English phonemes

occur equally often (as specified in Table B.2 of [2])

3.5 Conclusions

As a metric for comparing TFS neurograms, SSIM is more informative than RMAE or RMSE.

The measure has fulfilled the original criteria set down for a useful metric. It has correctly

predicted the order of hearing losses i.e. the metric deteriorates with increased hearing loss

showing how different phoneme groups degrade with SNHL. Secondly, it has low variance for

a phoneme class, given a fixed presentation level and hearing loss. Thirdly, the established

parameters for the window size make sense in terms of the physiological and signal processing

boundaries on the system.

The choice of window size was significant in the ENV neurograms but the TFS results were

not as sensitive to the size of window. A window size of up to 5 pixels was optimal for both

neurograms. Further experimentation is required to establish whether alternative weightings will

be beneficial for this application. The metric’s boundedness and the results for TFS neurograms

indicate that it is a superior metric to simple RMAE or RMSE.

The use of SSIM as an indicative score of intelligibility is promising, despite the absence

of listener tests. The AN responses are taken from a model based on sound physiological data

and the AN model has been demonstrated to be capable of capturing a range of responses of
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Figure 3.11: Above: SSIM and below: RMAE. Mean TFS, ENV, and combined metrics for all

phoneme groups, equally weighted

hearing, both impaired and unimpaired [97]. Correlation of these results with listener tests is

required to further demonstrate the ability of SSIM to capture phonemic degradation. This is

examined in the next chapter where the SSIM exponents are optimised for neurogram analysis.

The simulated results from the AN model are compared to real listener test phoneme recognition

results to evaluate the ability of the model to predict speech intelligibility.



4
Predicting Speech Intelligibility using a Neurogram

Similarity Index Measure

4.1 Introduction

It has been shown that AN discharge patterns, in response to complex vowel sounds, can be

discriminated using a subjective visual inspection, and how impaired representations from those

with sensorineural hearing loss (SNHL) differ from the normal [72]. Chapter 3 developed a

technique to replace the subjective visual inspection with a quantitative automated inspection.

The next step to be addressed is how to directly link the quantitative measure of degradation in

neural patterns to speech intelligibility. This would allow simulated speech intelligibility tests,

where the human listener would be substituted with a computational model of the auditory

periphery and measured outputs would correlate with actual listener test results. This concept

is illustrated in Fig. 4.1.

In Chapter 3, the link between speech intelligibility and neurograms was investigated by using

image similarity assessment techniques to rank the information degradation in the modelled

output from impaired AN models. It demonstrated effective discrimination of progressively

deteriorating hearing losses through analysis of the spectro-temporal outputs and showed that

hearing losses could be ranked relative to their scores using the structural similarity metric

(SSIM).

In this chapter the inspection process is extended to translate the SSIM measure from rank-

ing AN discharge pattern differences into an actual phonemic recognition metric. This involved

61
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Human Subject

List 1 List 2 List 3

ship fish thug

rug duck witch

fan path teak

cheek cheese wrap

haze race vice

dice hive jail

both bone hen

well wedge shows

jot log food

move tomb bomb

Figure 4.1: The Simulated Performance Intensity Function. Above: In a standard listener test, word

lists are presented to a human test subject who listens and repeats the words over a range of intensity

levels. The words are manually scored per phoneme and a PI function is plotted. Below: the listener is

replaced with the AN model and scoring is based on automated comparisons of simulated auditory nerve

firing neurograms to quantify phoneme recognition. The results are quantifiable and are used to create a

simulated PI function.

developing a test procedure that can simulate a real human listener test, with the person in the

test being substituted with the AN model. The objective of the test is to determine the percent-

age of words or phonemes correctly identified using an image similarity assessment technique

to analyse the AN model output, and a transfer function to produce an objective measure of

speech discrimination. The methodology has been developed to allow testing over a wide range

of SNHLs and speech intensity levels. While the ultimate goal of this thesis is to assess hearing

loss and hearing aids which are addressed in Chapters 5 and 6, this chapter focuses on validating

the methodology with normal hearing at low signal levels in a quiet environment. Preliminary

tests in steady state background noise are also presented, however, testing could be extended in

future to include other signal distortions.

It was necessary to develop a simulated listener test methodology that would map to a

human listener test and scoring system. The methodology, detailed in Section 4.3, needed to use

the same dataset and produce results that were formatted in a comparable way to real listener

test. In addition, the methodology needed to be validated, to ensure that results were consistent

and repeatable which is addressed in Section 4.4). The accuracy of the tests and the minimum

number of word lists necessary for repeatable results were also measured. To demonstrate that

the AN model was an essential element in the system, an end-to-end test was also carried out

with an adaptation of the methodology excluding the AN model.

Section 4.5 reviews these results in the context of other work and uses the Simulated Perfor-
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mance Intensity Function (SPIF) method presented to compare the results in quiet and in noise

with the Speech Intelligibility Index (SII) standard [2].

4.2 Background

4.2.1 Auditory Nerve Models

Chapter 3 used the AN model of Zilany and Bruce [97] that is derived from empirical data

matched to cat auditory nerves. The model was subsequently extended and improved. In

this chapter, their new model [102] was used which includes power-law dynamics as well as

exponential adaptation in the synapse model. An overview of the AN model is presented in

Section 2.3.

4.2.2 Neurograms

A neurogram is analogous to a spectrogram: it presents a pictorial representation of a signal in

the time-frequency domains using colour to indicate activity intensity. Neurograms are intro-

duced in Section 2.4 of the background. In this study neurograms for the same signal presented

over a range of sound intensity levels are compared. An example signal, the word “ship” which

was presented to the AN model, was presented earlier in Fig. 2.16. The top row shows the

time domain signal. Below it, the spectrogram presents the sound pressure level of a signal for

frequency bands in the y-axis against time on the x-axis. Three ENV neurograms, created from

AN model outputs for signals presented at progressively lower presentation levels (65, 30 and 15

dB SPL), are then shown. The colour represents the neural firing activity for a given CF band

in the y-axis over time in the x-axis. This study looked at both ENV and TFS neurograms for

normal hearing listeners.

4.2.3 Structural Similarity Index (SSIM)

The neurograms created from the AN model output can be treated as images. The output

created by presenting words at a conversational level to a model of a normal hearing listener

can be used as a reference. Segregating the neurogram into images for each phoneme and

comparing the reference to degraded versions allows an image similarity metric to assess the

level of degradation.

The structural similarity index (SSIM) was introduced in Section 2.6. SSIM was originally

developed to evaluate JPEG compression techniques by assessing image similarity relative to a

reference uncompressed image [90]. Chapter 3 demonstrated that it could be used to discriminate

between a reference and degraded neurogram of a given phoneme. It was shown that SSIM

exhibited better discrimination than basic point to point measures, i.e. relative mean squared

error (RMSE) and relative mean absolute error (RMAE), for image similarity evaluations carried

out between neurograms of the reference and degraded versions of phonemes. Unlike these
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measures, SSIM “looks” at images over a patch or windowed area rather than just using a

simple point-to-point pixel comparison. The optimal window size was found to be 3x3 pixels for

both TFS and ENV neurograms (covering three CF bands on the y-axis and a time duration on

the x-axis of approximately 0.5ms and 20ms respectively).

A cursory investigation of the component weightings in SSIM was undertaken in Chapter

3, where the weightings proposed by Kandadai et al. [44] for auditory signal analysis were

compared to the un-weighted results. As phoneme discrimination was significantly poorer using

the suggested weightings when compared to the un-weighted SSIM results, undertaking a full

investigation was deemed necessary. This chapter seeks to establish the component weights for

SSIM that give the best correlation with human listener test results when being used to compare

phoneme neurograms.

4.2.4 The Performance Intensity Function

A useful way of presenting listener test results is the performance versus intensity (PI) function.

It describes recognition probability as a function of average speech amplitude, showing the

cumulative distribution of useful speech information across the amplitude domain as speech

rises from inaudibility to full audibility [8]. Boothroyd uses phoneme scoring of responses to

consonant-vowel-consonant (CVC) words to obtain PI functions and argues that the potentially

useful information provided by the PI function over a basic speech reception threshold test and

maximum word recognition test with CVC word lists is worth the extra time and effort.

According to Mackersie et al. [55] PI evaluation can provide a more comprehensive estimation

of speech recognition. Before computerised versions of the test, such as the Computer-Aided

Speech Perception Assessment (CASPA; [7]), automated the procedure, calculating a PI function

with phoneme scoring was a significantly more time consuming test process.

There are a number of advantages to phonemic scoring tests over similar word scoring tests

[29; 56]. From a statistical perspective, the simple increase in the number of test items improves

test-retest reliability by decreasing variability [5; 29]. Phoneme scores are less dependent on

a listener’s vocabulary as they can be instructed to repeat the sounds that they hear, not

the word, even if they believe it to be a nonsense word. Results are less influenced by the

listener’s vocabulary knowledge than whole-word scoring and provide a well-grounded measure

of auditory resolution [6; 64]. This factor is important in testing with children, who would have

a more limited vocabulary than adults [57].

The PI test has been shown to be useful for comparative tests of aided and unaided speech

recognition results and it has been proposed as a useful method of evaluation of the performance

improvement of subjects’ speech recognition under different hearing aid prescriptions or settings

[8]. It has also been used in testing for rollover effect at high intensities [41].

The test corpus used here contains 20 word lists of 10 phonemically balanced CVC words. It

was developed by Boothroyd for use with the CASPA software for PI measurement. Words are
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Figure 4.2: Block diagram for method. The CVC word signal is presented to the AN model

which simulates auditory nerve discharges at 30 characteristic frequencies. A PSTH output is

produced that is used to create neurograms. Image similarity comparisons are carried out for

neurograms from each of the test phonemes.

not repeated within lists and lists are designed to be isophonemic, i.e. to contain one instance

of each of the same 30 phonemes. There are 10 vowels and 20 consonants in each list and

they are chosen to represent those that occur most frequently in English CVC words. The lists

are balanced only for phonemic content - not for word frequency or lexical neighbourhood size.

Word lists comprising 10 words are presented over a range of intensity levels. The tester records

the subject’s responses with the CASPA software. It scores results in terms of words, phonemes,

consonants, and vowels correctly identified and generates separate PI functions for each analysis.

The simulated tests rely on neurogram similarity comparisons without the benefits of learning

or memory to aid prediction. Both listeners and computer simulated tests lack the context of

the presented sound when tested with single CVC words making the results more comparable

than sentences listener tests. A sample word list is illustrated in Fig. 4.1 and the full CASPA

corpus of word list is presented in appendix B.

4.3 Simulation Method

Experiments using the AN model were designed to allow comparison of simulated listener test

results with real listener data. The real listener tests, presented by Boothroyd [8], were carried

out dichotically via insert headphones on a group of normal hearing listeners in quiet at speech

presentation levels between 5 and 40 dB SPL. The tests are reproduced here, substituting the

human listener with the AN model and measuring neurogram degradation to predict phoneme

discrimination.

First, different image similarity metrics were investigated to quantify the measurements’

fitting accuracy to human listener data. Then PI functions were simulated for normal hearing

listeners over a wide range of presentation levels in both quiet and noise conditions, using the

newly refined metric and methodology.
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4.3.1 Experimental Setup

Timing label files marking the phoneme boundaries were created for the 200 words in Boothroyd’s

dataset. For each word, the time was split into 5 portions: a leading silence, a trailing silence,

and 3 distinct phonemes. All calculations were based on lists containing 10 words (30 phonemes).

For actual listener tests Boothroyd [8] made an assumption of 25 independent phonemes per

list, due to the overlap of phoneme sounds within words.

The most comfortable level (MCL) for speech listening with normal hearing is generally

around 40-50 dB above the initial speech reception threshold [36; 73] and the mean sound field

pressures of conversational speech is 65-70 dB SPL [61]. A level of 65 dB SPL was taken as

the standard level to generate reference neurograms for similarity comparisons. The word lists

were presented to the AN model at speech intensity levels of 5 through to 50 dB SPL in 5 dB

increments and neurograms were created from the simulated AN output.

Phoneme Recognition Threshold (PRT) is the level in dB SPL at which the listener scores

50% of their maximum. The modal PRT value for normal hearing listeners was 15 dB SPL in

Boothroyd [8] but was previously set at 20 dB SPL [5]. The 15 dB value was used for these

experiments.

The similarity measurement between a reference neurogram at 65 dB SPL (MCL level) and

a degraded neurogram at 15 dB SPL (PRT level) measured over a large sample of phonemes

gives a neurogram PRT (NPRT) for a given image similarity metric (ISM). The NPRT for each

ISM was evaluated per phoneme position (p = {C1, V 1, C2}) using lists of CVC words. The

NPRT values were calculated as the medians, µ̃p, of the subsets Sp, containing image similarity

metric F for the 100 phonemes in each subset, between the PRT and MCL levels. Using the

notation from eqn. (4.3), for the ith phoneme, r(i) is the neurogram presented at the MCL level

and dPRT (i) is the neurogram presented at PRT level, such that the NPRT value is µ̃ for K

phonemes of the set,

Sp = {F (r(i), dPRT (i))|1 ≤ i ≤ K} (4.1)

The threshold value was calculated per phoneme position (C1,V1,C2) rather than across all

phonemes together. While Boothroyd does not differentiate between recognition by phoneme

type in calculating the PI function, the image similarity metrics are susceptible to differences in

some circumstances, e.g. noise. This is discussed further in Section 4.5.

The same procedure that was used for evaluation of the NPRT was repeated at each speech

intensity level. The results for each image similarity metric were recorded and a phoneme

discrimination score was calculated by counting the number of phonemes scoring above the

NPRT value. Fig. 4.7 illustrates SSIM scores per phoneme position with the NPRT marked.

The comparison measurement was carried out in the same manner for both ENV and TFS

neurograms and allowed a PI function to be plotted from the results for both neurogram types.
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4.4 Experiments and Results

4.4.1 Image Similarity Metrics

The first experiment compared the ability of three image similarity metrics (SSIM, RMAE and

RMSE) to predict human listener test scores directly from neurograms. Ten lists (100 words)

were presented at each presentation level. Phoneme discrimination scores were calculated for

phonemes scoring above the NPRT for SSIM (as it is an ascending similarity metric) and below

the NPRT value for RMSE and RMAE (as they are ascending error metrics).

The relative contribution from each of the SSIM components: luminance, contrast and struc-

ture was also investigated for both neurogram types. From eqn. (2.10), α, β and γ are the

exponents associated with each component of the SSIM metric. Each combination of α, β and

γ for .05 increments between .05 and 1 was tested.

Following the same methodology to calculate phoneme neurogram similarity, PI functions

were created for each weighting combination. The curve fitting error was calculated as the

sum of the least square difference between the real listener PI function and the simulated PI

function at each of the ten presentation levels. The minimum error score gave the best weighting

combination to curve fit modelled results to the human listener tests.

The PI curves for each image similarity metric are presented in Fig. 4.3. There are two for

SSIM, one with un-weighted components, Fig. 4.3B, and one using the optimal SSIM component

weightings, Fig. 4.3D.

The 10 lists are isophonemic and should thus be comparable in terms of the PI scores yielded.

The PI function for each list was calculated and the mean PI discrimination scores are presented.

The error bars show standard error 95% confidence interval measurement between lists at each

speech intensity level.

The shaded area in the graph highlights the speech intensity range from 20-40 dB SPL which

was used to evaluate the correlation between the PI function for each ISM and the actual listener

data PI curve. Boothroyd [5] recommends that clinicians carry out tests at a minimum of three

levels along the sloping part of the curve. The scores above 40 dB SPL were 100% for all ISMs

tested and the threshold 15 dB level was used to anchor the 50% level. The intermediate 5 data

points were used as the range to assess deviation from the actual listener test PI function.

The root mean square deviation (RMSD) between modelled PI results and listener data

results over the 20-40 dB SPL range was calculated for both ENV and TFS neurogram types.

This quantified how closely the modelled results (PIneuro) followed the real listener PI function

(PIlistener). The expected RMSD value was calculated between 20 and 40 dB SPL, for N data

points, as:

RMSD =

√

1

N

∑

j = 1N(PIlistener(j) − PIneuro(j))2 (4.2)

The superior PI function fit for SSIM can be seen in Fig. 4.3 where RMSE and RMAE have
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Figure 4.3: PI functions simulated using AN model data from ten word lists. A: relative mean squared

error (RMSE); B: SSIM with unweighted components; C: relative mean absolute error (RMAE); D: SSIM

optimally weighted.

significantly poorer RMSD scores for both ENV and TFS.

The SSIM PI function, shown in Fig. 4.3B, tracks the listener PI curve significantly better

than either the RMSE or RMAE. The root mean square deviation in the highlighted box shows

the deviation from the actual listener test curve for the AN modelled results when calculated

for ENV and TFS neurograms.

The optimised SSIM, where exponents α, β and γ were varied to find the factors contributing

most to neurogram similarity measurement, are presented in Fig. 4.4. The curve fitting errors

demonstrate that the measure is fairly robust to changes in weightings with α and γ being the

primary measures over β. Fixing α and β at their optimum values, the graph displays the error

for weightings of γ over full range in 0.05 increment tests. Results for α and β are similarly

shown. The results for both TFS and ENV neurograms were optimal with α and γ closer to full
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Figure 4.4: Least Square Error for each SSIM component over the range of possible values 0.05→1 in

0.05 intervals, measured with the other components set at their optimum. It can be seen that SSIM is

quite robust to changes in weightings. The β exponent, which controls the weighting on contrast, is of

minimal value to neurogram assessment.

weighing and β as a minimal contribution. The optimal weightings for the SSIM components

are in Table 4.1. It should be noted from Fig. 4.4 that while the error trends downwards as

the α weighting increases, both β and γ are relatively flat with local minima, such that the

difference between the TFS results for a γ value of 0.65 or 1 is negligible. The PI function for

optimised SSIM is shown in Fig. 4.3D. It can be seen that the results display an improvement in

correlation to the listener test data over un-weighted SSIM for both ENV and TFS neurogram

types.

α β γ

TFS 1 0.05 0.65

ENV 0.95 0.05 0.9

Table 4.1: SSIM component weighting test. The optimal weightings for α, β and γ exponentials

when using SSIM to assess listener tests results with TFS and ENV neurograms.

4.4.2 Neurogram Similarity Index Measure (NSIM)

The optimally weighted SSIM results are better than those for the un-weighted metric although

the magnitude of the improvement is not as profound as the difference between SSIM and the

other similarity metrics tested. Looking at the results in Fig. 4.4, there is a strong argument

for dropping the contrast component β, which contributed minimal positive correlation, and

setting α and γ at 1. Testing this proposal with 10 lists gave results comparable in accuracy

and reliability to those measured using the optimum SSIM weightings. This would simplify the
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metric considerably and also create a uniform calculation for both ENV and TFS neurograms. It

is proposed that this simplified adaptation of SSIM will be used and referred to as the Neurogram

Similarity Index Measure (NSIM):

NSIM(r, d) =
2µrµd + C1

µ2
r + µ2

d + C1
·

σrd + C2

σrσd + C2
(4.3)

4.4.3 Accuracy and Repeatability

Tests were carried out using multiple combinations of lists at each presentation level as well as

with repetitions of a single list to assess the repeatability and accuracy of the simulations.

The accuracy was assessed by measuring the root mean squared deviation between the real

listener and simulated PI functions. The repeatability was measured by comparing the standard

error variability at each presentation level.

A single word list (list #1) was presented to the model 10 times. PI functions were calculated

and the confidence intervals were estimated using 3, 5, 8 and 10 iterations of a single list (Fig.

4.5). 95% confidence intervals (1.96 times the standard error) between iterations above and

below the mean value are shown at each presentation level tested.

For iterations of the same list, the ENV and TFS PI functions do not follow as closely to

the real listener PI function as they do for the same number of varied lists. A comparison of

the RMSD values quoted in Fig. 4.5 show that the deviation remains consistent as the number

of simulation iterations increased. More iterations did however decrease the variability, as the

error bars illustrate.

Multiple word lists were presented to the model and PI functions were calculated and the

confidence intervals were estimated using 3, 5, 8 and 10 lists at each presentation level (Fig.

4.6). The RMSD values show the deviation decreases for tests using 3 to 5 lists but is relatively

consistent for 5,8 and 10 lists.

As with multiple presentations of the same list, the variability decreases as the number of

lists increases, illustrated by the error bars decreasing in size in Figs. 4.6A-D.

These results show that repeating lists do not improve the accuracy but does improve the

confidence interval in the simulated PI functions. Using 5 different lists improves the accuracy

and the confidence interval over using 3 lists in the simulated PI functions, but more than 5 has

little impact on either accuracy or reliability. This result coincides with the recommendations

to present a minimum of 3 lists in the original PI listener test proposal [5].

4.4.4 Method and Model Validation

To rule out the potential of false-positive results, and to verify that the AN model was the

principle factor influencing the PI function shape, PI functions were created using spectrograms

of the input signal with comparable resolutions to neurograms. The number of frequency bands

matched the 30 CF bands in the neurograms and the sampling and smoothing windows were
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Figure 4.5: AN Model variance test. PI functions calculated with SSIM (optimal weightings) using

model data from 3, 5, 8 and 10 iterations of list #1.

comparable to those used to create ENV and TFS neurograms from the AN model PSTH

outputs. The spectrograms were created directly from the input dataset signals (i.e. the words

at each intensity level). Using the same methodology that was used for neurogram assessment,

SSIM was used with the spectrograms to calculate PI functions. The NPRT level was set at

15 dB SPL although, without the AN model present, there is no inherent reception threshold

boundary at this level in the signal spectrogram.

Fig. 4.8 confirms that the AN model is the critical factor influencing the PI function shape.

The RMSD values are an order of magnitude worse than those measured using neurograms from

the AN model. This is primarily attributable to the 100% scores for 30 dB SPL and above.

The reason for this is apparent when the SSIM results are examined. Although the range in the

SSIM scores is much wider for the spectrograms than it is for the neurograms, the NPRT line is

much closer to zero. The wider range and spread in SSIM values are indicative of the procedure
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Figure 4.6: Word List Test: PI functions calculated using model data from 3, 5, 8 and 10 lists.

purely measuring the increase in signal intensity from the spectrograms.

This validates the assumption that the accuracy of the simulated PI is primarily a function

of the AN model and not just a function of the data or test parameters used in the methodology.

4.4.5 Simulated Performance Intensity Functions (SPIFs)

Further experiments were carried out to assess the prediction of normal hearing across a wider

range of presentation levels in quiet and a range of signal to noise ratios in steady state noise.

Based on the prior findings, 5 word lists were used and the neurograms were compared using

the NSIM.

A test in quiet was carried out over 5 dB intervals from 5 to 100 dB SPL with the reference

neurogram level set at 65 dB SPL. The results are presented in Fig. 4.9. The ENV results

reached 100% phoneme recognition at 45 dB SPL and remain there through to 100 dB SPL.
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Figure 4.7: SSIM scores for 10 lists. Broken down by phoneme (C1, V, C2) and a whole word plot com-

bining the phoneme results in a single chart. The dashed line shows the neurogram phoneme recognition

threshold level (NPRT).

The TFS results begin to fall from 90 dB SPL.

A second test was carried out with a steady state noise fixed at 55 dB SPL and the words

were presented at 5 dB increments between -15 and +15 dB SNR. A reference +20 dB SNR was

used for comparisons and a -11 dB SNR was used as the phoneme recognition threshold in line

with results presented in Boothroyd [8]. The results are presented in Fig. 4.10.

In noise, NSIM provided a marginally superior fit to RMAE or RMSE. Further tests in a

range of noise and reverberations may allow further refinement and assessment of the SPIF

methodology. This basic test in noise demonstrates the model is not limited to speech intelligi-

bility assessment in quiet.

4.4.6 Comparison to SII

A comparison was carried out between the results presented for NSIM and the speech intelligi-

bility index. The SII was calculated by the one-third octave procedure in ANSI [2], using the

long term spectrum for five CASPA word lists. SII was calculated in quiet over 5 dB steps,

between 5 and 100 dB SPL. SII is a measure, bounded between zero and one, that computes

the amount of audible speech cues that are available to a listener. An SII score of 0.5 does

not translate directly to a speech discrimination score of 50%. The frequency importance and

transfer functions for NU6 words were used to convert SII to word recognition [83], followed by a

word-to-phoneme recognition transfer function [8]. Fig. 4.9 shows the SII and the SII phoneme

recognition predictions in quiet and Fig. 4.10 shows SII in noise. The SII input was adjusted to

match the PRT of the listener test results.

In quiet, SII follows the listener PI function well but overestimates results in the 20-40
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Figure 4.8: Spectrogram tests. PI function generated using optimal SSIM weights without the use of the

AN model. Raw SSIM data for spectrograms with resolutions equivalent to ENV and TFS neurograms

dB SPL range (RMSD=0.059). The linear correlation between modelled and listener phoneme

discrimination is presented along with their RMSD values in Fig. 4.9.

SII and NSIM both underestimated the phoneme recognition in the preliminary tests in noise,

with gradients more linear than the real listener PI function between 50% and 90% phoneme

discrimination levels. Results for both ENV and TFS neurograms showed similar levels of

accuracy but both underestimated phoneme discrimination more than SII.

4.5 Discussion

Using the Neurogram Similarity Index Measure to compare the neurogram outputs from an AN

model has been shown to produce a PI function with statistically significant correlation accuracy

to real listener data. This is an important step that not only validates the AN model as a tool for

assessing speech intelligibility, but provides a mechanism for quantitatively assessing phoneme

and word recognition at progressive speech intensity levels. It must be acknowledged that so
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Figure 4.9: Top: Simulated performance intensity functions for NSIM evaluation of ENV and

TFS neurograms in quiet with SII phoneme discrimination prediction plotted for comparison.

Second Row: NSIM scores plotted per phoneme position with NPRT level at 15 dB SPL. Third

Row: SII plot and real versus modelled data linear correlation and RMSD.
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Figure 4.10: Top: Simulated performance intensity functions for NSIM evaluation of ENV and

TFS neurograms in 55 dB SPL steady state noise with SII phoneme discrimination prediction

plotted for comparison. Second Row: NSIM scores plotted per phoneme position with NPRT

level at -11 dB SPL. Third Row: SII plot and real versus modelled data linear correlation and

RMSD.
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far this has only been demonstrated for simulations of normal hearing in quiet and steady state

noise. The methodology, having been developed and validated, now has the potential to be

extended to simulations in other environments, such as speech shaped noise or reverberation

and also for simulation of SNHL in aided and unaided scenarios.

Measuring the similarity of spectrograms instead of neurograms demonstrated that the AN

model was essential to the overall accuracy of the simulated PI function. One limitation of

the AN model is that its computational requirements preclude real time simulation of even

limited word lists. While this paper focused on the development of a methodology for using

image similarity metrics in neurogram assessment, one could speculate that substituting an

alternative, simpler AN model to that of Zilany et al. [102], may yield comparable results. In its

current form, the proposed methodology could ultimately prove effective as a measure for use in

the assessment of hearing aid algorithms, but would be unsuitable for any real-time applications.

NSIM provides a simpler metric to SSIM, while still giving comparable results that are

superior to basic point-to-point similarity metrics in quiet conditions. The simulated PI functions

demonstrate that modelled results for both ENV and TFS neurograms can be correlated with

psychometric tests. One apparent weakness is the poor correlation below the PRT level, where

RMAE and RMSE performance was superior (see Fig. 4.3A). As testing at these levels has

limited practical applications in hearing assessment or enhancement, it is not perceived as a

major shortcoming.

The methodology presented is based on transforming an image similarity metric to an esti-

mate of phoneme discrimination, by measuring the similarity between a reference and degraded

neurogram. The premise is that, over a long run of phoneme neurogram comparisons, a threshold

value (NPRT) for similarity can be matched to a psychoacoustic phoneme recognition level.

The NPRT is set based on the median levels for the leading consonant, vowel and trailing

consonant (C1,V1,C2). For early experiments, the NPRT was set as the median across all

phonemes regardless of position. This worked well in quiet conditions and the difference in value

between the NPRT calculated across all phonemes versus the NPRT, calculated per phoneme

position, was negligible (for ENV and TFS µ̃ − µ̃p < 0.016). In noise this was found not to be

the case where the NPRT range was up to 0.056. It is illustrated in Figs. 4.9 & 4.10 where the

NPRT lines are plotted on the NSIM boxplots. While the results in quiet show similar maximum,

minimum and NPRT scores for C1,V1 and C2, the pattern is not repeated in noise. The trailing

consonant, C2, has a lower maximum, minimum and NPRT than either C1 or V1. The likely

reason for this is the higher occurrence of stop phonemes at the end, rather than at the start of

the test words. When analysed as an image, a time-frequency neurogram plot of a stop phoneme

is predominantly an empty image followed by an vertical line of intensity across the frequency

range and then trailing off (see Fig. 2.16 from approximately 0.55 seconds). Comparison of the

stop in quiet will rank the silence portion of the image equally and the similarity ranking is

dominated by differences in the intensity of the plosive burst. When comparing stop phonemes

in noise, the absence of comparative features in the pre-plosive burst section of the neurogram
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results in a dominance of noise over spectro-temporal phoneme features in the similarity analysis

and a consequent shift down in similarity scores.

Using an image similarity metric has a dependence on the spectro-temporal features within

a phoneme’s neurogram. While this causes problems when assessing the similarity of stop

consonants in noise, an analogous problem is faced by real listeners decoding speech, where

noise masks the expected silence and reduces the intensity difference at the start of the plosive

burst. The full reference, time-aligned neurogram comparison means that each phoneme is

assessed based on its degradation in isolation. Practically, the measurement is devoid of any

advantage of context, but it also means that slight misalignments will not critically impact the

results as a vowel phoneme that is shorter, or longer, will still yield a comparable similarity

score due to the periodic nature of the neurogram.

4.5.1 Comparison with other models

Approaches similar to those presented in this paper have been adopted by a number of authors

in their work on the prediction of speech intelligibility using AN models.

Huber and Kollmeier [38] used the Dau et al. [19] auditory model to develop PEMO-Q,

an audio quality assessment. While their goal was quality assessment, a strong correlation

between quality and speech intelligibility has been shown [66]. The PEMO-Q approach is based

on a full reference comparison between “internal representations” of a high quality reference

signal and distorted signals. The metric uses a correlation co-efficient and requires time-aligned

signals and uniform band importance weightings that are applied across frequency bands. The

envelope modulation from each band forms a weighted cross correlation of modulations to obtain

the quality index.

Spectro-temporal modulation transfer functions (MTF) have been used to develop intelli-

gibility indices (STI/STMI). The spectro-temporal modulation index (STMI) was developed

by Elhilali et al. [26] to quantify the degradation in the encoding of spectral and temporal

modulations due to noise, regardless of its exact nature.

Zilany and Bruce [99] combined the use of STMI with their AN model [97] to measure intelli-

gibility by presenting sentences and words in quiet and noise. They showed correlation between

STMI scores and word recognition, but only tested with a limited number of presentation levels.

They demonstrated that STMI would predict the same general trends as listener tests in quiet,

noise and with SNHL. Quantitative prediction or mapping to word recognition via a transfer

function was not demonstrated.

A key difference in this work is the quantitative link between neurogram similarity and

phoneme recognition performance across a range of intensity levels. The measurement and scor-

ing on a per phoneme basis aims to allow direct comparison between clinical testing techniques

and simulated modelling. Phoneme based modelling was undertaken by Jurgens and Brand

[42] who correlated simulated recognition rates with human recognition rates and also looked at
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confusion matrices for vowels and consonants. In their Perception Model (named PeMo), the

comparisons are made using a distance measurement between unseen, noise corrupted sounds

and reference sounds. A dynamic time warp speech recogniser computes the distance for each ref-

erence and the reference with the smallest distance measurement is recognised. This means that

recognition is based on guessing words from a limited vocabulary and that there is a threshold

percentage correct that can be scored (random hit probability), which necessitated adjustments

in the intelligibility scores. Their model showed similar prediction accuracy to SII. As in this

paper, Gallun and Souza [28] investigated the effect on intelligibility changes to the envelope at

a phonemic level using a time-averaged modulation spectrum alone, without measuring phase

components. They concluded that it could capture a “meaningful aspect” of information used

in speech discrimination.

The results presented here show that, in both quiet and noise, neurogram similarity can be

used to predict the phoneme recognition across a range of presentation levels or SNRs for a

normal listener within the levels of accuracy expected from real listener tests. Jurgens et al. [43]

noted that observed speech reception thresholds in normal hearing individuals varied by about

5 dB. They note that inter-individual differences in SRT is an important and not adequately

represented factor in modelled speech intelligibility, either using their model or the ANSI [2]

standard model, speech intelligibility index (SII). Here, comparison of modelled data with real

listener data necessitated calibrating the PI function to the phoneme reception threshold. In

the results presented, the PRT was set according to the measured level from the psychoacoustic

tests.

The NSIM results show a similar trend to SII. In quiet, the SII peaks just below 60 dB SPL

and remains at a maximum through approximately 10 dB before beginning to degrade dropping

to 0.84 by 100 dB SPL. The NSIM results plateau at 65 dB SPL, where they show a maximum

similarity before tailing off at a faster rate than SII. It should be pointed out that the maximum

NSIM value reached is not 1 as the 65 dB reference neurograms and the 65 dB test neurograms

compared are from independent simulations with the AN model. A score of between .7 and .8

is the maximum similarity that occurs even for the same signal presented at the same level to

the AN model. The fact that the ENV neurograms predict 100% phoneme discrimination all

the way up to 100 dB SPL but that TFS predicts a sharp drop off beginning at 90 dB SPL is

mainly due to the NSIM vowels scores dropping below the NPRT rather than the consonant

similarity scores. It can be speculated that this behaviour in neurogram similarity may be linked

to hearing phenomena, e.g. the rollover effect [41]. However, this work only demonstrates that

both ENV and TFS neurograms can be used to predict speech intelligibility in normal hearing

listeners. Modelling sensorineural hearing loss will allow better insight into distinguishing the

predictive qualities and factors influencing ENV and TFS neurograms.

The simulated performance intensity functions presented here compare favourably to predic-

tions with SII and are a good validation of NSIM’s potential. Like SII, it is not a direct measure

of intelligibility. NSIM measures the difference between simulated auditory nerve firings at given
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intensities compared to a reference level. SII predicts the proportion of speech information that

is available to the listener in given conditions. It does this by estimating the loss of information

due to the masking of noise, audibility threshold or hearing impairment. A transfer function

is required to predict speech intelligibility. Unlike SII, which is using importance weightings

for general speech at each frequency band, NSIM is equally weighted across all neurogram CF

bands measuring similarity per phoneme. As the NSIM scores are based on per phoneme neu-

rograms, a direct comparison with results from real listener tests is possible. The methodology

also opens up the possibility of examining other factors that may provide insight into cues used

in speech intelligibility, such as different neurograms types (TFS or ENV) or individual phoneme

performance.

The superior performance of NSIM in quiet conditions compared to in noise is not surprising

given the underlying methodology. In quiet, the AN activity decreases with presented sound

intensity, and consequently there is less ‘information’ in the neurogram. Conversely, phonemes

presented in noise contain additional erroneous information, in the form of AN activity due to

the noise. The NSIM comparison between neurograms is not weighted by band or by time, so

differences between noise patterns or between noise patterns and quiet patches are weighted

equally with changes to actual phonemic features. This is an area where the metric could be

further optimised, possibly even through the inclusion of features from SII such as frequency

band importance weightings.

4.6 Conclusions

The results presented for normal hearing listeners demonstrate that substituting an AN model

for a real human listener can quantitatively predict speech intelligibility. The methodology

and newly proposed Neurogram Similarity Index Measure (NSIM) have been shown to produce

accurate and repeatable results. The confidence intervals for the simulated tests are within

human error bounds expected with real listener tests. The simulated performance intensity

functions in both quiet and in noise compared favourably with SII predictions of phoneme

recognition of the CVC material tested with normal hearing listeners.

Chapter 5 uses the methodology to simulate PI functions for listeners with SNHL in unaided

and aided scenarios. This opens up the potential to test and quantitatively compare the speech

intelligibility improvements offered by hearing aid fitting algorithms in a simulated environment.



5
Comparing Hearing Aid Algorithms Using Simulated

Performance Intensity Functions

5.1 Introduction

Developing improved hearing aid algorithms is an intensive process in terms of labour, test

subjects and time. A simulated test environment would allow rapid prototyping and basic

assessment of new fitting algorithms. The ability to test and quantitatively compare the speech

intelligibility improvements offered by different hearing aid fitting methods would not replace

listener tests but could significantly reduce development costs and times. To realise this, a

quantitative simulation and test methodology is needed to discriminate between normal hearing

auditory systems and those with a variety of progressively degraded levels of sensorineural

hearing loss (SNHL).

The simulated performance intensity function (SPIF) test methodology that was presented

in Chapter 4 allows experimentation using an AN model to predict the phoneme recognition

of listeners. This chapter seeks to reproduce the results for human listeners with a range of

SNHLs by investigating whether the AN model yields comparable results with the same dataset.

Experiments were carried out in unaided and aided scenarios. This Chapter focuses on simulated

tests in quiet and evaluating the results using NSIM to measure ENV neurogram similarity. The

results in Chapter 4 showed that ENV and TFS produced a good prediction of PI functions for

normal hearing listeners. Early results indicated that TFS neurograms from hearing impaired

simulations would require separate treatment. The results for TFS neurogram analysis are

81
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presented independently in Chapter 6.

5.2 Background

As in Chapter 4, the Zilany et al. [102] AN model is used in this study. The AN model covers

the middle and inner ear, so a pre-filter based on measurements from Wiener and Ross [91] is

used to model the outer ear when simulating free field listener tests.

The methodology used to create neurograms from the model output was introduced in Section

2.4 of the background. Neurograms for each phoneme are assessed as an image comparison

between the neurogram being assessed and a reference neurogram from a normal hearing AN

model for the same input signal. In this chapter, the Neurogram Similarity Index Measure

(NSIM) introduced in Chapter 4 is used to measure neurogram similarity. It is a simplified

version of SSIM and is defined as

N(r, d) = l(r, d) · s(r, d) =
2µrµd + C1

µ2
r + µ2

d + C1
·

σrd + C2

σrσd + C2
(5.1)

The NSIM between two neurograms, the reference (r), and the degraded (d), is constructed

as a weighted function of intensity (l), and structure (s) as in eqn. (5.1). Intensity looks at a

comparison of the mean (µ) values across the two neurograms. The structure uses the standard

deviation (σ) and is equivalent to the correlation coefficient between the two neurograms. As

with SSIM, each component also contains constant values (C1 = (0.01L)2 and C2 = (0.03L)2,

where L is the intensity range, as per Wang et al. [90]) which have negligible influence on

the results but are used to avoid instabilities at boundary conditions. Chapter 3 has further

information on neurogram ranking with SSIM. A simulated PI function is produced by using

NSIM to rank a large number of neurogram comparisons, over a range of intensity levels.

5.2.1 Performance Intensity Function

A performance intensity (PI) function is used to plot phoneme discrimination against speech

intensity. Evaluation of a test subject’s speech reception threshold (SRT) and word recognition in

lists of phonetically balanced words allows validation of pure tone thresholds and estimation of

auditory resolution respectively. The PI function has been shown to be useful for comparative

tests of aided and unaided speech recognition results and it has been proposed as a useful method

to evaluate the performance improvement of subjects’ speech recognition under different hearing

aid prescriptions or settings [8].

The test corpus used came from the Computer Aided Speech Perception Assessment (CASPA;

[7]) software package which was developed to simplify the data recording and analysis for perfor-

mance intensity listener tests. It contains 20 word lists of 10 phonemically balanced consonant-

vowel-consonant (CVC) words. Words are not repeated within lists and lists are designed to be

isophonemic, i.e. to contain one instance of each of the same 30 phonemes. Word lists compris-
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ing 10 words are presented over a range of intensity levels. CASPA allows a tester to record a

subject’s responses using the software package. It automatically scores results in terms of words,

phonemes, consonants, and vowels correct and generates separate PI functions for each analysis.

5.2.2 Simulated Performance Intensity Function

In a standard performance intensity listener test, CVC words are presented to the test subject

who listens and repeats the words, which are manually scored, per phoneme correctly identified,

by the tester. This is repeated at a progressive range of intensity levels and a PI function is

measured.

The Simulated Performance Intensity Function (SPIF) replaces the listener with the AN

model and scoring is based on automated comparisons of the neurograms produced by the

nerve firing simulations from the model. Neurograms from the AN model with normal hearing

thresholds are used to create a baseline set of neurograms at a comfortable speech level for

normal listeners. A 65 dB SPL reference is used as it represents a mean sound field pressure for

conversational speech [61].

NSIM scores are calculated by comparing neurograms from a given listener’s phoneme recog-

nition threshold (PRT) level. This establishes a neurogram phoneme recognition threshold

(NPRT) which is used to establish the percentage recognition at each sound intensity level and

allow a SPIF to be plotted.

5.2.3 Hearing Profiles and Hearing Aid Algorithms

Three hearing impaired listeners were tested by Boothroyd [8] with flat moderate, flat severe and

high frequency severe impairments. These hearing impairments are simulated here for compari-

son with the reported results. Additionally, a mild gently sloping hearing loss was also simulated

to fill the gap in the range of audiograms tested between unimpaired and moderate. Although

actual listener test results were not available for the mild listener, it did allow the simulated

results for a mild loss to be compared to those of other hearing losses.

Two linear hearing aid fitting algorithms were tested: NAL-RP (National Acoustics Labora-

tory - Revised, Profound) and DSL 4.0 (Desired Sensation Level). The formulae for calculating

insertion gains for these fitting algorithms are described in 2.7.

5.3 Simulated Tests

Simulated Performance Intensity Function listener tests were carried out using the AN model to

simulate listeners with SNHLs in unaided and aided scenarios. For this experiment, a software

implementation of the NAL-RP and DSL 4.0 algorithms were developed to pre-filter the input

signals and apply the output insertion gains prescribed by the fitting methods. The formulae

for the fitting methods are outlined in Dillon [24]. The hearing loss thresholds and prescribed
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Figure 5.1: Block diagram for simulated tests. The CVC word signal is presented to the AN

model which simulates auditory nerve discharges at 30 characteristic frequencies. A PSTH

output is produced that is used to create neurograms. Image similarity comparisons are carried

out for neurograms from each of the test phonemes. A simulated performance intensity function

is calculated using the NSIM results.

insertion gains are presented in Figs. 5.2 - 5.5. The thresholds are a mean of the left and right

ear values for the human listener test subject where there were slight differences in the left/right

ear thresholds [8].

The SPIF procedure mimics that of a real listener test. The human listener is substituted

with the AN model and the NSIM scores are used to assess neurogram degradation and to

predict phoneme discrimination. Word lists from the CASPA dataset [7] were used. Timing

label files marking the phoneme boundaries were created for the 200 words. For each word, the

time was split into 5 portions, a leading and trailing silence, and 3 distinct phonemes.

Tests for normal hearing listeners in quiet were carried out and the results were presented in

Chapter 4. For normal hearing listeners, the phoneme recognition threshold (PRT; that is, the

level in dB SPL at which the listener scores 50% of their maximum) was set at 15 dB SPL as

per Boothroyd [8]. A level of 65 dB SPL was taken as the standard level to generate reference

neurograms to test against.

The similarity measurement between a reference neurogram and a degraded neurogram at

the PRT level measured over a large sample of phonemes gives a neurogram PRT (NPRT). The

NPRT was evaluated per phoneme position (p = {C1, V 1, C2}) using lists of CVC words. The

NPRT values were calculated as the medians, µ̃p, of the subsets Sp, containing NSIM F for the

100 phonemes in each subset, between the PRT and MCL levels. Using the notation from eqn.

(2.10), for the ith phoneme, r(i) is the neurogram presented at the MCL level and dPRT (i) is

the neurogram presented at PRT level, such that the NPRT value is µ̃ for K phonemes of the

set,

Sp = {F (r(i), dPRT (i))|1 ≤ i ≤ K} (5.2)
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The threshold was calculated for each phoneme position (C1,V1,C2) rather than across all

phonemes together. The reasoning for this was discussed in detail in Section 4.5.

The word lists were presented to the AN model at ten speech intensity levels in 5 dB incre-

ments covering sub-threshold to peak intelligibility levels. The same procedure that was used

for evaluation of the NPRT was repeated at each speech intensity level using 5 other word lists

(150 phonemes). The results were recorded and a phoneme discrimination score was calculated

by counting the number of phonemes scoring above the NPRT value. A simulated performance

intensity function was calculated from the results.

The same procedure was repeated for each hearing loss in unaided and aided scenarios. For

the moderate loss, as per Boothroyd’s results, the PRT was set at 54 dB SPL and measurements

were taken with input speech signals presented at 5 dB intervals between 55 and 100 dB SPL.

For the aided tests, the PRT was 42 dB SPL and measurements were taken at 5 dB intervals

between 35 and 75 dB SPL. Other losses were tested in the same manner using the PRT values

from Boothroyd [8] that are summarised in Table 5.1.

Hearing Type Unaided PRT (dB SPL) Aided PRT (dB SPL)

Unimpaired 15 -

Mild 35 25

Moderate 54 42

Severe 82 41

Severe (High-Freq.) 70 -

Table 5.1: Phoneme Recognition Threshold (PRT) levels, unaided and aided, by hearing loss.

Levels for mild loss were estimated.

5.4 Hearing Losses Tested

5.4.1 A Flat Moderate Sensorineural Hearing Loss

The real listener test was carried out by Boothroyd on an adult with a flat moderate SNHL.

Binaural phoneme recognition scores were obtained using headphones and each score took ap-

proximately one minute to test based on a 10-word list. The results were fitted to a PI function

curve and are presented as the lines on the simulated PI function in Fig. Fig. 5.2. The NSIM

scores for the simulations are also presented, broken down by phoneme position (i.e. initial

consonant, vowel, final consonant). The bars mark one standard error.

The SPIF presents a normal listener result, for reference, which has been normalised to a

PRT of 15 dB SPL and is plotted as a dashed line. The next two curves are the aided and

unaided curves fitted to the results from the real listener tests. The triangle and diamond points

mark the NAL-RP and DSL 4.0 aided simulations and the circles show the unaided simulation.

The hearing aid shifts the PI curve by around 15-20 dB for the flat moderate hearing loss tested,
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Figure 5.2: A flat moderate hearing loss. Above: Audiogram and ENV NSIM results. Below:

Target insertion gains for hearing aid algorithms (NAL-RP and DSL 4.0) and simulated per-

formance intensity functions where the lines indicate the fitted curve to the real listener data

with the simulated data point marked with +/- 1 std. error. The dashed normal PI function is

shown for reference; the solid line is a cubed exponential PI function fit to Boothroyd’s data for

unaided tests and the dashed line is for aided tests. Simulated results are shown as points with

error bars for listeners unaided and aided using both fitting methods.

which, from the audiogram in Fig. 1, can be seen to have a threshold loss ranging from 35 to 60

dB HL. The unaided results are a close match to the trend but are offset and over-predict the

phoneme recognition. Overall, the results track within the error bounds of psychoacoustic tests.

5.4.2 A Flat Severe Sensorineural Loss

The results for an adult with a flat severe SNHL are presented in Fig. 5.3. They show that

both the unaided and aided PI functions are steeper than those in the flat moderate case with

phoneme recognition - peaking between below 90% for unaided listening through headphones.

The intensity range for optimal scoring is narrower and a difference either way results in lower
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Figure 5.3: A flat severe hearing loss. Above: Audiogram and ENV NSIM results. Below: Target

insertion gains for hearing aid algorithms (NAL-RP and DSL 4.0) and simulated performance

intensity functions where the lines indicate the fitted curve to the real listener data with the

simulated data point marked with +/- 1 std. error. The dashed normal PI function is shown for

reference; the solid line is a cubed exponential PI function fit to Boothroyd’s data for unaided

tests and the dashed line is for aided tests. Simulated results are shown as points with error

bars for listeners unaided and aided using both fitting methods.

scoring due to audibility or discomfort [8]. The unaided NSIM scores show a sharp tail-off in

similarity scores at high presentation levels for vowels. This is in contrast to the aided case

where the vowel plateaus at a similarity level close to the unaided maximum. The NSIM results

predict the range of optimal listening being extended from a few dB to around 25 dB. This

feature is visible in the PI function for the listener test but is not replicated in the SPIF results

where the aided phoneme recognition scores do not plateau. It is likely that this is due to

the influence of the consonants where the NSIM trends continuously upwards over the range

tested. The simulated results closely fit the listener test for the unaided case and show similar

improvements in dB necessary for comparable phoneme discrimination when aided, but do not

predict the maximum recognition tail-off in the aided case.
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Figure 5.4: A high-frequency severe hearing loss. Above: Audiogram and ENV NSIM results.

Below: simulated performance intensity functions where the lines indicate the fitted curve to

the real listener data with the simulated datapoint marked with +/- 1 std. error. Simulated

results are shown for unaided listening only.

5.4.3 A Severe High-Frequency Sensorineural Hearing Loss

Boothroyd [8] only presented results for an adult with a high frequency severe SNHL in unaided

conditions so aided tests were not simulated. People with an audiogram similar to the one tested

typically have a PI function composed of two sections [5], as illustrated in the PI function in

Fig. 5.4. The lower section is an initial threshold where a poor phoneme discrimination can be

attained from the low frequency speech components alone. As vowel formants and the higher

frequencies which make up consonants are not available, the low threshold for this listener is

around 35%. When speech intensity increases, higher frequency speech cues become audible

and the PI function begins to climb again in the second section of the PI function. The NSIM

results show a trend that plateaus at a maximum similarity for both consonants and vowels.

The simulated PI fails to predict the first section of the PI function where it predicts almost no

recognition. The second section follows the listener PI as the higher frequencies become audible

but it underestimates the maximum phoneme discrimination level - though it does match the
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Figure 5.5: A mild gently sloping hearing loss. Above: Audiogram and ENV NSIM results.

Below: Target insertion gains for hearing aid algorithms (NAL-RP and DSL 4.0) and simulated

performance intensity functions where the lines indicate the fitted curve to the real listener data

with the simulated data point marked with +/- 1 std. error. Simulated results are shown for

listeners unaided and aided using both fitting methods.

speech intensity at which the PI curve reaches a maximum.

5.4.4 A Gently Sloping Mild Sensorineural Hearing Loss

The last test simulated was a listener with a gently sloping mild SNHL. This test did not match

actual listener data from Boothroyd but was carried out to examine the performance of a sample

listener with an audiogram between unimpaired and a moderate loss. As this test was purely a

simulation, there are no real listener PI curves drawn to compare with for either the unaided or

aided results. The normal hearing PI curve is plotted for reference. The PRT levels (in Table

5.1) for this loss were estimated. The unaided results were, as expected, between those for an

unimpaired and a moderate loss. The gradient of the simulated PI matches more closely with

the moderate than the unimpaired. There is a consistent improvement of approximately 20dB
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Figure 5.6: Real listener test results for a flat moderate sensorineural hearing loss. Figure

adapted from Boothroyd [8]. This performance intensity curve illustrates the range in phoneme

discrimination scores and is presented to show the accuracy levels experienced with real listener

tests. The PI curve has been fitted to the data but the error bars for actual listeners are

comparable in magnitude to those from the simulated tests (i.e. those in Fig. 5.2).

for a comparable phoneme discrimination between unaided and aided results, even though the

average band insertion gain is less than half.

5.5 Discussion

5.5.1 Simulation and Clinical Test Comparison

Comparing the results in Fig. 5.6 from the simulated test with the real listener results (points

are the simulation results, lines are the PI functions fitted to the real listener results), the overall

correlation is very promising. The key area of interest is between the 50% phoneme discrimina-

tion (%P.D.) and the maximum level. The results for the flat moderate SNHL (unaided) follow

the shape of the listener curve quite closely but are over predicting the %P.D. and have shifted

by 5-10 dB. This will be looked at in more detail below. The aided SPIF results closely fit the

predicted listener PI function.

The error bars (representing +/- 1 standard error) for the simulated results are smaller than

those for the real listener tests. The reported real listener tests refer to individuals rather than

group means and used fewer word lists to test phoneme recognition than in the simulations, so

from a purely statistical perspective such smaller error bars would be expected as there is not

as much data available to establish the range and outliers. The size of the error bars highlight

the variance in results from a clinical environment.
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At high presentation levels the NSIM scores begin to drop, which may be a representation

of rollover effects decreasing phoneme discrimination. A very small increase in the NPRT level

would cause a significant change to the %P.D. The fit for the unaided flat moderate SNHL would

improve the fit significantly, by applying a shift of the PRT by 1dB, suggesting that for good

correlation, the methodology is heavily dependent on an accurate PRT measurement. This does

not imply inconsistencies in the results. The reliability and repeatability of the methodology was

demonstrated in Chapter 4. It does highlight the importance of an accurate PRT level, together

with an audiogram, as prerequisites for a reliable simulation. The levels of hearing losses were

simulated using the AN model using typical percentage inner and outer hair cell losses for the

audiograms provided in the Zilany et al. [102]. It should be noted that the tests simulated were

for individuals tested and reported by Boothroyd [8] and hence experimental conditions could

only be matched to the details reported.

5.5.2 Fitting algorithm comparisons

Work has been done by others to investigate hearing aid fitting algorithms using AN models.

Bruce et al. [9] tested NAL-R and DSL 4.0 to find optimal single-band gain adjustments based

on the response of auditory-nerve fibres to speech. They examined a range of dB adjustments

above and below the prescribed target insertion gains. A mean absolute error measure was used

to establish minimum neurogram differences. The results showed optimal gain adjustments for

the NAL-R prescription were somewhat higher than those for DSL, and were consistent with

the generally lower insertion gains of NAL-R.

Here, the SPIFs for both fitting algorithms predicted negligible differences in phoneme recog-

nition. However, the NSIM showed that neurogram similarities were higher for DSL than for

NAL-RP. This can be explained by examining the procedure used in calculating the predicted

PI scores. The percentage phoneme discrimination at any given intensity is calculated as the

number of phonemes with NSIM greater than the NPRT. The magnitude of the NSIM above the

NPRT threshold is not taken into account, so the NSIM scores for NAL and DSL may display

differences which do not translate into a significant difference in intelligibility when the SPIF is

plotted. The hearing aid used for the real listener test was not specified, so the same aided PRT

value was used for both the NAL and DSL simulations to calibrate their NPRT levels. This

accounts for their results at 50% discrimination matching, but not for other intensity levels.

Tests of hearing impaired listeners with PRT levels measured individually for each hearing aid

algorithm would benefit from further study. SPIFs created from NSIM measures of neurograms

demonstrate that a correlation exists between neurogram similarity and speech intelligibility.

However, it is possible that maximising the similarity is unnecessary as long as a threshold sim-

ilarity level exits. Conversely, the neurogram similarity may be a good indicator of other factors

beyond intelligibility such as speech quality, as has been investigated by Kates and Arehart [45].

Other research, carried out by Bondy et al. [3] used their neurocompensation technique to
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model a range of SNHLs. Their results predicted optimal target insertion gains for hearing aids

and the results predicted optimal gains which were close to those of NAL-R. This work shows that

although NAL-RP and DSL 4.0 predict significantly different targets, the overall PI functions

remain very similar. This could mean that for a given SNHL the optimal prescribed target

insertion gains are not a single prescription but that a range of values, including those empirically

found and used for NAL-RP and DSL-4.0, will work sufficiently well to give comparable PI

functions. This was seen in a recent study by Ching et al. [16] which tested the newer versions

of NAL (NAL-NL1) and DSL (DSL 4.1) on a group of 48 children and showed both intelligibility

judgments and preferences were equally split between prescriptions on average.

5.6 Conclusions

The methodology proposed in Chapter 4 was developed with data for normal hearing listeners

but required validation with results from real hearing impaired listener tests. This study demon-

strated that a SPIF can predict speech intelligibility for a range of hearing impairments. These

results are promising, indicating that using the AN model in conjunction with a hearing aid

model can produce results that can predict speech intelligibility test results, even for listeners

with SNHL.

This chapter focused on the ENV neurogram similarity showing that in quiet conditions

these could be used to predict speech intelligibility for listeners with SNHL. TFS neurograms

are covered in Chapter 6 where the impact of hearing aids on fine timing output within the

auditory nerve is examined.

This chapter sought to compare the NAL-RP and DSL 4.0 linear hearing aid fitting algo-

rithms using simulated performance intensity functions. The results showed that, for a range

of SNHLs, while the simulated results matched those for real listeners, there was little to dif-

ferentiate the results for the fitting algorithms. From a speech intelligibility perspective, the

simulations predicted that both algorithms provide similar intelligibility gains which reinforces

the Ching et al. [16] empirical findings.
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Hearing Aids and Temporal Fine Structure

6.1 Introduction

The simulated performance intensity function (SPIF) test methodology that was presented in

Chapter 4 allows experimentation using an auditory nerve (AN) model to predict the phoneme

recognition of listeners. It was shown that AN outputs could be used to predict speech intelligi-

bility, whether the temporal AN discharge information was presented retaining the spike timing

information in a TFS neurogram, or over an average discharge rate in an ENV neurogram.

Chapter 5 demonstrated that, for a range of hearing impairments, the Neurogram Similarity

Index Measure (NSIM) could be used to simulate Performance Intensity (PI) functions that

reproduced the results for human listeners when measured on ENV neurograms. This chapter

looks at the results from the same simulated listener tests, using NSIM to measure TFS, rather

than ENV, neurogram similarity. The results for unimpaired listeners, and those of listeners

with gently sloping mild, flat moderate and flat severe SNHLs are compared in unaided and

aided scenarios. A second experiment looks at a novel approach with an adapted hearing aid

fitting algorithm and aims to improve the TFS information available for aided hearing impaired

listeners.

93
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6.2 Background

6.2.1 Temporal fine structure

The structure of speech signals was introduced in Section 2.4.1, where envelope (ENV) was

defined as signal fluctuations between around 2-50 Hz and temporal fine structure (TFS) as

signal cues with dominant fluctuations from about 600 Hz - 10 kHz [52; 69; 77; 80].

According to Rosen [69], ENV cues are mainly manner and voicing while TFS are place

cues and, to a lesser degree, voicing and nasality. Sheft et al. [79] agreed but found a stronger

contribution of TFS cues for voicing than place. Lorenzi et al. [52] showed that while TFS

contains cues for speech identification, subjects with a flat moderate loss performed almost as

well as normal hearing listeners with both unprocessed and ENV only speech. Under both

conditions, normal hearing (NH) and hearing impaired (HI) listeners scored 80-100 %. However,

HI listeners struggled with TFS speech scoring less than 20%, while NH listeners remained at

around 90% discrimination.

The problems experienced by hearing impaired listeners in background noise over and above

the issues experienced by normal hearing listeners due to the cocktail party effect [14] has been

attributed to loss of TFS discrimination by a number of studies [37; 52; 63]. The loss of TFS

discrimination ability by listeners with SNHL may explain why such hearing impaired listeners

get less benefit from listening in the “dips”.

The neural correlates to acoustic ENV and TFS involve looking at the average discharge rate

and spike timing information along the auditory nerve. TFS cues are observed in neurograms as

the synchronization of the AN nerve spikes phase-locking to the stimulus. Miller et al. [59] showed

through physiological experiments on cats that vowel representation in an impaired ear involves

the synchronization of large populations of AN fibres to a range of vowel components. This

phase-locking and spread of synchrony is illustrated in Fig.6.8, where the TFS vowel neurograms

show the vowel has high energy phase-locking compared to the reference TFS vowel neurogram,

particularly in the lower-frequency, higher-energy formants. Zilany and Bruce [98] demonstrated

the ability to simulate this phenomenon using their AN model.

It should be noted that Miller et al. [59] and others (e.g. Young [94]) stress that, while their

work focused on the temporal representation of speech, it has not been proven that the brain

uses phase-locking information to extract spectral information and decode speech signals. The

same caveat applies to TFS, in relation to which Sheft et al. [79] note that the debate on hearing

impairment and TFS coding continues and that underlying physiological evidence has yet to be

proven.

6.2.2 Hearing Aids and TFS

Despite the lack of definitive proof, Miller et al. [59] champion the use of temporal response

pattern analysis as a tool for studying AN information representation as “temporal analysis
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in (b), where the ENV from the NAL-RP signal is combined with the TFS from the original
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multiband chimaera that can be presented to the AN model. (Figure adapted from Smith et al.

[80]).

reveals much about the nature of impairment and provides guidance as to the problems that

need to be solved in order to compensate for the impairment”. Sheft et al. [79] also suggest that

the fidelity of TFS transmission should be measured quantitatively in hearing device assessment.

Bruce et al. [9] investigated the performance of hearing aid algorithms and found that the

TFS neurograms were closer in similarity to a reference neurogram when gain adjustments were

below the prescribed gains. It was suggested that spread of synchrony and the change in phase-

frequency responses in an impaired ear could be factors but was left as an open question requiring

further investigation.

6.2.3 Auditory Chimaeras

A novel technique to investigate auditory perception using chimaeric sounds was developed by

Smith et al. [80]. “Auditory chimaeras” allow the perceptual importance of envelope and fine

structure portions of signals to be separated and evaluated. Two input sounds are split through

an N band filterbank. The matching band signals are then passed through a chimaerizer, which

splits the signal into ENV (the magnitude of the signal) and TFS (the instantaneous phase) using

a Hilbert transform. The ENV from the first signal is combined with the TFS from the second

signal to produce a signal band chimaera that is then summed over all N bands to produce a

multiband chimaera. This is illustrated in Fig. 6.1. Smith et al. [80] carried out a number of

tests on speech reception, melody recognition and sound localisation, using chimaeras generated

with two different signals comprising of speech-speech, speech-noise and melody-melody signals.

The potential for blurring between ENV and TFS cues at low frequencies and the ques-
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tion mark over whether a clear cut separation can be achieved, between ENV and TFS as a

reconstruction of the ENV signal is possible from the TFS signal, have been raised as potential

issues with the technique by Zeng et al. [95] and Gilbert [30]. Wang et al. [87] caution against

over-interpretation of the separation offered by auditory chimaeras, especially in the role of TFS.

While they warned against the over-interpretation of results obtained from auditory chimaeras

tests, their subsequent research reinforced the original assertion that ENV is critical for speech

perception, whereas TFS is critical for pitch perception.

An alternative application of auditory chimaeras was undertaken by Liu and Zeng [50],

where chimaeras were created from clear and conversational versions of the same speech. “Clear

speech” differs acoustically from everyday “conversational speech” in a number of ways, e.g. it

includes a slower speech rate, enhanced fundamental frequency variation, expanded vowel space

and higher energy distribution. It has been shown to produce high intelligibility scores for tests

on normal hearing and hearing impaired listeners, in quiet and in noise. By creating auditory

chimaeras of matched clean and conversational speech, Liu and Zeng [50] found that the clear

speech ENV and conversational TFS produced better results in high SNR situations, while the

reverse was true in low SNR environments. Liu and Zeng [50]’s work was the inspiration for

experiment II below.

Ibrahim and Bruce [39] used the AN model of Zilany and Bruce [97] to reproduce the chimaera

results of Smith et al. [80] using STMI [26] as a neurogram measure. They showed that the AN

model could be used to predict the ENV and TFS speech reception using speech-noise chimaeras

over a varied number of chimaeriser frequency bands.

6.3 Experiment I: TFS Neurogram Similarity for Hearing Im-

paired Listeners

6.3.1 Method

Listener tests were simulated to produce neurograms and measure NSIMs with the same proce-

dure as that used in Chapter 5. The tests were carried out using the AN model and 50 CVC

words were presented to calculate NSIM scores at a range of presentation levels. Simulated

listener tests were undertaken for 3 hearing profiles simulated in unaided, and NAL-RP and

DSL-4.0 aided conditions. The audiograms and hearing aid fitting targets can be found in Figs.

5.2 - 5.5.

6.3.2 Results and Discussion

The full results set of neurogram similarity tests for each SNHL are presented in Figs. 6.2

and 6.3. Comparing the unimpaired, unaided results (top plots in figure), it can be seen that

they follow a similar patterns for both ENV and TFS NSIM scores across both consonants and

vowels. The NSIM scores peak for tests at the reference level and begin to drop again as the
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Figure 6.2: ENV NSIMS for unimpaired, gently sloping mild, flat moderate and flat severe

SNHLS. The black lines show unaided results, red are NAL-RP aided and blue are DSL 4.0

aided; error bars are +/- 1 S.E. The vertical lines show the Phoneme Recognition Threshold for

unaided, labeled PRT, and aided, PRT(A), listening.

presentation intensity increases to higher levels. The similarity between ENV and TFS results

is not as apparent for the hearing impaired tests.

Before discussing the TFS results (Fig. 6.3), a brief examination of the ENV results (Fig.

6.2) is helpful. Looking at the unaided ENV scores, i.e. the black lines in Fig. 6.2, as the SNHL
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Figure 6.3: TFS NSIMS for unimpaired, gently sloping mild, flat moderate and flat severe

SNHLS. The black lines show unaided results, red are NAL-RP aided and blue are DSL 4.0

aided; error bars are +/- 1 S.E. The vertical lines show the Phoneme Recognition Threshold for

unaided, labeled PRT, and aided, PRT(A), listening.

increases, the ENV results still follow a general trend of increasing with signal intensity. The

TFS results in Fig. 6.3 exhibit this property for unimpaired and gently sloping mild. However

with a flat moderate loss, they show a smaller dynamic range in which the NSIM increases,

before dropping sharply. This can be seen in the TFS vowel results, which begin to drop off
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Figure 6.4: Vowel NSIMs for unimpaired (UN), gently sloping mild (MI), flat moderate (MO) and

flat severe (SV) SNHLs at 55,75 and 35 dB SPL. In all cases, when the NAP-RP prescription is

added to the input signal, the ENV NSIM scores improve but the TFS scores drop.

sharply after peaking 20 dB earlier than for the corresponding ENV results. The flat severe loss

has poor TFS results at all levels.

Both the NAL-RP and DSL 4.0 aided results are markedly different to the unaided TFS

results for all hearing impairments tested. Results for both aids were almost identical - flat

lines across all presentation levels and well below the unimpaired scores. This predicts that the

application of a linear hearing aid fitting algorithm to the signal will corrupt all of the usable

TFS cues from the signal.

These basic trends are summarised in Fig. 6.4 where the impact of the NAL-RP fitting

algorithm on ENV and TFS NSIM results for vowels are shown. In the ENV results it is predicted

that the aided listener will perform better than unaided at vowel discrimination in almost all

situations. The only slight anomaly is the flat moderate loss where, at a high presentation

level, the unaided and aided results are very similar. Practically, this may not translate into

a measurable difference in speech intelligibility results, as was discussed in Section 5.5.2. The

TFS aided results are very different, predicting that the aided listener is significantly worse off,

in terms of TFS cue reception, than the unaided listener. As was shown in Chapter 5, the ENV

NSIM results correlate closely with the actual phoneme discrimination results of real listeners

with the losses simulated, and the aided results improve phoneme discrimination scores for

those listeners. The aided TFS results do not correlate with the actual phoneme discrimination

scores, suggesting that the listeners are relying on ENV cues for phoneme discrimination in

quiet, especially in the aided cases.

The results imply that for unaided listeners, with mild to moderate losses, some access to

TFS cues remains but that it is significantly poorer in listeners with severe SNHL. There also

appears to be a significant issue with distortion of the signal, due to the application of hearing aid

gains that corrupt the TFS cues in the signal. The ENV and TFS results provide contradictory

advice on whether to prescribe a hearing aid, with conflicting predictions for the aided user’s

benefits. This matches the findings of Bruce et al. [9] where applying less gain from the hearing
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Figure 6.5: Block diagram for Experiment II. The chimaeriser takes the original signal and the

NAL-RP aided signal as inputs and provides a chimaera signal output to the AN model. The

AN model, simulating at 30 characteristic frequencies, produces PSTH output that is used to

create a neurogram. An NSIM comparison is carried out on neurograms for each of the 150 test

phonemes.

aid produced better TFS results. The literature suggests that HI listeners rely primarily on

ENV cues for speech intelligibility but, perhaps by boosting the ability to use ENV, we are

reducing the TFS cues, which may be hampering their ability in noise and reducing the ability

to listen in the “dips”. The question of whether TFS reception could at least be maintained at

an unaided level, while boosting ENV reception, is investigated in the next section.

6.4 Experiment II: Chimaera Hearing Aids

This experiment investigated a novel hearing aid design, based on using an auditory chimaera

with unprocessed, clear TFS, and NAL-RP aided ENV. The aim of the chimaera hearing aid

was to provide the listener with aided gain with the ENV portion of the signal but to main-

tain the TFS fidelity by restoring the original signal TFS. The test looked at whether NSIM

measurements using the AN model predicted improved TFS neurogram similarity for a range of

SNHL listeners.

6.4.1 Method

The auditory chimaera algorithm of Smith et al. [80] was used to create a chimaera signal based

on the envelope of the NAL-RP adjusted signal and the fine structure of the original signal.

The three SNHLs were simulated with the AN model, and the speech intelligibility test used in

Experiment I was repeated at a single presentation level of 55 dB SPL. This level was chosen as

it was a level at which the gently sloping mild loss was above its SRT, while the flat moderate

and flat severe were below their SRT unaided but above when aided.

The 50 test words were filtered through the NAL-RP filter and a 30 band “chimaerizer”,
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Figure 6.6: NSIM results for unaided (None), NAL-RP aided (Aid) and NAL ENV with unmod-

ified TFS chimaera aided (Chim) listening at 55dB SPL. The NSIM for each phoneme group

(C1,V,C2) are plotted showing +/- 1 s.e. for gently sloping mild, flat moderate and flat severe

SNHLs. As expected the ENV NSIM results for all phoneme groups predict aided listeners per-

forming better than unaided for all hearing losses tested and the chimaera aided results mirror

this trend. For TFS NSIM, the aided simulations score lower than the corresponding unaided

results but the chimaera aid reverses this trend and maintains the TFS NSIM scores at levels

comparable to the unaided simulations.

as illustrated in Fig. 6.1, and then presented to the AN model. Phoneme NSIM scores were

calculated from the neurogram outputs by comparing them against 65 dB SPL reference neu-

rograms. It was necessary to adjust the time alignment to account for the delay introduced by

the chimaerizer to ensure accurate phoneme comparisons.

The ENV NSIM results were available for unaided and NAL-RP aided simulations from

Experiment I.

6.4.2 Results and Discussion

The results for both ENV and TFS neurogram similarity are presented in Fig. 6.6. For both

ENV (shown on the left) and TFS (shown on the right), results are presented for three hearing

impairments, as labelled on top. For each hearing profile, results are presented under three

conditions across the x-axis: unaided, NAL-RP aided and chimaera aided. These results are

also broken down by phoneme group (C1 △,V1 �,C2 ▽).

The ENV results show that, for each phoneme group, the aided NSIM scores are above the

unaided scores, predicting that the aid will improve speech intelligibility. Comparing the ENV

NSIM aided and chimaera aided results it would be expected that, as the ENV portion of the

chimaera aided signal had NAL-RP gains applied to it, it should produce comparable NSIM
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Figure 6.7: RMS presentation levels of the 50 words tested at 55dB SPL after applying the

prescription gains for the NAL-RP aided and NAL ENV with unmodified TFS chimaera aided.

for gently sloping mild, flat moderate and flat severe SNHLs.

scores. What is actually predicted is an increase in NSIM for gently sloping mild and flat moder-

ate losses and a decrease for the severe loss. This is likely due to the chimaerizer algorithm used,

as prior to recombining the ENV and TFS signal components, the Smith et al. [80] algorithm

carries out a peak normalisation on both components. The impact of the chimaerizer on the

overall gain applied to the signal can be seen in Fig. 6.7 which shows the root mean squared

presentation level of the 50 words tested after applying the prescription gains for the fitting

methods. The chimaera aid gains are compressed into a smaller range compared to the NAL-

RP gains, providing larger gains for gently sloping mild and flat moderate losses but less gain

for the flat severe loss. As a result the words are actually presented at levels below threshold

for some frequencies in case of the flat severe loss, resulting in poorer ENV NSIM scores.

The TFS results predict for the chimaera aid comparable improvements to the regular NAL-

RP results. The TFS NSIMs show that, for a gently sloping mild and the flat moderate losses,

the chimaera aided results restore the NSIM scores to the unaided levels, improving them from

the floor level of the aided results. In the flat severe loss case, the unaided results are at a

comparably low level to the aided results and the chimaera results don’t show any significant

improvement in neurogram similarity.

The results imply that, for the flat severe loss, the TFS reception has been impaired and

cannot be augmented by supplying a clean TFS as the broadened auditory filters are not supply-

ing a quality TFS signal to the auditory nerve. This could be a failure to use higher-frequency

speech cues, even though the frequency bands have been made audible by the hearing aid. It

was suggested by Hopkins et al. [37] that additional TFS information may not help a severely

impaired listener, due to a general problem with higher-frequency speech components. Severe

hearing losses, with thresholds of around 60 dB or higher, show a reduced capacity to make
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use of the higher-frequency (>2000 Hz) speech cues [15]. In the moderate case, the unaided

TFS results are restored by the chimaera aided signal, suggesting that the user could potentially

benefit from the fine timing as well as the envelope intelligibility cues.
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Figure 6.8: Sample vowel neurograms of vowel /ow/ (from CASPA word 78 “robe”) at 55 dB

SPL. Neurograms for the same vowel presented under the conditions tested in Experiment II are

presented, illustrating the effect of the different inputs on the ENV and TFS neurograms. The

NSIM scores, for comparisons against the reference neurograms that are presented in the top row,

are shown above each neurogram. The time range covers the full vowel in the ENV neurograms

(approx 240 ms) and a snapshot of 20 ms of the vowel starting after 40ms. Axes labels, which

were omitted for clarity on sample results, are shown on the two reference neurograms.
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6.5 General Discussion

The vowel neurograms in Fig. 6.8 demonstrate the phoneme’s structual and intensity features

that NSIM is capturing in its similarity scores. The unaided ENV neurograms show the lack of

spectral cues, with the F0 formant visible for the gently sloping mild loss but nothing for the flat

moderate or flat severe loss. The corresponding aided neurograms show that there is information

available at higher frequencies, but that the higher formant information has spread to higher

frequencies in the case of the flat severe loss. The TFS neurograms illustrate the phase-locking

and spread of synchrony for progressively impaired listeners. When comparing the neurograms

it is important not to read too much into any specific example’s NSIM score. It should be noted

that the TFS NSIM scores were calculated over a neurogram for the complete vowel, not just the

20 ms snapshot presented. The error bars in the results for tests over 50 phonemes warn against

comparing the example scores and judging on one example. Even the absence of features will be

measured as a sign of similarity, e.g. a quiet pause before a plosive burst, hence the minimum

floor threshold similarity in NSIM scores.

The ENV results matched the real listener test results in quiet, as shown in the last chapter.

In Experiment I, the NSIM results predict that TFS is degraded with progressive HI and, with

severe losses, there are no TFS cues available. TFS results for unaided listening predicted a drop

for gently sloping mild and the flat moderate losses but remained at a flat, floor threshold for

the flat severe loss. These results suggest that, in quiet conditions, HI listeners rely primarily

on ENV cues and that ENV neurograms are the better predictor of speech intelligibility. This

is in agreement with research on real hearing impaired listeners that exhibited a difficulty in

interpreting TFS cues [37; 52; 63].

The aided results highlighted the tradeoffs made in corrupting the TFS signal to add suf-

ficient gain in the ENV to ensure that ENV speech cues are available to the hearing impaired

listener. These results tie in with the observations made by Bruce et al. [9], that the spike

timing information for aided listeners was better as gains decreased rather than increased. The

chimaera aid, tested in Experiment II, is predicted to give the best of both ENV and TFS results

for mild to moderate losses. The TFS cues for severe losses were not restored, as the ability to

use TFS was not available at any presentation level.

These results demonstrate the promising potential of hearing aid design using simulated

speech tests. Tests in noise are the obvious next step, as this is where the TFS is generally

viewed as being important for speech cues. Tests over a variety of presentation levels could

also strengthen the predicted benefits, although Sheft et al. [79] observed that identification of

consonants with TFS is robust to variations of stimulus level. Further investigation into varying

the number of frequency bands in chimaerizer could also be important. The number used here

was chosen to match the approximate number of critical bands within the cochlea and also the

number of frequency bands used in the simulations with the AN model, but the importance

of the number of bands was illustrated in the original auditory chimaera work [80]. Carrying
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out tests with real listeners would be the final step in validating the predicted benefits of the

chimaera aid.

6.6 Conclusions

It was shown that simulations using the AN model and NSIM predicted TFS degradation for

HI listeners. Hearing aids were also predicted to cause serious degradations in TFS reception.

The results showed that, in line with current thinking, TFS is not a good predictor of speech

intelligibility for HI listeners in quiet, and that they rely primarily on ENV cues.

The second experiment in this chapter addressed the problem of corruption in TFS speech

cues by designing a hearing aid based on auditory chimaeras. It predicted that the chimaera

aids can still restore ENV without degrading TFS. It demonstrated the potential for using NSIM

and the AN model to develop novel hearing aid algorithms as a pre-cursor to trials with real

hearing impaired listeners.
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7
Conclusion

7.1 Central Themes

Internal representations of sound can provide insights into speech intelligibility [19; 72; 94; 98].

Clinical testing has developed a good understanding of auditory periphery and allowing the

auditory nerve outputs for a wide range of stimuli to be simulated using computational models

[51; 98]. Gathering enough auditory nerve discharge information has been made possible by

substituting a computational model for labour intensive clinical measurements but it is not

practical to carry out subjective analysis of the output on the volume of data required to

predict speech intelligibility. A metric to automate this analysis procedure was proposed and

assessed in Chapter 3. The SSIM metric, originally developed for the assessment of image

similarity to rank the quality of JPEG compression, was applied to the analysis of the auditory

nerve discharge patterns and shown to correctly rank the neurogram degradation for a range of

hearing losses in Chapter 3. The optimal window size for neurogram comparison was identified.

Further experiments in Chapter 4 adapted the metric and the Neurogram Similarity Index

Measure (NSIM) was proposed. NSIM was then used to develop Simulated Performance Intensity

Functions (SPIFs) where a standard listener test was reproduced substituting the real listener

with the AN model. The requisite quantity of test material necessary for accurate and repeatable

simulated tests was established. A transfer mechanism was developed to translate between NSIM

and phoneme recognition. This differentiates NSIM from other metrics that have been proposed,

e.g. simple point to point analysis [9], correlation [34] and spectro-temporal modulation indices

[26], as it ties the NSIM ranking back to actual phoneme recognition in a quantifiable way. The
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temporal resolution at which neurogram assessment is undertaken is also important. Recent

interest in the temporal fine structure of sound has led to studies showing that while the slow

changing envelope (ENV) of the signal is important for speech recognition in quiet, the temporal

fine structure (TFS) may contain important cues for listening in noise [52]. It has also been

established that the ability to use TFS deteriorates in listeners with sensorineural hearing loss

[37; 52; 63]. Chapter 4 demonstrated that NSIM measurements using ENV and TFS neurograms

could predict speech intelligibility for normal hearing listeners in quiet and noise. Chapter 5

showed that for hearing impaired listeners, whether they were listening aided or unaided, NSIM

could predict speech intelligibility using ENV neurograms. The deterioration in TFS, especially

for severe hearing losses, was predicted using NSIM in the results presented in Chapter 6.

7.2 Applications

The work presented in this thesis sought to establish whether a computational model of the

auditory periphery could be applied as a component in simulated speech intelligibility tests.

Such a tool could be used for a variety of purposes but the anticipated primary application was

the assessment of hearing aid fitting algorithms. Large scale tests, using a variety of speech

at a range of presentation levels, had not been previously attempted using the AN model and

Chapters 3 and 4 confirmed that the natural variance in speech and phonemes required in the

order of hundreds of phoneme comparisons for reliable predictions of speech intelligibility. Two

linear hearing aid fitting algorithms, NAL-RP and DSL 4.0, were compared in Chapter 5. The

result predicted very little difference in speech intelligibility between the two prescriptions, even

though the gains they prescribed were different for the same impairment. The NSIM scores for

the two algorithms differed, and how to interpret this was left as an open question. It may have

been indicative of better quality sound, ease of hearing or that the magnitude above recognition

threshold is indicative of cues that may be useful in other listening conditions. The primary

objective of the research was to develop a mechanism that would allow the development of new

hearing aid fitting algorithms. Chapter 6 demonstrated this application with the assessment

of an auditory chimaera based hearing aid fitting algorithm and showing that NSIM predicts

better TFS results for aided hearing impaired listeners using the chimaera aid over a regular

linear fitting algorithm.

7.3 Future Work

The work presented in this thesis presents a variety of potential areas for future study, many of

which were identified in the conclusions of the relevant chapters.
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7.3.1 Neurogram Similarity Index Measure

While NSIM has been show to be a useful predictor of speech intelligibility, as with SII, STI and

other metrics that have evolved with further research, there is ample potential enhancement.

NSIM has been validated in quiet and in Gaussian noise, but there are still opportunities to

investigate how it performs under a wider variety of conditions, such as background conversa-

tional noise or reverberation. This may lead to adaptations and potential improvements in the

accuracy and robustness of NSIM, perhaps through combining techniques that have been shown

to be perceptually important, such as the frequency band importance weightings used by SII

[2].

There are open questions regarding how the brain decodes the information provided by the

auditory periphery. The importance of different cues and their inter-relationships remain elusive

and questions remain about interpreting what NSIM is measuring versus what is used by the

brain. NSIM has been shown to be useful in predicting speech intelligibility but it may also be

a useful measure in the assessment of speech quality or cognitive listening effort. As such, there

are a number of possible divergent uses, looking at the correlation of simulated NSIM tests with

real listener based tests for quality or cognitive listening effort.

7.3.2 Auditory Nerve Models

Another aspect of this work that could be investigated is the AN model used in the simulated

tests. The AN model [97; 102] is phenomenological in its design. The decision to use it was based

on the maturity and validation of the model for normal and impaired ears for a wide range of

input stimuli. However, it is a computationally intensive model and it is slow to run simulations

for the volume of stimuli and over the range of characteristic frequency bands required to draw

conclusions about speech intelligibility. An investigation into optimising the simulation param-

eters or perhaps even using an alternative, less computationally intensive model, may widen the

potential uses of NSIM to applications that require real time measurements, such as internet

telephony.

7.3.3 Temporal Fine Structure

Chapter 6 looked at the NSIM results from TFS neurograms for hearing impaired listeners.

The results predicted that TFS information degraded more severely than ENV with hearing

impairment. As TFS is seen to be more important for the reception of speech cues in noise,

further experiments to simulate hearing impaired speech discrimination in noisy conditions would

be valuable. There has been a significant interest in the contributions of cues from the temporal

components of speech in recent years. It is currently unknown, how cues are interpreted by the

brain but it is reasonable to speculate that both ENV and TFS cues are used to some extent

and that they may serve as part of a built-in redundancy system for normal hearing listeners

in unchallenging acoustic environments, at least for intelligibility. It is generally thought that
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hearing impaired listeners rely more on ENV cues, but as was seen in Chapter 6, designing for

ENV restoration only may be further reducing the listener’s capacity to use TFS cues.

7.3.4 Hearing Aid Design

The most appealing opportunity for further research remains hearing aid design. The ability

to compare the speech intelligibility from existing and new fitting algorithms was the ultimate

goal of the thesis. The comparison of NAL-RP and a new chimaera aid design in Chapter 6

illustrated the potential of NSIM to compare outcomes and predict the benefits of new hearing

aid fitting algorithms. It was acknowledged that the chimaera aid required further simulated

tests to confirm the benefits predicted by the initial experiment but it demonstrated the value

of a development platform that allows fitting algorithms to be assessed for potentially contra-

dictory performance outcomes. Improving the ENV results can be seen to restore some speech

intelligibility for hearing impaired listeners, especially in quiet but the predicted negative effect

on TFS may be a counter-productive side effect, especially in noise.

It was stated in the introduction of this thesis, and demonstrated throughout, that hearing

involves complex, non-linear, signal processing within the auditory periphery. At the heart of

sensorineural hearing loss are failures in the complex system within the inner ear where frequency

tuned hair cells transform vibrations in the basilar membrane into electrical discharges firing

down auditory nerve fibres. Damaged or dead hair cells cause degradations in the system

performance, but the system does have inbuilt redundancy. Tuning curves show that while hair

cells along the basilar membrane are finely tuned they do react to other frequencies. Speech, as

an information encoding system, has also evolved robustness to ensure redundancy and makes

use of the dynamic frequency range available. As such, speech intelligibility assessment and

restoration for hearing impaired listeners is a complex problem, that is crudely addressed with

pure tone threshold assessment and hearing aid gains prescribed based on an audiogram.

Recently, Halpin and Rauch [33] observed that the notion of reversing a threshold shift with

hearing aid gain is often found to be faulty. Their work presented two similar audiograms

for patients with steeply sloping, moderate hearing losses. The corresponding performance

intensity functions for these patients in unaided and aided tests showed that the hearing aid

results improved speech discrimination significantly for the first patient but not for the second.

This was due to cochlear damage in the second patient resulting in an absence of both inner

and outer hair cells that were tuned to frequencies above 2kHz. This meant that gain applied in

these frequency regions had little or no contribution to restoring intelligibility levels. Halpin and

Rauch [33] believe that speech audiometry, i.e. word recognition tests similar to those used in

this thesis, provide the best representation of hearing impaired listeners information reception

capacity. Furthermore they believe that for research purposes patients should be categorised

by cochlear damage, rather than grouping them by hearing loss profiles using their audiograms.

This is an area where simulated speech intelligibility testing using an AN model could provide
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insights that would be impossible to undertake using real listeners. The ability to configure the

hair cell loss at any characteristic frequency in the model and investigate the impact on speech

intelligibility could lead to hearing aid designs based on insights into cochlear damage and the

availability of hair cells in a given region of the basilar membrane, rather than simply relying

on audiogram threshold gain adjustments.

Compared to researchers in the field of vision and optics, where the eye provides the ability

to view the retina directly, hearing research has been restricted to being a “black box” science,

relying on feedback from patients and post-mortem dissection of the cochlea to really see what

damage has occurred in a hearing impaired ear. The use of a computer model opens up countless

possibilities to investigate how speech is decoded. Speech intelligibility prediction has moved a

step closer and with it new, personalised designs could provide an evolutionary jump in hearing

aid technology for the increasing numbers of hearing impaired listeners within the community.
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A
Full Result Set for Chapter 3

Results for the analysis of SSIM for vowels and fricatives were presented in the results section in

Fig. 3.6. The overall results at the optimal window size for all phoneme groups where summarised

in spider plots in Figs. 3.8 & 3.9.

Analysis of the performance of SSIM for other phoneme groups are included here for com-

pleteness. Fig. A.1 shows affricates and nasal phoneme groups; Fig. A.2 shows stops and

SV/glides phoneme groups.
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Figure A.1: Left: Affricate; Right: Nasal. Data points represent hearing loss levels compared to

unimpaired, beginning from SSIM of 1 for comparison with unimpaired and progressing through

FLAT10, FLAT20, MILD, MODERATE and PROFOUND. Top Row (A): varying SSIM window

in time; Middle Row (B): varying SSIM window in CF; Bottom Row (C): Varying SSIM weighting

(α, β, γ)W1 = (1, 1, 1)W2 = (0, 0.8, 0.2)W3 = (0, 0.2, 0.8), window size fixed at 3x3.
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Figure A.2: Left: Stop; Right: SV/Glide. Data points represent hearing loss levels compared to

unimpaired, beginning from SSIM of 1 for comparison with unimpaired and progressing through

FLAT10, FLAT20, MILD, MODERATE and PROFOUND. Top Row (A): varying SSIM window

in time; Middle Row (B): varying SSIM window in CF; Bottom Row (C): Varying SSIM weighting

(α, β, γ)W1 = (1, 1, 1)W2 = (0, 0.8, 0.2)W3 = (0, 0.2, 0.8), window size fixed at 3x3.
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B
CASPA Word lists

Words from Boothroyd’s CASPA 5.0 AB isophonemic word lists [8].

List 1 List 2 List 3 List 4 List 5 List 6 List 7 List 8 List 9 List 10

ship fish thug fun fib fill badge bath hush jug

rug duck witch will thatch catch hutch hum gas latch

fan patch teak vat sum thumb kill dig thin wick

cheek cheese wrap shape heel heap thighs five fake faith

haze race vice wreath wide wise wave ways chime sign

dice hive jail hide rake rave reap reach weave beep

both bone hen guess goes got foam joke jet hem

well wedge shows comb shop shown goose noose rob rod

jot log food choose vet bed not pot dope vote

move tomb bomb job June juice shed shell lose shoes

List 11 List 12 List 13 List 14 List 15 List 16 List 17 List 18 List 19 List 20

math have kiss wish hug wage jade shave vase cave

hip wig buzz dutch dish rag cash jazz cab rash

gun buff hash jam ban beach thief theme teach tease

ride mice thieve heath rage chef set fetch death jell

siege teeth gate laze chief dime wine height nice guide

veil jays wife bike pies thick give wine fig pin

chose poach pole rove wet love rub suck rush fuss

shoot rule wretch pet cove zone hole robe hope home

web den dodge fog loose hop chop dog lodge watch

cough shock moon soon moth suit zoom pool womb booth

117



118 CASPA Word lists



Bibliography

[1] Y. Agrawal, E. A. Platz, and J. K. Niparko. Prevalence of hearing loss and differences by

demographic characteristics among us adults: Data from the national health and nutrition

examination survey, 1999-2004. Arch Intern Med, 168(14):1522–1530, 2008.

[2] ANSI. ANSI S3.5-1997 (R2007). Methods for calculation of the speech intelligibility index.

American National Standards Institute, 1997.

[3] J. Bondy, S. Becker, I. Bruce, L. Trainor, and S. Haykin. A novel signal-processing strategy

for hearing-aid design: neurocompensation. Signal Processing, 84(7):12391253, 2004.

[4] J. Bondy, I. C. Bruce, S. Becker, and S. Haykin. Predicting speech intelligibility from

a population of neurons. In S. Thrun, L. Saul, and B. Scholkopf, editors, NIPS 2003:

Advances in Neural Information Processing Systems 16, pages 1409–1416. MIT Press,

Cambridge, MA, 2004.

[5] A. Boothroyd. Developments in speech audiometry. Sound, 2(1):3 – 10, 1968.

[6] A. Boothroyd. Statistical theory of the speech discrimination score. The Journal of the

Acoustical Society of America, 43(2):362–367, 1968.

[7] A. Boothroyd. Computer-Aided Speech Perception Assessment (CASPA) 5.0 Software

Manual. San Diego, CA., 2006.

[8] A. Boothroyd. The performance/intensity function: An underused resource. Ear and

Hearing, 29(4):479–491, 2008.

[9] I. Bruce, F. Dinath, and T. J. Zeyl. Insights into optimal phonemic compression from a

computational model of the auditory periphery. In Auditory Signal Processing in Hearing-

Impaired Listeners, Int. Symposium on Audiological and Auditory Research (ISAAR),

pages 73–81, 2007.

[10] I. C. Bruce. Source code for the Zilany and Bruce (JASA 2006, 2007) cat auditory nerve

model, http://www.ece.mcmaster.ca/∼ibruce/zbcatmodel/zbcatmodel.htm.

119



120 BIBLIOGRAPHY

[11] I. C. Bruce, M. B. Sachs, and E. D. Young. An auditory-periphery model of the effects

of acoustic trauma on auditory nerve responses. The Journal of the Acoustical Society of

America, 113:369–388, 2003.

[12] D. Byrne and H. Dillon. The National Acoustic Laboratories’ (NAL) new procedure for

selecting the gain and frequency response of a hearing aid. Ear and Hearing, 7(4):257–265,

1986.

[13] D. Byrne, A. Parkinson, and P. Newal. Modified hearing aid selection procedures for

severe/profound hearing losses. In G. Studebaker, F. Bess, and L. Beck, editors, The

Vanderbilt Hearing Aid Report II, pages 295–300. York Press, Parkton, MD, 1991.

[14] E. C. Cherry and W. K. Taylor. Some further experiments upon the recognition of speech,

with one and with two ears. The Journal of the Acoustical Society of America, 26(4):

554–559, 1954.

[15] T. Y. C. Ching, H. Dillon, and D. Byrne. Speech recognition of hearing-impaired listeners:

Predictions from audibility and the limited role of high-frequency amplification. The

Journal of the Acoustical Society of America, 103(2):1128–1140, 1998.

[16] T. Y. C. Ching, H. Dillon, R. Seewald, L. Britton, J. Steinberg, M. Gilliver, and K. A.

King. Evaluation of the NAL-NL1 and the DSL v.4.1 prescriptions for children: Paired-

comparison intelligibility judgments and functional performance ratings. International

Journal of Audiology, 49(S1), 2010.

[17] L. Cornelisse, R. Seewald, and D. Jamieson. Wide-dynamic-range-compression hearing

aids: The DSL[i/o] approach. Hearing Journal, 47(10):23–29, 1994.

[18] DARPA U.S. Dept. Commerce. The darpa timit acoustic-phonetic continuous speech

corpus. NIST Speech Disc 1-1.1, 1990.

[19] T. Dau, D. Puschel, and A. Kohlrausch. A quantitative model of the “effective” signal

processing in the auditory system. 1: Model structure. The Journal of the Acoustical

Society of America, 99(6):3615–3622, 1996.

[20] H. Davis. Advances in the neurophysiology and neuroanatomy of the cochlea. The Journal

of the Acoustical Society of America, 34(9B):1377–1385, 1962.

[21] B. Delgutte and N. Y. S. Kiang. Speech coding in the auditory nerve: IV. sounds with

consonant-like dynamic characteristics. The Journal of the Acoustical Society of America,

75(3):897–907, 1984.

[22] L. Deng and C. D. Geisler. A composite auditory model for processing speech sounds.

The Journal of the Acoustical Society of America, 82:2001–2012, 1987.



BIBLIOGRAPHY 121

[23] H. Dillon. Nal-nl1: A new prescriptive fitting procedure for non-linear hearing aids. The

Hearing Journal, 52(4):10–16, 1999.

[24] H. Dillon. Hearing Aids. New York: Thieme Medical Publishers, 2001.

[25] F. Dinath and I. C. Bruce. Hearing aid gain prescriptions balance restoration of auditory

nerve mean-rate and spike-timing representations of speech. Proceedings of 30th Inter-

national IEEE Engineering in Medicine and Biology Conference, IEEE, Piscataway, NJ,

pages 1793–1796, 2008.

[26] M. Elhilali, T. Chi, and S. A. Shamma. A spectro-temporal modulation index (STMI) for

assessment of speech intelligibility. Speech Communication, 41(2-3):331–348, 2003.

[27] N. R. French and J. C. Steinberg. Factors governing the intelligibility of speech sounds.

The Journal of the Acoustical Society of America, 19(1):90–119, 1947.

[28] F. Gallun and P. Souza. Exploring the role of the modulation spectrum in phoneme

recognition. Ear and Hearing, 29(5):800–813, 2008.

[29] S. A. Gelfand. Optimizing the reliability of speech recognition scores. Journal of Speech,

Language and Hearing Research, 41(5):1088, 1998.

[30] G. Gilbert. The ability of listeners to use recovered envelope cues from speech fine struc-

ture. The Journal of the Acoustical Society of America, 119(4):2438, 2006.

[31] B. Gopinath, E. Rochtchina, J. J. Wang, J. Schneider, S. R. Leeder, and P. Mitchell.

Prevalence of age-related hearing loss in older adults: Blue mountains study. Archives of

Internal Medicine, 169(4):415–416, 2009.

[32] D. D. Greenwood. A cochlear frequency-position function for several species—29 years

later. The Journal of the Acoustical Society of America, 87(6):2592–2605, 1990.

[33] C. Halpin and S. D. Rauch. Clinical implications of a damaged cochlea: Pure tone thresh-

olds vs information-carrying capacity. Otolaryngology - Head and Neck Surgery, 140(4):

473–476, 2009. doi: 10.1016/j.otohns.2008.12.021.

[34] M. Heinz and J. Swaminathan. Quantifying envelope and fine-structure coding in auditory

nerve responses to chimaeric speech. JARO - Journal of the Association for Research in

Otolaryngology, 10(3):407–423, 2009. 10.1007/s10162-009-0169-8.

[35] A. Hines and N. Harte. Error metrics for impaired auditory nerve responses of different

phoneme groups. In Interspeech 09, pages 1119–1122, Brighton, England, 2009.

[36] I. Hochberg. Most comfortable listening for the loudness and intelligibility of speech.

International Journal of Audiology, 14(1):27–33, 1975.



122 BIBLIOGRAPHY

[37] K. Hopkins, B. C. J. Moore, and M. A. Stone. Effects of moderate cochlear hearing loss

on the ability to benefit from temporal fine structure information in speech. The Journal

of the Acoustical Society of America, 123(2):1140–1153, 2008.

[38] R. Huber and B. Kollmeier. PEMO-Q – a new method for objective audio quality as-

sessment using a model of auditory perception. Audio, Speech, and Language Processing,

IEEE Transactions on, 14(6):1902–1911, 2006.

[39] R. A. Ibrahim and I. C. Bruce. Effects of peripheral tuning on the auditory nerves rep-

resentation of speech envelope and temporal fine structure cues. In E. A. Lopez-Poveda,

R. Meddis, and A. R. Palmer, editors, The Neurophysiological Bases of Auditory Percep-

tion, pages 429–438. Springer New York, 2010.

[40] ITU. Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end

speech quality assessment of narrow-band telephone networks and speech codecs. ITU, 2000.

[41] J. Jerger and S. Jerger. Diagnostic significance of PB word functions. Archives of Oto-

laryngology, 93(6):573–580, 1971.

[42] T. Jurgens and T. Brand. Microscopic prediction of speech recognition for listeners with

normal hearing in noise using an auditory model. The Journal of the Acoustical Society

of America, 126(5):2635–2648, 2009.

[43] T. Jurgens, S. Fredelake, R. M. Meyer, B. Kollmeier, and T. Brand. Challenging the

speech intelligibility index: Macroscopic vs. microscopic prediction of sentence recognition

in normal and hearing-impaired listeners. In INTERSPEECH-2010, pages 2478–2481,

Makuhari, Japan, 2010.

[44] S. Kandadai, J. Hardin, and C. Creusere. Audio quality assessment using the mean

structural similarity measure. In Acoustics, Speech and Signal Processing, 2008. ICASSP

2008. IEEE International Conference on, pages 221–224, 2008.

[45] J. M. Kates and K. H. Arehart. The hearing-aid speech quality index (HASQI). Journal

of the Audio Engineering Society, 58(5):363–381, 2010.

[46] N. Y. S. Kiang. Discharge patterns of single fibers in the cat’s auditory nerve. M.I.T.

Press, Cambridge, Mass, 1965.

[47] M. Liberman. Auditory nerve response from cats raised in a low noise chamber. The

Journal of the Acoustical Society of America, 63:442–455, 1978.

[48] F. R. Lin, R. Thorpe, S. Gordon-Salant, and L. Ferrucci. Hearing loss prevalence and risk

factors among older adults in the united states. The Journals of Gerontology Series A:

Biological Sciences and Medical Sciences, 2011.



BIBLIOGRAPHY 123

[49] P. Lindsay and D. Norman. Human Information Processing. Academic Press, New York

and London., 1972.

[50] S. Liu and F.-G. Zeng. Temporal properties in clear speech perception. The Journal of

the Acoustical Society of America, 120(1):424–432, 2006.

[51] E. A. Lopez-Poveda, S. M. Manuel, and R. F. I. Dexter. Spectral processing by the

peripheral auditory system: Facts and models. In International Review of Neurobiology,

volume Volume 70, pages 7–48. Academic Press, 2005.

[52] C. Lorenzi, G. Gilbert, and a. S. G. B. M. H. Carn. Speech perception problems of

the hearing impaired reflect inability to use temporal fine structure. Proceedings of the

National Academy of Sciences, 103(49):18866–18869, 2006. doi: 10.1073/pnas.0607364103.

[53] S. F. Lybarger. US Patent S/N 543,278, 1944.

[54] R. Lyon, A. Katsiamis, and E. Drakakis. History and future of auditory filter models. In

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,

pages 3809 –3812, May 2010.

[55] C. L. Mackersie, A. Boothroyd, and D. Minniear. Evaluation of the computer-assisted

speech perception assessment test (CASPA). Journal of the American Academy of Audi-

ology, 12(8):390, 2001.

[56] A. Markides. Whole-word scoring versus phoneme scoring in speech audiometry. British

Journal of Audiology, 12(2):40–46, 1978.

[57] R. McCreery, R. Ito, M. Spratford, D. Lewis, B. Hoover, and P. G. Stelmachowicz.

Performance-intensity functions for normal-hearing adults and children using computer-

aided speech perception assessment. Ear and Hearing, 31(1):95–101, 2010.

[58] R. Meddis. Auditory-nerve first-spike latency and auditory absolute threshold: A computer

model. The Journal of the Acoustical Society of America, 119(1):406–417, 2006.

[59] R. L. Miller, J. R. Schilling, K. R. Franck, and E. D. Young. Effects of acoustic trauma

on the representation of the vowel /epsilon/ in cat auditory nerve fibers. The Journal of

the Acoustical Society of America, 101(6):3602–3616, 1997.

[60] B. C. J. Moore. Dead regions in the cochlea: Diagnosis, perceptional consequences, and

implications for the fitting of hearing aids. Trends in Amplification, 5(1):134, 2001.

[61] B. C. J. Moore. Cochlear Hearing Loss - Physiological, Psychological and Technical Issues.

John Wiley and Sons, 2 edition, 2007.

[62] B. C. J. Moore and B. R. Glasberg. A revision of zwicker’s loudness model. Acta Acustica

united with Acustica, 82(2):335–345, 1996.



124 BIBLIOGRAPHY

[63] P. Nelson. Understanding speech in modulated interference: Cochlear implant users and

normal-hearing listeners. The Journal of the Acoustical Society of America, 113(2):961,

2003.

[64] W. O. Olsen, D. J. V. Tasell, and C. E. Speaks. Phoneme and word recognition for words

in isolation and in sentences. Ear and Hearing, 18(3):175–188, 1997.

[65] C. V. Pavlovic. Use of the articulation index for assessing residual auditory function in

listeners with sensorineural hearing impairment. The Journal of the Acoustical Society of

America, 75(4):1253–1258, 1984.

[66] J. E. Preminger and D. J. V. Tasell. Quantifying the relation between speech quality and

speech intelligibility. J Speech Hear Res, 38(3):714–725, 1995.

[67] K. S. Rhebergen, J. Lyzenga, W. A. Dreschler, and J. M. Festen. Modeling speech intelli-

gibility in quiet and noise in listeners with normal and impaired hearing. The Journal of

the Acoustical Society of America, 127(3):1570–1583, 2010.

[68] J. E. Rose, J. F. Brugge, D. J. Anderson, and J. E. Hind. Phase-locked response to

low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of

Neurophysiology, 30(4):769–793, 1967.

[69] S. Rosen. Temporal information in speech: Acoustic, auditory and linguistic aspects.

Philosophical Transactions: Biological Sciences, 336(1278):367–373, 1992.

[70] M. B. Sachs and P. J. Abbas. Rate versus level functions for auditory-nerve fibers in cats:

tone-burst stimuli. The Journal of the Acoustical Society of America, 56(6):1835–1847,

1974.

[71] M. B. Sachs and N. Y. S. Kiang. Two-tone inhibition in auditory-nerve fibers. The Journal

of the Acoustical Society of America, 43(5):1120–1128, 1968.

[72] M. B. Sachs, I. C. Bruce, R. L. Miller, and E. D. Young. Biological basis of hearing-aid

design. Annals of Biomedical Engineering, 30(2):157–168, 2002.

[73] C. A. Sammeth, M. Birman, and K. E. Hecox. Variability of most comfortable and un-

comfortable loudness levels to speech stimuli in the hearing impaired. Ear and Hearing,

10(2):94–100, 1989.

[74] N. H. v. Schijndel, T. Houtgast, and J. M. Festen. Effects of degradation of intensity, time,

or frequency content on speech intelligibility for normal-hearing and hearing-impaired

listeners. The Journal of the Acoustical Society of America, 110(1):529–542, 2001.

[75] R. Seewald, M. Ross, and M. Spiro. Selecting amplification charactristics for young

hearing-impaired children. Ear and Hearing, 6(1):48–53, 1985.



BIBLIOGRAPHY 125

[76] S. A. Shamma and C. Micheyl. Behind the scenes of auditory perception. Current Opinion

in Neurobiology, 20(3):361–366, 2010.

[77] R. V. Shannon, F.-G. Zeng, V. Kamath, J. Wygonski, and M. Ekelid. Speech recognition

with primarily temporal cues. Science, 270(5234):303–304, 1995.

[78] J. Shargorodsky, S. G. Curhan, G. C. Curhan, and R. Eavey. Change in prevalence of

hearing loss in us adolescents. JAMA: The Journal of the American Medical Association,

304(7):772–778, 2010.

[79] S. Sheft, M. Ardoint, and C. Lorenzi. Speech identification based on temporal fine structure

cues. The Journal of the Acoustical Society of America, 124(1):562–575, 2008.

[80] Z. Smith, B. Delgutte, and A. Oxenham. Chimaeric sounds reveal dichotomies in auditory

perception. Nature, 416(6876):87–90, 2002.

[81] H. J. M. Steeneken and T. Houtgast. A physical method for measuring speech-transmission

quality. The Journal of the Acoustical Society of America, 67(1):318–326, 1980.

[82] H. J. M. Steeneken and T. Houtgast. Phoneme-group specific octave-band weights in

predicting speech intelligibility. Speech Communication, 38(3-4):399–411, 2002.

[83] G. A. Studebaker, R. L. Sherbecoe, and C. Gilmore. Frequency-importance and transfer

functions for the auditec of St. Louis recordings of the NU-6 word test. Journal of Speech

and Hearing Research, 36(4):799–807, 1993.

[84] G. A. Studebaker, R. L. Sherbecoe, D. M. McDaniel, and C. A. Gwaltney. Monosyl-

labic word recognition at higher-than-normal speech and noise levels. The Journal of the

Acoustical Society of America, 105(4):2431–2444, 1999.

[85] C. W. Turner, D. A. Fabry, S. Barrett, and A. R. Horwitz. Detection and recognition of

stop consonants by normal hearing and hearing impaired listeners. Journal of Speech and

Hearing Research, 35(4):942–949, 1992.

[86] W. Voiers. Interdependencies among measures of speech intelligility and speech “quality”.

In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP

’80., volume 5, pages 703–705, 1980.

[87] S. Wang, L. Xu, and R. Mannell. Relative contributions of temporal envelope and fine

structure cues to lexical tone recognition in hearing-impaired listeners. JARO - Journal

of the Association for Research in Otolaryngology, pages 1–12, 2011.

[88] Z. Wang. http://www.ece.uwaterloo.ca/∼z70wang/research/ssim/, 24 June 2009 2003.



126 BIBLIOGRAPHY

[89] Z. Wang and E. P. Simoncelli. Translation insensitive image similarity in complex wavelet

domain. In Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05).

IEEE International Conference on, volume 2, pages 573–576, 2005.

[90] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from error

visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4):600–612,

2004.

[91] F. Wiener and D. Ross. The pressure distribution in the auditory canal in a progressive

sound field. The Journal of the Acoustical Society of America, 18(2):401–408, 1946.

[92] J. C. Wong, R. L. Miller, B. M. Calhoun, M. B. Sachs, and E. D. Young. Effects of high

sound levels on responses to the vowel /ǫ/ in cat auditory nerve. Hearing Research, 123

(1-2):61–77, 1998.

[93] L. Xu and B. Pfingst. Relative importance of temporal envelope and fine structure in

lexical-tone perception (L). The Journal of the Acoustical Society of America, 114(6):

3024–3027, 2003.

[94] E. D. Young. Neural representation of spectral and temporal information in speech. Philo-

sophical Transactions of the Royal Society B: Biological Sciences, 363(1493):923–945, 2008.

[95] F. G. Zeng, K. B. Nie, S. Liu, G. Stickney, E. Del Rio, Y. Y. Kong, and H. B. Chen. On

the dichotomy in auditory perception between temporal envelope and fine structure cues

(L). Journal of the Acoustical Society of America, 116(3):1351–1354, 2004.

[96] X. Zhang, Heinz, M.G., I. Bruce, and L. Carney. A phenomenological model for the

responses of auditory-nerve fibers. I. non-linear tuning with compression and suppression.

The Journal of the Acoustical Society of America, 109:648–670, 2001.

[97] M. Zilany and I. Bruce. Modeling auditory-nerve responses for high sound pressure levels

in the normal and impaired auditory periphery. The Journal of the Acoustical Society of

America, 120(3):1446–1466, Sept 2006.

[98] M. Zilany and I. Bruce. Representation of the vowel /e/ in normal and impaired auditory

nerve fibers: Model predictions of responses in cats. The Journal of the Acoustical Society

of America, 122(1):402–417, July 2007.

[99] M. Zilany and I. Bruce. Predictions of speech intelligibility with a model of the normal

and impaired auditory-periphery. In Neural Engineering, 2007. CNE ’07. 3rd International

IEEE/EMBS Conference on, volume SaA1.2, pages 481–485, 2007.

[100] M. S. A. Zilany. Modeling the neural representation of speech in normal hearing and

hearing impaired listeners. PhD Thesis, McMaster University, Hamilton, ON., 2007.



BIBLIOGRAPHY 127

[101] M. S. A. Zilany. Zilany 2009 model code, http://www.urmc.rochester.edu/labs/Carney-

Lab/publications/auditory-models.cfm.

[102] M. S. A. Zilany, I. C. Bruce, P. C. Nelson, and L. H. Carney. A phenomenological model

of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with

power-law dynamics. The Journal of the Acoustical Society of America, 126(5):2390–2412,

2009.


	Predicting Speech Intelligibility
	Recommended Citation

	D:/andrew/documents/My Dropbox/mypapers/thesis/thesis/thesis.dvi

