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Abstract: It is easy to understand why customers and end users often are disappointed when they do 
not see the well-publicised advances in the performance of light sources reflected in the energy 
efficiency of lighting installations. The authors have therefore undertaken a review of numerous 
measures of efficiency including: light source efficacy; gear efficiency; lamp lumen maintenance 
factor; luminaire light output ratio; luminaire maintenance factor, to establish a series of examples that 
may be used to illustrate how the output from a light source can be converted into the predicted 
illuminance in an installation, i.e. from lumens generated to lux delivered. The principles are illustrated 
by reference to T5 fluorescent lamps showing the influence of gear, luminaire and maintenance 
factors on the cost of generating lighting in an installation. Case studies show the importance of close 
cooperation and information exchange between the end user and the lighting designer. 
 
Keywords: Energy efficiency; Lighting design; Lighting quality 
 
1. Introduction  
Although lighting professionals are familiar with all of the terms used to describe both lighting quality 
and energy efficiency there are still plenty of opportunities for confusion. The customers and end 
users are often in an even more disadvantageous position as they are frequently not familiar with all 
of the rather esoteric parameters and units. Thus, it is easy to understand why customers are 
disappointed when they do not see the well publicised advances in the performance of lightsources 
reflected in the energy efficiency of lighting installations. Conveying quantitative measures of lighting 
quality to end users is even more difficult.  
 
The authors have therefore undertaken a review of numerous measures of efficiency including: light 
source efficacy; gear efficiency; lamp lumen maintenance factor (LLMF); luminaire maintenance factor 
(LMF); light output ratio (LOR); room surface maintenance factor (RSMF), to establish a series of 
examples that may be used to illustrate how the output from a light source can be converted into the 
predicted illuminance in an installation. As this study is primarily concerned with illustrating the energy 
balance for a lighting system, lamp survival factors (LSF) have been omitted from the calculations. 
Another approach is to regard this study as the progression from lumens generated to lux delivered. 
This review is intended to guide the non-expert through this process. 
 
However, this is not the complete story as this approach has to be complemented by the appropriate 
measures of lighting quality to ensure the visual comfort of the end users. 
 
2. The functional unit 
In this work the authors follow the practice of life cycle assessment by using a functional unit as the 
basis for comparing the energy efficiency of lighting systems and sub-systems. By defining a 
functional unit, the energy used to provide the functional unit can be tracked at each stage of the 
calculation thus giving an overall energy balance for the lighting design. 
 
The functional unit used here is one million lumen hours (1.0 x 106 lm.h) and the comparisons are 
made by considering the energy required to generate one functional unit. To illustrate this concept a 
150 W metal halide lamp with an output of 10,000 lm (a typical value for such a lamp part-way 
through its rated life with initial output 14,000 lm and LLMF 0.72 at 4,000 h) would generate 1.0 x 106 
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lm.h in 100 h. With the exception of the first few hundred hours of operation, the properties of such a 
light source can be considered constant throughout this period. 
 
A 35 W T5 fluorescent lamp (CCT 3,500 K; Ra 85) with an initial output of 3,650 lm (assuming ambient 
temperature of 35oC) would generate one functional unit in 274 h while an 80 W version (CCT 4,000 
K; Ra 85) with an initial output of 7,000 lm would generate a functional unit in 143 h. In both cases, the 
characteristics of the light sources can be regarded as unchanged during these periods. 
 
When considering the energy consumed in generating one functional unit, the first of many avenues 
for confusion becomes apparent. The value of 35 W in the above example is a nominal value, on a 
high frequency electronic ballast the T5 lamp is designed to operate at 34.7 W. At 35 W the energy 
consumption would be 9.589 kW.h but at 34.7 W the consumption is 9.507 kW.h. Although the 
difference is small in this example, it does highlight the need to convey details to the end user. 
 
The 80 W T5 lamp described above operating at 80 W will consume 11.4 kW.h in generating one 
functional unit. 
 
Considering the light source as a stand alone entity is useful only for illustrating parameters and 
quantities, the other factors governing energy efficiency must now be taken into account. 
 
3. Light source efficacy 
Light source efficacy is often viewed as the traditional way to compare efficiency and cost 
effectiveness of lighting but the conversion of light generated into illumination delivered to the working 
plane is the factor that determines the energy efficiency of a lighting installation. In recent years, 
customers and end users have become more interested in energy consumption, and hence operating 
costs, rather than the efficiency of individual components and sub-assemblies. The efficacies of the 
T5 lamps described above are 105.2 lm/W and 87.5 lm/W for the 35 W and 80 W versions 
respectively. The system efficacy, however, will be determined by the lamp efficacy in combination 
with several other factors. 
 
4. Ballast efficiency 
The efficiencies of ballasts, especially those for fluorescent lamps, are rarely reported in 
manufacturer's datasheets but reference is given to Energy Efficiency Index (EEI). Minimum 
requirements for ballast efficiency are defined for each class within the EEI [1], [2] but this makes the 
translation into everyday language rather difficult, especially for the non-expert. Interrogation of table 
17 (Energy Efficiency Index requirements for non-dimmable ballasts for fluorescent lamps) of 
Commission Regulation 245/2009 of 18 March 2009 [1] shows that the minimum ballast efficiencies 
for EEI A2 BAT, A2 and A3 are 0.915, 0.890 and 0.826 respectively. 
 
A value of 0.90 (EEI A2) is used here to illustrate the system efficacy and the energy consumption for 
the (light source + ballast) combination to generate one function unit. Thus, the energy required to 
generate one functional unit from the T5 35 W lamp in its initial state when operated on an A2 ballast 
is 10.563 kW.h, corresponding to a system efficacy of 94.7 lm/W.  
 
The minimum efficiency for an EEI A2 ballast for an 80 W T5 lamp is 0.909. Thus, for the example 
above the energy required to generate one functional unit is 12.573 kW.h, corresponding to a system 
efficacy of 79.5 lm/W.  
 
5. Light output ratio (LOR) 
The light output ratio (LOR) of a luminaire is defined in the SLL code for lighting [3] as the ratio of the 
total flux leaving the luminaire under standard conditions compared with the total flux of lamps used in 
the luminaire operated under standard conditions. In this example LOR 0.85 is used which for the 35 
W T5 example above results in 12.427 kW.h being needed to generate one functional unit, 
corresponding to 80.5 lm/W.  
 
6. Lamp lumen maintenance factor (LLMF) 
Allowance in a lighting design has to be made for the through life reduction in lamp output, if the 
product technical datasheet does not provide the design output for the light source a useful 
approximation is to take the LLMF at 40% of rated life. In this example LLMF 0.925 is used. For the 



 

3 

Session 3 

35 W T5 example this equates to 13.435 kW.h to generate one functional unit, corresponding to 74.4 
lm/W.  
 
7. Luminaire maintenance factor (LMF) 
While several factors affecting lighting efficiency are beyond the control of the end user once the 
system has been selected and installed, the luminaire maintenance factor is under the control of the 
end user. The rate at which the LMF decays is a function of the luminaire design and its surrounding 
environment in an installation. Reference [4] lists typical LMFs for a range of luminaires in clean, 
normal and dirty environments under various cleaning intervals (0.5 to 3 years). A bare lamp batten 
type luminaire in a normal environment with cleaning interval of one year is assigned LMF 0.89. For 
the 35 W T5 example used here, a LMF of 0.89 equates to 15.095 kW.h to generate one functional 
unit, corresponding to 66.2 lm/W.  
 
8. Room surface maintenance factor (RSMF) 
As with luminaire maintenance factors, the room surface maintenance factors are under the control of 
the end user. RSMFs are a combination of the effect of dirt deposition on the walls, ceiling & floors, 
the luminaire design and the contribution of reflections to the illuminance produced. Thus, RSMFs are 
dependent on the environment, the room surface cleaning interval, the luminaire design and the room 
index. Reference [4] lists RMSFs for several luminaire types in clean, normal and dirty environments 
for room indices ranging from 0.7 to 5.0 under various cleaning intervals.  
  
For the 35 W T5 example used here, a RSMF of 0.96 (based on room index 2.5, direct type luminaire, 
normal environment with a cleaning interval of one year) equates to 15.724 kW.h to generate one 
functional unit, corresponding to 63.6 lm/W. 
 
Figure 1 shows the energy needed to generate one functional unit from a 35 W T5 lamp taking into 
account the lamp efficacy, ballast efficiency, LOR, LLMF, LMR and RSMF. 
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Figure 1: Energy required (kW.h) to generate 1.0 x 106 lm.h from a typical 35 W T5 fluorescent lamp 
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9. Cost-benefit analyses 
It is important for end users to appreciate that to derive the full benefits from a lighting design not only 
must the cleaning cycles used for the design be adhered to but also that the correct information 
regarding, for example, the condition of existing room surfaces, likely changes to the reflectance of 
these surfaces and possible changes of use. As there are financial and environmental costs 
associated with maintaining cleaning cycles for the room surfaces and the luminaires, when provided 
with the relevant information end users are in a position to carry out cost-benefit analyses to 
determine the most appropriate maintenance regime. These points are further illustrated in the case 
studies discussed below. The impact of not adhering to cleaning intervals are particularly important 
where lighting systems are under constant illuminance control where deviation from the planned 
maintenance will result in additional running costs. 
 
10. Case studies 
The worked example shown is a warehouse which is used for dispatch, packing and handling goods.  
The building is 740 m² (38.5 m x 19.2 m) with a pitched roof (apex height 12 m, wall height 11 m) 
having no windows or skylights. The lighting scheme has been designed to meet 300 lux as per BS 
EN 12464-1:2011 with 0.6 uniformity (Uo) for the task area and 0.4 uniformity for the surrounding 
areas. Industry standard reflectances have been used for the building: 0.70 for the ceiling and roof 
structure; 0.50 for the grey breeze block walls and 0.20 for the unpolished concrete floor. All 
luminaires are mounted at 10 m (height measured from the bottom of the fitting) and are suspended 
from the roof structure. The working plane is calculated at floor level (0 m) to represent the type of 
activities taking place in the warehouse. The conditions inside the building are assumed to be a 
normal environment as described in reference [3]. A schematic image of the structure is shown in 
Figure 2. All lighting design and illuminance calculations were carried out using AGi32 [5]. 
 
The luminaires are fitted with 4 x 80 W T5 lamps, each lamp with output of 7,000 lm at 100 h. The 
power consumption for each luminaire is assumed to be 350 W which implies ballast efficiency 0.914 
and corresponds to EEI A2. The luminaires are assumed to be B class, direct fittings (i.e. ULOR 
<10%) with LOR 0.89, a value typical for T5 high bay luminaires. 
 
The overall maintenance factor is taken to be 0.70 which is a combination of LLMF (0.90), LMF based 
on a one year cleaning cycle (0.86) [3] and RSMF (0.91) also based on a one year cleaning cycle [3]. 
 

 
 

Figure 2: Exterior view of warehouse used in the case studies 
 
The calculations and results are summarised in Table 1 with images of the illumination shown in 
Figures 3 to 8.  With all four walls having reflectance 0.50, the target of 300 lux with 0.4 and 0.6 
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uniformity for the surrounding areas and task areas respectively is satisfied with 18 luminaires (6 x 3). 
If a maintenance factor of 0.60 is used instead of 0.70, the calculated illuminance in the surrounding 
areas drops below the target. To restore the illuminance of the surrounding areas to 300 lux, 21 
luminaires (7 x 3) would be required with a corresponding increase in power loading from 8.52 W/m2 
to 9.94 W/m2. However, the second configuration would mean that without constant illuminance 
control, the interior of the building would be over lit when the lighting is initially installed. These 
changes may also be represented by the increase from 2.66 to 3.11 W/m2/100 lx. The results from 
these calculations are shown in Figures 3, 4 & 5. 
 
Figures 6, 7 and 8 show the effect of different wall colours or coverings. The north facing wall has 
been changed to represent a low reflective colour, for example blue breeze block,  with 0.10 
reflectance. Although the targets for illuminance (300 lux) and uniformity are still satisfied with 18 
luminaires, Figure 6, the illuminance distribution is substantially different from that seen in Figure 3. 
Similar differences are apparent when comparing Figures 7 and 4 (both calculated with MF 0.60) 
when the illuminances fall below the 300 lux target. Employing 21 luminaires, Figure 8, again restores 
the illuminance to >300 lux but now the power demand has increased from 3.11 to 3.28 W/m-2/100 lx 
compared to Figure 5. 
 
The lower wall reflectance also serves to illustrate the impact of a build-up of dirt on a surface and 
hence the importance of having an effective cleaning program in maintaining the desired lighting 
levels. 
 
11. Conclusions 
The energy balance for a light source in an installation is shown by considering the energy required to 
generated one functional unit (1.0 x 106 lm.h). The progression from light generated to lux delivered 
can then be related to the energy consumption as each of the relevant factors are considered. 
 
To ensure the lighting design performs as intended, careful attention must be paid to all aspects of the 
input parameters including accurate values for the properties of walls, floors & ceilings and realistic 
cleaning cycles. Not providing the lighting designer with the correct properties of the surrounding 
surfaces will almost certainly result in the actual lighting system not meeting the end users' 
expectations as reflectances change not only the illuminance but also the uniformity. 
 
Lighting controls will reduce the energy consumption of a lighting installation but careful attention 
must be paid to the selection of the light source and ballast to ensure they are suited to dimming. The 
efficacy of discharge light sources is inevitably lowered when they are operated at powers below the 
design power. The efficacy of dimming T5 fluorescent lamps can be estimated from the values in 
given in reference [1] but this is beyond the scope of this review. 
 
The case studies in this review are intended to illustrate the importance of close collaboration 
between the end user and the lighting designer. Therefore the examples concentrate on the derivation 
of the energy balance for a light source in an installation and on the impact of numerous factors on 
the illuminance distribution rather than the actual annual energy consumption for a lighting installation. 
The authors advocate the use of LENI (Lighting Energy Numeric Indicator) [6] for demonstrating the 
energy efficiency of lighting installations.  
 
Acknowledgements 
The authors thank Mary Harding-Scott for help with calculations and Stewart Langdown & John 
Stocks for their valuable comments and advice. 
 
References 
[1] Commission Regulation (EC) No. 245/2009 of 18 March 2009, Official Journal of the European 

Union, 24 March 2009. 
[2] CELMA Guide for the application of the Commission Regulation (EC) No. 245/2009 on 'Tertiary 

lighting sector products', available from www.celma.org 
[3] The SLL Code for Lighting, 2012, ISBN 978-1-906846-21-3 
[4] The SLL Lighting Handbook, 2009, ISBN 978-1-906846-02-2 
[5] AGi32 from Lighting Analysts Illumination Engineering Software, www.agi32.com 
[6] Energy performance of buildings - Energy requirements for lighting, BS EN 15193:2007 

http://www.celma.org/�
http://www.agi32.com/�


 

6 

Session 3 

 

Ta
bl

e 
1:

C
al

cu
la

te
d 

illu
m

in
an

ce
s 

fo
r c

as
e 

st
ud

ie
s

C
ei

lin
g

W
al

l 1
W

al
l 2

W
al

l 3
W

al
l 4

Fl
oo

r
Lu

x
U o

Lu
x

U o
W

/m
2

W
/m

2 /1
00

 lu
x

70
50

50
50

50
20

0.
89

0.
70

18
 (6

 x
 3

)
63

00
 W

32
1

0.
54

34
9

0.
74

8.
52

2.
66

Fi
gu

re
 3

70
50

50
50

50
20

0.
89

0.
60

18
 (6

 x
 3

)
63

00
 W

27
5

0.
54

29
9

0.
74

8.
52

3.
10

Fi
gu

re
 4

70
50

50
50

50
20

0.
89

0.
60

21
 (7

 x
 3

)
73

50
 W

32
0

0.
54

34
8

0.
74

9.
94

3.
11

Fi
gu

re
 5

70
50

50
10

50
20

0.
89

0.
70

18
 (6

 x
 3

)
63

00
 W

30
4

0.
51

33
2

0.
70

8.
52

2.
80

Fi
gu

re
 6

70
50

50
10

50
20

0.
89

0.
60

18
 (6

 x
 3

)
63

00
 W

26
1

0.
51

28
5

0.
70

8.
52

3.
27

Fi
gu

re
 7

70
50

50
10

50
20

0.
89

0.
60

21
 (7

 x
 3

)
73

50
 W

30
3

0.
51

33
1

0.
71

9.
94

3.
28

Fi
gu

re
 8

Im
ag

e
Su

rr
ou

nd
in

g
Ta

sk
W

ho
le

 a
re

a
Re

fle
ct

an
ce

s
LO

R
M

F
Fi

tti
ng

s
To

ta
l p

ow
er



 

7 

Session 3 



 

8 

Session 3 

 
 

Figure 3: Case study 1 - Details listed in Table 1 
 

 
 

Figure 4: Case study 2 - Details listed in Table 1 
 

 
 

Figure 5: Case study 3 - Details listed in Table 1 



 

9 

Session 3 

 
 

Figure 6: Case study 4 - Details listed in Table 1 
 

 
 

Figure 7: Case study 5 - Details listed in Table 1 
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Figure 8: Case study 6 - Details listed in Table 1 


