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Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol-Gel-Synthesized
TiO2 Photocatalysts

Nicholas T. Nolan,†,‡ Michael K. Seery,*,† and Suresh C. Pillai‡

School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, KeVin Street, Dublin 8,
Ireland, and Centre for Research in Engineering Surface Technology (CREST), Focas Institute, Dublin Institute
of Technology, KeVin Street, Dublin 8, Ireland

ReceiVed: May 11, 2009; ReVised Manuscript ReceiVed: July 26, 2009

Among the three major phases in titania, anatase is reported to be a better photocatalytically active phase.
Anatase to rutile transformations, under normal conditions, usually occurs at a temperatue range of 600-700
°C. Various chemical additives have previously been employed to extend the anatase transition to higher
temperatures. The effect of employing various concentrations of formic acid and water on phase transition
has systematically been studied by XRD, FTIR, and Raman spectroscopy. A considerably higher anatase
phase (41%) has been obtained at 800 °C, and 10% anatase composition is retained after annealing the materials
at 900 °C for the optimized composition. On comparison, a control sample which has been prepared without
formic acid showed that the rutile phase formed at a temperature of 600 °C, FTIR and Raman studies indicated
that the formate group favored a bridging (syn-anti or syn-syn) mode of chelation depending on the reaction
conditions. It has been concluded that the resulting syn-anti binding hinders cross-linking of the gel network,
resulting in a weakened structure and thus causing the anatase to rutile transformation temperature to occur
at a lower temperature than with the syn-syn mode of binding where more ordered gel networks are formed.

Introduction

Titanium dioxide (TiO2) is a semiconductor metal oxide that
attracts much interest due to its wide range of applications which
include photovoltaic cells, gas sensors, pigments, and photo-
catalysis.1-7 It exists as three different polymorphs: rutile
(tetragonal), anatase (tetragonal), and brookite (orthorhombic).8,9

Rutile is thermodynamically stable, while anatase and brookite
are metastable, transforming to rutile under calcination, typically
600-700 °C.8 Anatase is usually considered to be the most
photoactive of the three polymorphs for the degradation of
organic pollutants.10-12

Anatase-to-rutile phase transformation in TiO2 is an area of
both scientific and technological interest.6,13 The anatase-to-rutile
transformation (ART) is kinetically defined, and the reaction
rate is determined by parameters such as particle shape/size,14

purity,15 source effects,16 atmosphere,17 and reaction conditions.18

It is agreed that the mechanism for phase transformation of
titania is one of nucleation and growth.19,20 Anatase nanocrystals
coarsen, grow, and then transform to rutile only when a critical
size is reached.21 Therefore, phase transformation is dominated
by effects such as defect concentration,22 grain boundary
concentration,23 and particle packing.24

Sol-gel synthesis of TiO2 is regarded as a relatively
straightforward synthesis technique and is thus of great interest
and use to researchers.25 Titanium alkoxides are readily
hydrolyzed by water due to their susceptibility to nucleophilic
attack.26 Rates of hydrolysis and condensation may be controlled
by using organic chelating agents such as acetyl acetone,27

alkanolamines,28 diols,29 and acetic acid30 to replace alkoxide
groups on the central metal atom. This stability improves control

over the reaction conditions.31 Suresh et al. concluded that the
pH of the precursor influences the chelation effect of acetic acid
and that the extent of chelation of the acetate group decreases
with an increase in pH causing weakened gel structures resulting
in decreased ART temperatures.6

FTIR and Raman spectroscopy can be used to determine
the binding mode of the carboxylate group. The frequency
of the asymmetric carboxylate vibration in the IR spectra,
Vas(COO-), and the magnitude of the separation between the
carboxylate stretches, ∆ ) Vas(COO-) - Vs(COO-), are often
used to determine the mode of the carboxylate binding.32 In
the bridging coordination, one divalent metal cation is bound
to one of the oxygen atoms of the COO- group and another
divalent metal cation to the other oxygen, the asymmetric
stretch is located at the same position as that of the ionic
group.32,34 The range 200-210 cm-1 was derived for ionic
formates, and in general, the comparison of the ∆ value of
the respective complex with the ∆ value of the sodium salt
should be used for the assignment following the guidelines:
(i) bidentate chelating coordination, ∆(COO-)formate complex ,
∆(COO-)sodium salt; (ii) bidentate bridging carboxylate,
∆(COO-)formate complex e ∆(COO-)sodium salt; (iii) monodentate
coordination,∆(COO-)formate complex.∆(COO-) sodium salt.32,33,35-38

The carboxylate functional group (Figure 1) has four lone
pairs of electrons available for coordination to a metal. These

* To whom correspondence should be addressed. E-mail: michael.seery@
dit.ie.

† School of Chemical and Pharmaceutical Sciences.
‡ CREST.

Figure 1. Carboxylate functional group.
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lone pairs subtend to an angle of 120° and are referred to as
the syn and anti lone pairs. On the basis of stereoelectronic
arguments, it has been suggested that the syn lone pairs are
more basic than those in the anti position.39

Previous work studying ART temperatures has been carried
out grouping our laboratories where acetic acid was chelated
to the titanium alkoxide precursor.40 It is widely accepted that
acetic acid forms a bridging complex to titanium alkoxides.25,41,42

Titanium dioxide sol-gel materials synthesized using titania
alkoxides (without chemical additives) typically transform from
anatase to rutile at ∼600 °C. However, to the best of the authors’
knowledge, no systematic spectroscopy studies have been carried
out to investigate titania carboxylate complexes and how
different modes of binding affect the ART temperature. In order
to determine whether varying ratios of a chelating species alters
the ART temperature, the simplest carboxylic acidsformic
acidsand titanium isopropoxide in various ratios were used to
synthesize a wide range of TiO2 powders. The formate car-
boxylate group was chosen because of its versatile coordination
behavior.32 The carboxylate coordinations include ionic, mono-
dentate, bidentate chelating, and bridging.32 From FTIR and
Raman spectroscopy, the role of the chelating agent in the
synthesis was examined. Ivanda et al. carried out spectroscopic
studies on powders synthesized from an esterfication reaction
to find bridging of various carboxylates. However, the paper
focused mainly on particle size as opposed to relating oligomeric
structure and ART temperatures.43

These are practical, efficient, and useful techniques for gaining
information on modes of binding. In order to understand why
anatase transforms to rutile at different temperatures, these
spectroscopic techniques were employed to investigate how the
formate group binds to the titanium. Anatase and rutile
percentages and transformation temperatures were examined
using XRD. It should also be noted that syn-syn, syn-anti
bidentate bridging complexes have not been systematically
investigated with relation to ART temperatures.

Experimental Section

Titanium tetraisopropoxide (TTIP) was added to formic acid
under stirring, resulting in a vigorous exothermic reaction
producing a powdered suspension. To the resulting suspension
water was added in varying ratios to give total volumes in the
range of 10-50 mL. The molar ratios were varied throughout
the experiment: TTIP/formic acid remains constant, 1:2, while
the water ratio increases 4, 8, 10, 40, 80, and 100. These samples
were labeled F2W4, F2W8, F2W10, F2W40, F2W80, and F2W100.
Similarly, a further 12 samples were prepared where the TTIP/
formic acid ratio was increased to 1:4 and 1:10, respectively,
the water ratio was increased to replicate samples F2W4-F2W100.
The samples were labeled F4W4, F4W8, F4W10, F4W40, F4W80,
and F4W100 when the TTIP/formic acid ratio was 1:4 and for
the TTIP/formic acid ratio of 1:10 the samples were labeled
F10W4, F10W8, F10W10, F10W40, F10W80, and F10W100. Fcontrol was
synthesized without formic acid to compare the chelating effects
of the carboxylate group. After the addition of water, a
precipitate was formed which was then filtered, washed with
deionized water, and dried at 100 °C for 10 h. Each powder
was then calcined at temperatures ranging from 300-1000 °C.
XRD patterns of the calcined powders were obtained with a
Siemens D500 X-ray powder diffractometer in the diffraction
angle range 2Θ ) 20-80° using Cu KR radiation. Anatase/
rutile percentages were calculated from the resulting diffracto-
grams using the Spurr equation:44

Where IA is the intensity of (101) peak and IR is the intensity
of (110) peak.

Infrared and Raman spectroscopy were employed to deter-
mine carboxylate binding modes on each powder before or
xerogel calcination.

All infrared spectra were obtained on a Perkin-Elmer GX FT-
IR and recorded as a KBr disk (1:10 sample/KBr). An ISA
Labram was used to record Raman spectra of the powdered
samples with an argon ion laser (514.5 nm) as excitation source.

FESEM images were obtained from a Hitachi SU-70 at an
operating voltage of 5.0 kV.

Methylene blue is an accepted model organic pollutant for
photocatalytic degradation studies and is used as an industrial
standard (Japanese standard, JIS R 1703-2:2007); as such, it
was used to demonstrate the photocatalytic efficiency of the
synthesized TiO2 powders. Rhodamine 6G (5 × 10-6 M) was
used for the comparison of results. In a typical experiment,
crystalline TiO2 (60 mg) was added to methylene blue solution
(50 mL, 1 × 10 -5 M) and placed in a Q-sun solar simulator45

with continuous stirring, 5 mL aliquots were withdrawn at timed
intervals and the visible absorption spectrum was measured
using a Perkin-Elmer Lambda 900 UV-vis spectrometer.

Results and Discussion

In order to investigate the influence of chelation on ART,
the effect of various concentrations of water and formic acid
on the titania precursor were investigated.

Effect of Water. X-ray Diffraction. XRD was employed to
determine the phase analysis of each powder calcined at
increasing temperatures. The percentage of anatase in the
calcined sample is shown in Figure 2. All samples were 100%
anatase at temperatures 300-500 °C. From Figure 2 it is
apparent that for each series of powders (F2W4-F2W100,
F4W4-F4W100, and F10W4-F10W100), where the TTIP/FA ratio
remains constant, that the increase in water promotes the
formation of rutile. For the powders F2W4-F2W100, F2W4 has
the lowest water ratio and it is the only powder with anatase at
700 °C, but the remaining powders have all underwent complete
phase transformation to a more thermodynamically stable rutile.

The formic acid ratio was increased for powders
F4W4-F4W100, causing improved chelation. This is reflected
throughout the six powders, as most retain anatase at 700 °C.
Anatase is predominant for F4W4 at 700 °C (86%), but the
increase in water along the series causes increased rutile
formation for the remaining powders. At 800 °C anatase is still
dominant for the powder F4W4 (61%) and is even present in
F4W8 (5%); however, the other powders in the series are rutile.

From these results it is clear that an increase in the amount
of water used for hydrolysis has an adverse effect on ART
temperatures, resulting in the lowering of the ART. This increase
in water reduces the acidity of the sol resulting in a decrease in
the chelation effect of the formate group.26,41,42,46 This decrease
in chelation results in a weakened gel network and consequently
a lowering of ART temperature was observed.47 Sahni et al.
reported that increasing water content causes increased hydroly-
sis which results in the formation of larger particles that
thermodynamically favor phase transformation to rutile.48

For powders F10W4-F10W100, the sample with the lowest
water ratio, F10W4, is one of only two samples where anatase
is present at 800 °C. The other is F10W40, and the reason why

%Rutile )
1

1 + 0.8[IA(101)/IR(110)]
(1)
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anatase is present in F10W40 is unclear as it has an increased
amount of water, whereas powders F10W8, F10W10, F10W80, and
F10W100 follow the theory that increased amounts of water cause
a reduction in ART temperatures.

From Figure 2, F4W4 was found to maintain anatase at
temperatures as high as 900 °C. All powders synthesized (bar
F10W40) showed that as water ratio is increased rutile forms at
lower temperatures.

As the carboxylate group may coordinate to Ti in a number
of different arrangements26,32,33,41,42,46 spectroscopic (Raman and
IR) studies were carried out on all precalcined samples in order
to determine if an increase in water influences the way that the
carboxylate group binds to Ti, which in turn affects the anatase
to rutile transformation temperature. The morphology of the
calcined powders were analyzed using FESEM microscopy and
were found to be highly aggregated with an average size of
100-150 nm (Supporting Information 1).

Infrared Spectroscopy. Figure 4 shows the IR spectra of
powdered samples F2W4 and F2W8 (F2W8-F2W100 give near
identical spectra). At ∼450 cm-1 there is a broad peak due
to the formation of Ti-O bonds. Peaks at 1350 and 1550
cm-1 represent V(COO-)sym and V(COO-)asym, respectively.
Zalenak et al. determined the mode of bonding of the
carboxylate group to the metal atom by calculating ∆, where
∆ ) Vas(COO-) - Vs(COO-).32 From the spectra obtained
for F2W4 and F2W8 (Figure 4), ∆ ) ∼200 cm-1. This value
is consistent with the literature value for ionic formate
(HCOO-) ) ∼201 cm-1.33

As has been reported elsewhere, the bidentate bridg-
ing carboxylate exists when ∆(COO-)formate complex e
∆(COO-)sodium salt.33,35-38 Therefore, it is proposed that the
formate group binds to the Ti center in bidentate bridging mode
such as syn-syn or syn-anti (Figure 5).

It has been reported that metal alkoxo-acetates are formed
by the reaction of acetic acid (AcOH) with metal alkoxide,

Figure 2. Percentage of anatase in the calcined TiO2 samples, determined by XRD for materials heated to different temperatures (a) F2W4-F2W100,
(b) F4W4-F4W100, and (c) F10W4-F10W100.

Figure 3. XRD of Fcontrol and F4W4 at 700 °C. A, anatase; R, rutile.
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in which OPri (OR) groups on the central titanium atom are
preferentially hydrolyzed, whereas bridging acetate ligands
remain bonded to titanium throughout much of the condensa-
tion process (Figure 6).25,42

Since the bridging acetate ligands are not hydrolyzed, the
chelated ligands effectively alter the condensation pathway
toward promoting the formation of linear polymers composed
of edge-sharing octahedra.42,49 The addition of excess water
destabilizes the system by altering the highly cross-linked
network structure. The gel having polymeric chains with little
branching and cross-linking, as well as a smaller void region,
are structurally weak and thus collapse rapidly on calcination
forming rutile at lower temperatures.47

This can clearly be seen from both the rutile percentage results
(Figure 2) and also from the IR spectra (Figure 7) where bands
corresponding to the chelated formate group become weaker.

From the IR spectra of samples F4W4-F4W10 (Figure 7), it can
be seen that there is a strong OH peak at ∼2800-3500 cm-1.
As the ratio of water is increased in each series (F2W4-F2W100,
F4W4-F4W100, F10W4-F10W100) it can be seen that the intensity
of both Vsym(COO) and Vasym(COO) decrease in relation to both
the Ti-O and the OH peaks. F4W4 shows the strongest COO
stretches and the weakest Ti-O and OH signal when compared
with the other samples. It is believed that this is due to an
increase in the molar ratio of water which alters the pH of the
system as well as increasing hydrolysis and weakening the gel
network.6 This, as has been reported previously, weakens the
chelation of the carboxylate group, which will cause weakened
COO stretches, facilitating increased hydrolysis, therefore
increasing OH stretches and causing a reduction in the anatase
to rutile transformation temperature.6,47,48

It can also be seen from the IR spectra (Figures 4 and 7) that
for samples F2W8 and F4W10 two asymmetric (1600 and 1550
cm-1) and two symmetric (1382 and 1340 cm-1) carboxylate
stretches were observed. For sample F4W4 one asymmetric (1550
cm-1) and one symmetric (1362 cm-1) carboxylate stretch were
observed in the IR spectra. The spectra of sample F4W8 showed
that secondary asymmetric and symmetric stretches were
beginning to form. The presence of two carboxylate stretches
indicates the presence of two different modes of carboxylate
binding.32 The frequency of asymmetric and symmetric vibra-
tions depends on the electronic charge density of C-O bonds
and C-O bond lengths; the higher is the frequency of the
asymmetric vibration, and the lower is the frequency of the
symmetric vibration. Hence for compounds F2W4, F4W4, F4W8,
and F10W40 the asymmetric vibration at 1550 cm-1 pertains to
the symmetric vibration at 1350 cm-1. Similarly, the stretches
at 1600 and 1380 cm-1 are related. The respective experimental
values are ∆exp ) ∼210 cm-1 for samples F2W4, F4W4, and
F4W10, and ∆exp ) ∼220 cm-1 for the remaining samples. Both
∆exp are similar and indicate the bridging chelation. However,
the formation of secondary peaks indicates a different binding
mode. As stated above, the carboxylate functional group has
two lone pairs of electrons on each oxygen atom available for
binding, the syn lone pair and the anti lone pair. It has been
suggested that the syn lone pair is more basic than those in the
anti position.39 It may be possible that a syn-anti (Figure 5b)
mode of binding occurs when the water ratio is increased due

Figure 4. IR spectra of TiO2 precursor powders (a) F2W4 and (b) F2W8,
where * ) Vasym(COO-) and ‡ ) Vsym(COO-).

Figure 5. Bidentate bridging modes of the formate group and TTIP
(a) syn-syn and (b) syn-anti.

Figure 6. Bridging acetate ligands attached to TTIP.

Figure 7. IR spectra of TiO2 precursor powders (a) F4W4, (b) F4W8,
and (c) F4W10, where * ) Vasym(COO-) and ‡ ) Vsym(COO-).
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to the altering pH and the increased hydrolysis of the system.
This would explain the appearance of secondary peaks in the
IR spectra.

Zelenak et al. observed singlet peaks for both the Vas and Vs

(COO-) stretches for bridging complexes that follow syn-syn
binding and they observed doublet peaks at similar wavenum-
bers for syn-anti binding with zinc carboxylate complexes,32

while Ishioka et al. reported similar values of separation for
syn-anti bridge in zinc(II) acetate.50 The result of syn-anti
bridging may produce a polymeric network with little branching
and cross-linking that is structurally weak, therefore, forming
rutile at lower calcination temperatures than that of a typical
syn-syn mode of bidentate bridging.

Raman Spectroscopy. Raman spectroscopy was employed
as a secondary technique to IR in order to confirm the above
results.

Figure 8 shows the Raman spectra of the precalcined TiO2

powders. Although the powders have not been calcined, the
Raman spectra display clear signs of the anatase phase four-
peak pattern with peaks at 160, 405, 515, and 635 cm-1 for
powders F4W10-F4W100. However, for the powders F4W4 and
F4W8 (like with IR spectra) the appearance of a peak at ∼290
cm-1 indicates that the Ti-O structure is different than the other
samples and contains a pattern similar to that of an anatase/
rutile mixture. The formation of rutile-like structures during the
course of crystallization of titania hydrolysate into anatase has
been confirmed by several research groups.51-53 It has been
suggested that the structures which provide the anatase and rutile
Raman spectral patterns disappear just before the crystallization
into anatase.53 It is apparent that the presence of the anatase/
rutile-like structure for samples F4W4 and F4W8 cause an
increase in the ART temperature. From Figure 8 it can also be
seen that the presence of intense peaks at 1393, 1580, 2890,
and 2980 cm-1 are only present in samples F4W4 and F4W8. In
order to investigate further, all Raman spectra were repeated
but scans were only carried out in the region 800-4000 cm-1

(the organic region) to further confirm binding modes of the
formate group.

Figure 8 (inset) shows the Raman spectra of the formate group
binding with the titanium. Peaks from ∼2800-3500 cm-1 are
due to OH stretches.33 As seen with the IR spectra, the intensity
of the OH peak increases in comparison with the COO- stretches
(1392 and 1567 cm-1) in F4W4 and F4W8 when compared with

F4W10-F4W100. The appearance of secondary peaks also appears
beside the main COO- peaks (1392 and 1567 cm-1) at 1370
and 1720 cm-1. The peak at 1567 cm-1 is also shifted to a higher
wavenumber. The formation of secondary peaks in the Raman
spectra are for the same samples as those of the IR which again
indicates the presence of an alternative mode of binding such
as syn-anti, as was proposed previously (Figure 5).

Effect of Chelating Agent. Sample Fcontrol was synthesized
using water only to determine what affect formic acid had on
the structure of the Ti-O network both before and after
calcination.

X-ray Diffraction. Without the presence of a chelating agent
(Fcontrol), rutile begins to form at a temperature as low as
600 °C (20%) and total transformation has occurred at 700 °C.
Samples F2W10, F2W40, F2W80, and F2W100 have a higher rutile
content at 600 °C. This may be due to the chelating agent having
an adverse effect on the initial TiO2 structure whereby a
syn-anti bridging mode is dominant throughout the structure
thus forming a structure without cross-linking that upon
calcination, forms a larger percentage of rutile at 600 °C.

Infrared Spectroscopy. In Figure 9 there is an OH stretch
(2800-3600 cm-1), a Ti-O stretch (400-1000 cm-1), and also
a signal at 1610 cm-1 due to the bending vibrations of adsorbed
water. There is a clear difference in the IR spectra of Fcontrol

and F4W4. This was expected and is due to the carboxylate
group-Ti bridging structure. Also in the region 400-1000
cm-1, F4W4 gives more defined peaks as opposed to the broad
peak given by Fcontrol. This is due to a more ordered Ti-O
framework.26,31,43

Raman Spectroscopy. The Raman spectrum of Fcontrol gives
no peaks of distinction. Showing that without the presence of
formic acid, Ti-O atoms randomly arrange as opposed to the
more ordered structure shown in Figure 8 where formic acid
was employed as a chelating agent. Comparing the Raman
spectra of Fcontrol with Figure 9, where the samples were chelated,
it becomes clear that the presence of the formic acid as a
chelating agent enables the metal-oxygen atoms to form a
defined, crystallinelike structure which is apparent in Figure 8
(0-1000 cm-1). The Raman spectra of Fcontrol, as expected also
lacks the presence of the bridging peaks present in Figure 8 at
1390 and 1570 cm-1. It is the presence of this CO-Ti bridge
that allows a controlled arrangement of the Ti-O atoms.
Without the bridge there is uncontrolled hydrolysis leading to
a random arrangement of Ti-O atoms. The Raman spectra of

Figure 8. Raman spectra of TiO2 precursor powders of F4W4-F4W10.

Figure 9. IR spectrum of TiO2 precursor powders (a) Fcontrol and (b)
F4W4, where * ) Vasym(COO-) and ‡ ) Vsym(COO-).
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Fcontrol compares favorably to the IR spectrum of the same sample
shown in Figure 9.

Photocatalytic Studies. Photocatalytic studies were carried
out on selected powders (Fcontrol, F2W4, F4W4, and F10W4) at
calcination temperatures (600, 700, and 800 °C) and were
compared with the commercial photocatalyst, Degussa P25.
Powder F4W4 calcined at 700 °C was found to be the most
photocatalytically active (Figure 10). The methylene blue was
completely degraded after 6 min.

Improved photocatalytic activity has been previously found
with anatase/rutile interactions, due to improved electron-hole
separation.54-56 A mixture of both phases has given rise to the
most efficient photocatalyst out of the powders synthesized. It
has been suggested that an intimate contact between anatase
and rutile phases may enhance the separation of photogenerated
electrons and holes resulting in excellent photocatalytic ef-
ficiency.57 It is believed that the anatase/rutile mixture present
in Degussa P25 is one of the reasons why it is the one of the
most investigated photocatalysts.56 First-order degradation plots
of powders Fcontrol, F2W4, F4W4 (Figure 10 inset), and F10W4 at
calcination temperatures 600, 700, and 800 °C were used to
calculate the reaction rate constant, k (min-1) (Table 1).

Sample F4W4 calcined at 700 °C had the largest rate constant
at 0.45 min-1, the rate constant for Degussa P25 was found to
be 0.29 min-1 for the same reaction conditions. Sample F4W4

calcined at 700 °C consists of 87% anatase and 13% rutile to
give an ideal mixture for photocatalytic efficiency for the
degradation of methylene blue as a model pollutant. Sample
F2W4 has an identical anatase/rutile mixture at 600 °C but is
not as photoactive as F4W4. At 700 °C F2W4 consists of mainly
rutile (72%) which results in a reduction of photocatalytic
activity. At 600 and 800 °C, F4W4 has 0% and 32% rutile,
respectively. This reduces the photocatalytic activity of F4W4.
Fcontrol, the sample prepared without any chelating agent was
the poorest photocatalyic performer, even at 600 °C where it
consisted of an anatase/rutile mixture (90:10), giving a reaction

rate of 0.12 min-1. As shown through IR and Raman spectros-
copy, the absence of a chelating agent causes complete disorder
among the Ti-O bonds upon hydrolysis resulting in an
unorganized network of TiO2 particles when compared with
those where a chelating agent was present. F10W4 consisted of
77% rutile at 600 °C and 95% rutile at 700 °C. As reported
previously,54-57 a mixture of anatase and rutile has greater
photoactivity than either phase alone. Photocatalytic studies were
repeated for the same samples using rhodamine 6G as a model
organic pollutant and consistent results were obtained (Sup-
porting Information 2).

Conclusions

ART in a formic acid modified titania material has been
studied using XRD, FTIR, and Raman spectroscopy. Through
Raman and IR it was possible to determine the mode of binding
of the chelating agent, formic acid, to the titanium precursor
with the equation ∆ ) Vas(COO-) - Vs(COO-). A value for
Vas(COO-) - Vs(COO-) of 210 cm-1 indicated that bidentate
bridging is the mode of binding for the samples. However, for
samples with increased water concentrations, spectroscopy
results showed doublet peaks indicating alternate modes of
bridged binding. It was postulated that for these samples
syn-anti binding was occurring as well as syn-syn binding. It
is believed that the resulting syn-anti binding hinders cross-
linking of the oligomer network, resulting in a weakened
structure and thus causing the anatase to rutile transformation
temperature to occur at lower temperatures than with the
syn-syn mode of binding where more ordered oligomer
networks are believed to be formed.

Photocatalytic studies showed that the formic acid modified
sample (calcined at 700 °C) with an anatase/rutile mixture of
86:14 was more effective for the degradation of methylene blue
than the commercial titania sample Degussa P25, showing that
an anatase/rutile mixture is more effective than either phase
alone, which is consistent with previous literature results.
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