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High-Speed Distributed Data Process of Photometric Astronomical Data 
 

Paul Doyle 
Technological University Dublin 

Paul.doyle@dit.ie 
 

Abstract 
Since the 1970s the CCD has been the principle 

method of measuring flux to calculate the apparent 
magnitude of celestial objects within astronomical 
photometry. Each CCD image must be digitally 
cleaned and calibrated prior to its use. As data 
archives increase in size to Petabytes, the data 
processing challenge requires image processing 
techniques to continue to exceed the rate of data 
capture. 

This paper describes NIMBUS, a rapidly scalable, 
failure resilient distributed network architecture 
capable of processing CCD image data at a rate of 
hundreds of Terabytes per day. NIMBUS is 
implemented using a decentralized web queue to 
control the compression of data, the uploading of data 
to distributed web servers, and the creation of web 
messages to identify the location of the processed data. 
This paper demonstrates the horizontal scalability of 
NIMBUS which has demonstrated a processing rate of 
192 Terabytes per day with clear indications that 
higher processing rates are possible.  
 
 
1. Introduction  
 

Photometry is defined as the branch of science that 
deals with measuring the intensity of the 
electromagnetic radiation or flux of a celestial object 
[1]. This science can be traced as far back as 130 BC to 
Hipparchus [2], who devised the first measurement 
system categorizing objects’ apparent brightness from 
brightest to faintest. Since their first introduction to 
astronomy, CCDs (charge coupled devices) [3] have 
received considerable attention from the astronomical 
community [4] and revolutionized this field of science, 
providing levels of sensitivity beyond the capability of 
photographic plates, extending the detection range into 
the infrared spectrum, providing immediate results 
with a linear response, and allowing for software to 
compensate for CCD defects. 

When a CCD digital image is recorded, it contains 
a digital count of the electrical charge of each of the 
pixels on the CCD array. The electrical charge per cell 

is converted to a digital pixel value by first transferring 
the charge to a corner of the array and then using an 
analogue-to-digital conversion to record its value. This 
digital image contains a number of different artefacts, 
introduced by the process of recording and reading, 
which must be removed. These and other sources of 
noise require a computation operation to be performed 
across the image pixels in order to quantify the signal- 
to-noise ratio. For each image taken, there is a 
computational overhead incurred before scientific 
analysis can be performed. As the number of images 
increases, so does this computation cost. 

In order to address the issue of cleaning and 
preparing terabytes or even petabytes of CCD-based 
astronomical photometry images per day, a distributed 
elastic cloud based computing model, to perform 
standard image data processing, is required. A 
processing pipeline has been designed, which 
demonstrates a working CCD image reduction 
pipeline, and which incorporates an elastic data 
processing model. Resources can join or leave a swarm 
of distributed computing workers which communicate 
via a distributed web-based messaging queue. 
Furthermore, taking advantage of the fact that CCD 
images can be cleaned in isolation from each other, 
image data is distributed for parallel processing to 
eliminate sequential image processing bottlenecks. 
 
2. Background  
 

To ensure clarity of the terms used within the 
context of astronomical photometry, the following 
definitions are provided for reference. 

 
2.1. Apparent Magnitude 
 

The apparent magnitude of a source is based on its 
apparent brightness as seen on Earth, adjusted for the 
atmosphere. The brighter the source appears, the lower 
the apparent magnitude value. 

. 
2.2. Absolute Magnitude 
 



The absolute magnitude is a measure of a star’s 
brightness as seen from a distance of 10 parsecs (32.6 
light years) from the observer. The absolute magnitude 
of an object can be calculated given the apparent 
magnitude and luminosity distance, which is measured 
in parsecs. 

 
2.3. Instrumental Magnitude 
 

The instrumental magnitude is an uncalibrated 
measure of the apparent magnitude of an object which 
is only used for comparison with other magnitude 
values on the same image. 

 
2.4. Luminosity 
 

The Luminosity of an object is a measure of the 
total energy emitted by a star or other celestial body 
per unit of time and is independent of distance and is 
measured in watts. The luminosity of a star is related to 
temperature and the radius of the star. 

 
2.5. Flux 
 

The flux is a measure of the apparent brightness of 
a source which is inversely proportional to the square 
of the distance and is measured in watts per square 
meter. How bright a source appears is based on the 
distance from the object and the luminosity of the 
object. 

 
2.1. Photometry 

 
What is being measured during the photometric 

process is the apparent brightness (or apparent 
magnitude) of an object and not its actual magnitude. 
To highlight the difference in actual versus apparent 
magnitude, consider the apparent brightness of a 40-
watt bulb as seen from 10 meters versus 10 kilometers. 
In both cases the light bulb retains the same 
luminosity, but the apparent brightness is dramatically 
different due to the distance between the observer and 
the light bulb. Figure 1 provides examples of the 
apparent brightness of well-known objects for 
reference. 

 

 
 

Figure 1. Apparent brightness using 
magnitude system 

2.2. Data Processing Challenge 
 
When a single CCD detector records an image, the 

size of the digital image is usually dependent on the 
number of pixels on the device and the number of 
bytes used to store the value for the pixel. The size of 
the dataset, generated by an array of CCDs, is 
dependent on the size of each digital image, the image 
capture rate (ranging from milliseconds to minutes), 
the time period over which images are taken, and the 
number of CCDs in the array. While a small telescope 
may use a single CCD, larger telescopes may employ 
an array of CCDs, and robotic telescope farms may use 
an array of telescopes, each with its own CCD array. 
With megapixel CCD arrays already in use and with 
frame rates per second increasing, the tsunami of data 
production is already beginning. Indeed, Graham [5] 
refers to the data avalanche, tsunami and explosion of 
data with telescopes generating petabytes of data on a 
nightly basis in the near future. Ferguson et al [6], 
looking to the next decade of data reduction and 
analysis, sees the three major challenges as follows: 

 
• Data rates growing rapidly as CPU processing 

rates level off. 
• Industry trends in computing hardware leading to 

major changes in astronomical algorithms and 
software. 

• Computationally demanding analysis techniques 
becoming more essential with increasing pressure 
on computing resource. 

 
It is only when considering the combination of these 
challenges that the extent of the problem of large 
dataset production and processing can be fully 
appreciated. The factors which contribute to large 
dataset generation are summarized as follows. 
 
• Resolution: Number of pixels captured per image. 
• Capture Rate: Number of images taken per 

second. 
• Capture Period: The length of time over which 

images can be taken. 
• Device Count: The number of capture devices 

operating at one time. 
• Capacity: Ability to read and store data generated. 
 
Figure 2 provides a summary of the operations 
performed by the NIMBUS pipeline which stops short 
of performing any actual science on extracted 
magnitude values from images. To ensure that the 
ability to analyze magnitude values can be done in 



real-time, PCAL (pixel calibration function) and PHOT 
(photometric analysis function) should process data at 
the same rate as data is being generated and supplied to 
the pipeline. Just-in-time processing must be 
completed within a twenty-four hour period which 
would mean data processing must be no less than three 
times slower than data acquisition before a bottleneck 
is created, assuming an eight hour image capture 
period per day. 
 

 
 

Figure 2 Overview of calibration and 
photometric analysis on RAW CCD images 

within NIMBUS 
 
3. Astronomical Data Processing  
 

CCD imaging systems have well-understood 
reduction processing steps designed to calibrate a raw 
image. The accuracy of photometric measurement is 
based on these well-defined cleaning techniques which 
are discussed in more detail in this section. 

Aperture-photometry techniques provide a clear 
process for the estimation of apparent magnitude of 
objects, using a standard reference scale. Finding the 
centre of objects, estimating the sky background and 
calculating the flux of an object for a range of aperture 
sizes are all well-defined procedures. 
 
3.1. Standard Reduction Techniques 
 

When a CCD instrument is used, the recorded file 
output stored on the computer contains a measure of 
the source signal in addition to unwanted random noise 
for various sources. The noise introduces an error into 
the measurement. In this section the sources of noise in 
CCD image reading are described along with the 
techniques used to deal with them. These techniques 
are incorporated into the NIMBUS system. 
 
3.2. Noise Sources 
 

Noise is the introduction of unwanted variations to 
the image, distorting the readings in some way. If a 
CCD pixel has a well depth of 100,000 electrons (the 
total amount of charge that can be stored in a pixel) 
and the average noise can be determined to be 
approximately 40 electrons per pixel then the SNR 
(Signal to Noise Ratio) is 100,000/40 or 2,500. If the 
amount of noise can be reduced, then the SNR is 
increased. The process of reducing the level of noise in 
an image is critical to performing high precision 
photometry. The standard equation for SNR is often 
unofficially referred to as the CCD Equation [7]. 

The main contributions to noise within a CCD are 
dark current, pixel non-uniformity, read noise, charge 
transfer efficiency and cosmic rays [8]. 
 
3.3. Bias and Dark Frames 
 

A bias frame has a dark frame with an exposure 
time of zero and is a measure a pixel’s read-noise. This 
value is usually caused by a low-level spatial variation 
caused by the on-chip CCD amplifiers. Read-noise 
from a CCD is an additive noise source that is 
introduced during the pixel read process which does 
not vary with exposure time. This is a systematic noise 
source which must be removed. 

A master bias frame is created through the 
combination of multiple bias frames using the average 
pixel values seen across each frames as shown in 
Figure 3. An average value is considered acceptable 
given that the CCD should not be exposed to cosmic 
rays since there was no exposure of the CCD sensors. 
The master bias frame can then be used in cleaning 
data images by subtracting the master bias value for 
each pixel. 

 

 
 

Figure 3. Master bias frame created using 
multiple bias frames 

 
3.4. Flat Fielding 
 



A flat field image is taken when the CCD has been 
evenly illuminated by a light source. Flat fielding is 
used to compensate for differences in pixel-to-pixel 
variations of the CCD response to illumination when 
the same amount and spectrum of light is illuminated 
across each pixel on the CCD. This technique also 
helps remove the effects of dust which can cause dark 
spots on an image and uneven illumination caused by 
vignetting in the optical system. 

The flat field value is used to modify image pixel 
values to account for these variations. There are 
varying opinions on the best method to create a good 
flat field image, such as the use of an illuminated 
painted screen inside the telescope dome [9]. Howell 
provides an excellent overview of many of these 
approaches [3]. 
 
3.5. Image reduction 
 

The process of characterizing the level of noise 
within a CCD pixel is well documented [8]. Using the 
estimation techniques identified, a basic image 
calibration process designed to reduce noise from the 
CCD raw images, a necessary process in preparing the 
CCD images for analysis, can be summarized as 
follows.   

A pixel value on a CCD frame has the bias and 
dark current removed and is then adjusted for the 
calculated responsiveness of the pixel relative to all 
other pixels. This calculation must be performed on all 
pixels which are ultimately used in the calculation of 
magnitude values. A new version of the image can then 
be created containing the calibrated pixel values. The 
creation of the master bias, flat field or dark frames is 
often done once for each night of observation and are 
then used in the calibration of pixels for that night. 
 
3.6. Photometry using CCD images 
 

The general steps in classical photometry using a 
cleaned digital image created using the image 
reduction techniques described are usually identified as 
follows [10] [11]. 

 
• Image centering, the process of finding the center 

of an object. 
• Estimation of the sky background for the purpose 

of removing it from the flux intensity value. 
• Flux value intensity calculation for an object for a 

specific aperture size. 
• Magnitude calculation for an object for a specific 

aperture size taking into account the sky 
background. 
 

Multiple magnitudes can be generated based on 
variations in the software aperture size used in the 
calculation of the flux intensity.   
 
3.7. Data Sources 
 

With an understanding of CCD calibration and 
magnitude calculations, it is important to consider the 
context within which these operate. For any world-
class scale project (space or ground based), significant 
investment is required in information technology (IT). 
Data products are produced, preprocessed to a 
predefined level, and made available to a Principal 
Investigator, supporting institutes or potentially to the 
public, either directly via download servers or via the 
VO [12]. For large projects, data capture, transfer, 
calibration and reduction, basic processing, archiving 
and access are considered as part of the observatory 
capabilities for which bespoke solutions are often 
implemented. Smaller institutes often capture less data 
due to the their relatively less capable instruments. 
However, whole investment in IT is still required, 
more modest computing resources may be sufficient. 

As smaller research groups have the capacity to 
generate ever larger volumes of data, a gap in 
processing capabilities emerges. Figure 4 shows how 
quickly terabytes of data can be generated by high 
framerate and high-resolution cameras. As the pressure 
for data generation rates increases, there should be 
commensurate pressure to keep the associated IT costs 
in line so that smaller institutes can continue to take 
advantage of instrument improvements.   

This research seeks to address the key question of 
whether a distributed model can be created when the 
computation to data ratio is low while allowing for tens 
of terabytes of data to be processed. The distributed 
model used in NIMBUS potentially offers a cost 
advantage to the smaller institute or facility, while 
providing a powerful processing network. 

 



 
 

Figure 4. Data generation rates per 8hrs for 
varying camera resolutions 

3.7. Dataset 
 

For the purpose of testing the NIMBUS system, a 
dataset was provided by the Blackrock Castle 
Observatory (BCO), a research facility engaged in 
high-speed photometry research. The reference dataset 
contained 3262 cubed FITS files [13], each containing 
10 images with each being approximately 512x512 
pixels in resolution (0.7MB per image) and with the 
total size of the dataset being 26GB. This data was 
replicated to simulate a multi-terabyte data. The dataset 
was generated on September 22nd 2003 at Calar Alto, 
targeting S5 0716+71 as part of an engineering 
equipment test of a new hardware/software stack using 
an Andor CCD device. 

 
4. Our Approach  
 

The approaches to processing large datasets are 
largely dependent on the performance requirement of 
the task and the volume of data. It is perfectly 
reasonable to use a brute force approach to solving a 
problem when the problem is sufficiently small, or 
computing resources are sufficiently powerful. In these 
cases, results can be produced within a reasonable 
amount of time so there is no need to process data 
using any specific method other than sequential 
processing. As the volume of data increases to 
terabytes, then the traditional approaches start to incur 
unreasonable delays in processing time, and further 
thought is required to address the problem of 
performance and processing efficiency.  

A distributed processing approach has the 
advantage of potentially employing large numbers of 
resources concurrently. To distribute the processing of 
data in a meaningful way, the data must be parallelized 

to some extent. If the data must be processed in a 
sequence then distributed computing may not be very 
relevant in that there are fewer opportunities for 
parallel processing. Fortunately, astronomical CCD 
data can be reduced in parallel once the calibration 
frames are provided with each image.  

NIMBUS, a globally distributed pipeline, is 
described in this paper as an alternative approach to the 
data processing techniques reviewed. This requires that 
the images be processed in parallel with only the 
necessary work needing to be performed without 
compromising the quality of the data. Using the 
analysis of magnitude calculations, it can be shown 
that data can be safely processed in parallel with the 
same outcome as an equivalent sequential pipeline as is 
seen in some existing pipelines. The methods used to 
allow the NIMBUS pipeline to scale should ensure that 
the distribution of computing nodes can truly reach 
global levels and not be restricted to local network 
domains. 

 
4.1. NIMBUS Architecture 
 

The basic workflow is for a controller to instruct a 
data capture node to publish the address of all files in 
its data store and to then activate AWS EC2 nodes, 
which make up the global processing cloud. Each EC2 
node upgrades its software when activated, by 
downloading the latest version of the package software 
with instructions on how it should operate. The node 
then proceeds to take messages off the SQS system, 
download the file named within the message and 
processes the file. Once results are obtained, they are 
written to an AWS S3 facility. Nodes can be added or 
removed at any time. Any work not completed is 
automatically reinserted into the queue for another 
node to take. A node can run multiple threads, the 
number of files downloaded can be configured, the 
queue which is used can be updated and the software 
used for processing can be updated centrally. Multiple 
web servers containing data can all contribute to the 
worker-queue, the instances can be of any size or 
configuration once they can run the software stack 
downloaded from the software distribution web server. 
The NIMBUS architecture is shown in Figure 5. 

 
 



 
 

Figure 5. NIMBUS Architecture 
 
4.2. Data Capture Cloud 

The data capture cloud consists of multiple 
distributed telescope sites containing CCD devices 
which record image data to a local storage device. 
Lossless data compression on images is performed to 
reduce the bandwidth required for data transfer.  

4.3 Data Archive Cloud 

The data archive cloud consists of multiple 
distributed websites containing image datasets. Images 
will already be compressed and possibly reduced in 
size. The images are stored on fast storage disks 
attached to static web servers which serve http requests 
from the global data processing cloud. The web servers 
advertise files to be processed via the distributed 
worker queue. 

4.4 Distributed Worker SQS Queues 

When the worker web queue is informed of a file 
available for processing it stores the url of the file in a 
simple message which is available for worker nodes to 
read. The web queue ensures that only one copy of a 
message can be read from the queue at a time. When a 
worker completes its processing it permanently deletes 
the message. If a worker node fails to complete the 

processing of the image, the message will eventually 
reappear on the queue as per the SQS protocol. This 
ensures that the overall system is resilient against 
compute node failures 

4.5 Global Processing Cloud 

Worker nodes contain an initialisation boot script 
which installs worker sandboxes using tools 
downloaded from a predefined URL. These tools 
ensure that the work performed is configurable, both in 
terms of the work to be performed and web queues to 
listen or write to. Worker nodes within the processing 
cloud can be located anywhere in the world. Workers 
can join or leave the processing cloud at any point 
without impacting the overall processing pipeline. 

4.6 Results Cloud 

When a worker has completed its work, the 
resulting data file is uploaded to a distributed storage 
facility and a message is then written to the result 
queue that contains the URL for the location of the 
upload file. Using this queue, a processing cloud can 
be reconfigured to read the message queue to identify 
the URL of the result and to download results to a 
central location if required. 

5. NIMBUS Pipeline  
 

The NIMBUS pipeline, uses a public web queue to 
publish work to distributed computing nodes built 
explicitly for this pipeline which are referred to as 
workers. Workers are computing instances that can 
reside anywhere on the internet but are required to 
have internet access using port 80, as all services 
accessed are HTTP based. Each worker uses, at its 
core, the acn-aphot.c program used in the ACN 
Pipeline [14] which runs in single step mode. For this 
pipeline, the BCO dataset is also used and replicated so 
that there are multiple terabytes of data available for 
processing.  

 
5.1. Experimental Methodology 
 

There are six components central to this pipeline; 
data capture and staging, serving archive data, 
distributed worker queues, distributed data processing, 
and results storage and monitoring. Each component is 
required to operate continuously and asynchronously, 
allowing for resource utilization to be varied without 
interrupting the overall pipeline. While tested to a 
processing rate of 200 terabytes per day, the 



experiments were not at the limit of possible 
processing rates, with the primary restriction being a 
lack of additional resources available. Some of the 
larger experiments utilized over 10,000 processing 
worker threads across 100 distributed servers. Table 1 
summarizes the high-level experiments run on the 
NIMBUS pipeline. 

 
 

Table 1. Experimental Objectives 
 
Reference Measure Objectives 
Exp-NIM1 SQS 

performance 
Testing the read and writing 
times of the web message 
queues  

Exp-NIM2 Single 
Instance 

Determine the variables 
which affect the performance 
of the overall processing 
power of a single instance  

Exp-NIM3 Multi-
Instance 

Focus on scaling the number 
of instances up to 100 
looking for factors which 
could affect the scalability of 
the system.  

 

 
 

Figure 6. Experimental Control Flowchart 
 
5.2. Experimental Control 
 

The function of the control system is to initiate all 
experiments and ensure that all systems are available 
and functioning correctly. It is important that 
experiments can be compared, and to do this, the 
starting state must be consistent in all cases. The 
control system runs a Python script which tears down 
the experimental infrastructure and then rebuilds it 
before the start of the experiment. All systems must be 
accessible from the control system which resides on a 
virtual machine within the AWS cloud, running an 
Ubuntu instance on the EC2 service. A batch script 
contains the series of experiments to run, which in turn 



calls a script to start and experiment. The control 
flowchart for the experimental protocol is shown in 
Figure 6.  
 
5.3. Results and Discussion 
 

Limits imposed on the experiments were based on 
limits of available resources although, where possible, 
indications of scaling opportunities were identified. For 
the pipeline to be active, a minimum of one worker is 
required to perform image cleaning and reduction. 
Multiple worker processes can run on a worker node 
(compute instance) which is typically a virtual AWS 
instance. The number of instances activated within the 
final experiments was 100, but the number of workers 
was 10,000. In some cases, multiple runs of the same 
experiment were performed to ensure results were 
repeatable. Given additional funding, additional 
resources could be activated.  

 
5.4. SQS Performance 
 

To achieve a data cleaning rate of terabytes per 
hour, it is essential that the queuing mechanism is able 
to advertise data sufficiently quickly to present work at 
a rate higher that the expected cleaning rate, and to 
ensure that work creation rates are expandable as the 
number of files to be cleaned increases. This requires 
that the storage nodes within the NIMBUS architecture 
can collectively create messages on the SQS worker 
queue at a rate of over 100 messages per second. In 
addition to writing messages to the queue to generate 
work, the architecture of the system requires that 
queues are also used for monitoring and obtaining the 
results of an experiment. Experiments were devised to 
determine the SQS queue read performance. 

 

 
Figure 7. NIM1-1 Message write performance 

To determine the performance of the SQS 
distributed queue two experiments were run to 
determine the capability of message reading and 
writing.  

Messages written to the queue over time from each 
storage node are shown in Figure 7 and indicate the 
write rate is linear, although there are differences 
intrinsic to the storage itself. This is likely to do with 
network and processing power on the individual 
storage nodes. 
 

 
 

Figure 8. Exp:NIM1-2 Message read 
performance 

Messages read rates from a single monitor server 
node, using varying levels of threads running with the 
standard deviation, are shown in Figure 8.  

The message queuing system provides a number of 
advantages to the pipeline as summarized below. 

 
• Exp:NIM1-1. Using multiple web nodes writing at 

the same time, the advertised rate for the pipeline 
is over 26TB per hour, although this is unlikely the 
limit as write rates were linear with the number of 
web nodes included. 

• Exp:NIM1-2. A single node read performance for 
messages is similar to the single node write 
performance. Downloading of messages is 
naturally distributed for the pipeline. A limit per 
queue existing which is equivalent to a processing 
rate of 2.8 PB per hour. All that is required to 
overcome this is to increase the number of queues 
being used for reading. 
 

5.5. Single Instance Node Performance 
 

For this group of experiments, a variety of physical 
and virtual machine instances are used to look at the 
impact of running multiple workers on the same 
instance. The assumption is that if an instance is busy 
downloading an image, then the CPU resource is not 
being used. To fully utilize the CPU, additional 
workers can run to balance the load of the CPU over 
time. Workers are designed to cycle through 
downloading batches of files, processing them, and 
then uploading them. A single worker will is very 
unlikely to fully utilise all of the instance resources at 



the same time. By increasing the number of workers, it 
would be reasonable to conjecture that the overall 
resources are being more fully used, but that there is a 
point beyond which the number of workers being 
added does not increase the performance of the 
instance. 

 

 
 

Figure 9. Exp:NIM2-1 Single Server Download 
Performance 

 

 
Figure 10. Exp:NIM2-2 Server Performance 

with 10 Workers 
 

Figure 9 looks at the download performance of 
multiple webservers showing that server type can 
impact the download speed. By first identifying the 

fastest web server, a second set of experiments were 
conducted.  Figure 10 shows the performance of 
different processing servers using multiple worker 
threads within the server configuration. By using the 
fastest FTP server the issue of downloads was 
eliminated from this processing experiment.  
 

These experiments provide basic information 
regarding the performance of a single instance within 
the pipeline architecture. 
• Exp:NIM2-1 For a single worker instance, running 

a single worker there is clearly a difference 
observable in the download times from the AWS 
based web servers used. 

• Exp:NIM2-2. Each worker type will contain 
different characteristics such as CPU performance 
and memory size. If the number of workers is 
increased then, providing there are sufficient CPU 
resources, the processing rate will increase. The 
overall pipeline will therefore run faster as more 
powerful servers are utilized until the capacity 
available to download data becomes a bottleneck. 

 
5.6. Multiple Instance Node Performance 
 

In the final set of experiments, a large EC2 instance 
(C1.XLarge) was deployed running a total of 100 
worker threads per server-instance, along with other 
smaller server instances running different worker loads 
as shown in Figure 11. This experiment was then run 
for a period of 300 seconds for the fastest server type 
and the processing rate was sustained for that period of 
time.  

Using the fastest AWS server available, an 
experiment was run to show that the performance of a 
single server and 100 servers is  linearly correlated. 
This final experiment was designed to show whether 
the addition of more servers could sustain an increase 
in the file processing rate.  

 



Figure 11. Multiple Server File Processing 
Rates over Time 

 
To test the statistical significance of the increase in 

overall system performance, a set of statistical tests 
have been run on the AWS instance. Before running a 
correlation or a T-test, a test for normality of the data 
must firstly be performed. Taking two experiments, 
both using the FTP server and 10 workers per instance, 
in which the first has a single instance running and the 
second has 100 instances running, a density plot and 
the corresponding Normal Q-Q plot was performed 
showing that the data is normally distributed and that it 
is appropriate for running a correlation test and T-test. 

The Pearson product-moment correlation 
coefficient is used to measure the dependence between 
instance numbers and files processed and the scatter 
plot along with the Pearson Coefficient is given in 
Figure 12 showing a strong and positive correlation 
between the number of instances and the number of 
files process.  

 

 
Figure 12. Scatter Plot of Files Processed vs 

Instances Run 
 

The null hypothesis was then tested. The P-value is 
calculated to help determine if the null hypothesis 
should be rejected. The result of the one-way ANOVA 
is considered significant with a P value < 0.001, so a 
pairwise comparison was performed to test if the 
differences are statistically significant, while adjusting 
for Type 1 errors. The results of the pairwise test give a 
p-values < 0.001 in most cases, it can be concluded 
that there is a statistically significant difference 
comparing instance numbers to files processed. 
 
 
6. Conclusion and Future Work 
 

The final experiment demonstrated that horizontal 
scaling of all primary components is possible, and that 

this approach will ensure system bottlenecks are 
overcome once the data and servers are distributed. 
Statistical significance was also demonstrated between 
the number of instances and the files processed. 

While funding limited the ability to run additional 
experiments, the result of this final experiment was 
such that 192TB of data per twenty-four hours 
processing could be achieved, with evidence that 
further improvement would be possible through the use 
of more instance types being fed by more web servers 
data sources. 

Further optimizations of the pipeline are considered 
as possible future areas of research. Much of the 
experimentation performed in this paper demonstrated 
the extensive capability of a distributed system and 
identified the key factors within the system. It is 
possible to take these factors and monitor them such 
that a machine learning approach could be used to 
optimize a running system by monitoring the overall 
efficiency of the server data processing, taking into 
account the web server capabilities, the networking 
performance the capacity of the CPU.  

To significantly reduce the overall data movement 
where live telescopes are being used, data processing at 
the telescope site, using a GPU system, could result in 
the transmission of processed data, instead of the raw 
image. Work on light curve generation within the 
pipeline could also be incorporated into the worker 
nodes. Further research would be required into data 
reduction at the source of data production which would 
ensure that the NIMBUS pipeline could increase the 
overall processing rates by changing the ratio between 
data movement and data processing. 
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