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Abstract—MBFL (Mutation-Based Fault Localization) is one of
the most commonly studied fault localization techniques due to its
promising fault localization effectiveness. However, MBFL incurs
a high execution cost as it needs to execute the test suite on a large
number of mutants. While previous studies have proposed mutant
reduction methods for FOMs (First-Order Mutants) to help al-
leviate the cost of MBFL, the reduction of HOMs (Higher-Order
Mutants) has not been thoroughly investigated. In this study, we
propose SGS (Statement Granularity Sampling), a method which
conducts HOMs reduction for HMBFL (Higher-Order Mutation-
Based Fault Localization). Considering the relationship between
HOMs and statements, we sample HOMs at the statement level to
ensure each statement has corresponding HOMs. We empirically
evaluate the fault localization effectiveness of HMBFL using
SGS on 237 multiple-fault programs taken from the SIR and
Codeflaws benchmarks. The experimental results show that (1)
The best sampling ratio for HMBFL with SGS is 20%, which
preserves the performance and reduces execution costs by 80%
; (2) The fault localization accuracy of HMBFL with SGS
outperforms the state-of-the-art SBFL (Spectrum-Based Fault
Localization) and MBFL techniques by 20%.

Index Terms—Mutation-based fault localization, Multiple
faults, Higher-order-mutants, Mutant reduction

I. INTRODUCTION

Fault localization is essential for identifying faulty program

elements [1] and is a time-consuming debugging activity.

With larger software projects, various automatic fault lo-

calization techniques have been proposed, such as informa-

tion retrieval-based [2], slice-based [3], machine learning-

based [4], spectrum-based [5], and mutation-based strate-

gies [6]. These aim to reduce the human effort required for

fault localization.

Mutation-Based Fault Localization (MBFL) techniques have

been shown to outperform Spectrum-Based Fault Localization

(SBFL) techniques [7]. The MBFL approach utilizes mutant

testing, whereby the mutants can be either First-Order-Mutants

(FOMs) or Higher-Order-Mutants (HOMs) [8]. Most MBFL

studies focus on FOMs, which perform poorly on multiple-

fault programs. HOMs can more closely reflect multiple

faults [9], so Higher-Order Mutation-Based Fault Localization

(HMBFL) can detect faults that MBFL cannot.

Previous research [10] has shown that fault localization

techniques based on higher-order mutation are more effective

at localization on multiple-fault programs. However, MBFL

and HMBFL both suffer from significant computational costs

since both require the execution of a large number of mutants

against the test suite.

Existing MBFL reduction methods can achieve significant

cost reductions on single-fault programs but are unsuitable

for reducing HOMs when localizing multiple-fault programs.

Xue et al. [11] discovered that individual faults in multiple-

fault programs interfere with one another. Therefore, we study

the reduction method for the HOMs technique to reduce the

execution cost of HMBFL without decreasing accuracy.

In this study, we analyze the reduction in the cost of the

fault localization technique using HOMs, while considering

their interrelated characteristics with multiple faults. HOMs

are collections of FOMs, each corresponding to a program

statement. We propose a Statement Granularity Sampling

(SGS) method that considers the relationship between HOMs

and statements, classifying and sampling HOMs to ensure

representation of each statement.

In our experiment, we use 237 programs from SIR [12]

and Codeflaws [13] as subjects, generating 2nd order HOMs

and FOMs using 15 mutation operators [13]. We find a

20% sampling rate (SGS-20%) to be the most effective and

efficient. Comparing HMBFL using SGS-20% to three SBFL

and three MBFL techniques, it demonstrates greater fault

localization effectiveness while reducing mutation execution

costs by 80.0%.

We summarize the main contributions of our study as

follows:

• We conduct a detailed theoretical analysis of the relation-

ship between HOMs and statements, determining that a

HOM corresponds to several statements and a statement

can generate multiple HOMs.

• We propose the SGS mutation reduction strategy for

high-order mutant reduction, ensuring each statement has

corresponding HOMs.

• We evaluate the effectiveness of the SGS strategy on 237

multiple-fault programs, demonstrating reduced execution

cost and preserved fault localization performance.

• To facilitate future study, we share the source code and

dataset of our study in a Github repository1.

1https://github.com/lucyVan/SGS

870

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

979-8-3503-2697-0/23/$31.00 ©2023 IEEE
DOI 10.1109/COMPSAC57700.2023.00116

20
23

 IE
EE

 4
7t

h 
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e 

(C
O

M
PS

A
C

) |
 9

79
-8

-3
50

3-
26

97
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
O

M
PS

A
C

57
70

0.
20

23
.0

01
16

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 11,2024 at 12:21:50 UTC from IEEE Xplore.  Restrictions apply. 



II. BACKGROUND

A. Mutation-Based Fault Localization
Mutation-based fault localization is a technique based on

mutation analysis. The MBFL technique generates mutants us-

ing mutation operators and executes all mutants against the test

suite to obtain information about the execution results. Then,

the MBFL techniques calculate the suspiciousness of mutants

and program statements based on the collected information

and ultimately localize the fault.
If a test case execution behavior of a mutant is different

from the original, we say that the mutant is killed or detected.

Otherwise, we say that the mutant is notkilled or live. The

MBFL technique first executes a program P by a test suite T .

Next, the coverage information and test results are obtained

for classifying T into pass tests set Tp and fail tests set Tf .

Then, all mutants are executed against the tests in T . The

results can be divided into Tk and Tn, where Tk is the set of

mutants killed by T and Tn is the set of mutants not killed by

T . Subsequently, the suspiciousness of the mutant m can be

calculated using different MBFL formulas, which are based

on the following four parameters: anp = |Tn ∩ Tp|, akp =
|Tk ∩ Tp|, anf = |Tn ∩ Tf |, and akf = |Tk ∩ Tf |, where anp
denotes the number of pass tests that cannot killed, akp denotes

the number of pass tests that killed, anf denotes the number

of failed tests not killed, and akf denotes the number of failed

tests killed. Table I lists three popular MBFL formulas.

TABLE I
SUSPICIOUSNESS FORMULAS FOR MBFL

Name Formula

Ochiai Sus(m) =
akf√

(akf+anf )(akf+akp)

Dstar Sus(m) =
a2
kf

akp+anf

GP13 Sus(m) = akf

(
1 + 1

2akp+akf

)

The MBFL technique considers the execution difference be-

tween faulty programs and correct programs. Many studies [6]

have demonstrated that the MBFL technique has the potential

to outperform other types of fault localization techniques

significantly.

B. Mutant Reduction Methods
In recent years, mutant reduction approaches have been

applied to different software engineering tasks such as fault lo-

calization and program repair. Offutt et al. [14] determined that

the mutation operator was the core of mutation and proposed

the SELECTIVE method. However, the SELECTIVE method

selects only limited mutation operators, making it impossible

to generate specific types of mutants, which in turn results in

poor fault localization accuracy [15].
Some mutant reduction methods sample a smaller set of

mutants. Papadakis et al. [6] sampling 10-50% of mutants

demonstrate that 10% sampling outperforms SBFL in local-

ization, indicating that mutant reduction effectively lowers the

computational cost of MBFL techniques.

This issue of how to reduce HOMs has not been thoroughly

investigated in previous studies, so in this study we propose a

practical approach to address this research gap.

III. OUR METHOD

A. Relationship Between Higher-Order Mutants and State-
ments

Given a program P , the statement set in the program is

S = {s1, s2, · · · , sn}, where si is the ith line of code in the

program. OP is the set of mutation operators. By applying

all the mutation operators in OP to each statement in S, we

obtain the set of FOMs of program P , denoted as FOMs(S) =
n⋃

i=1

FOMs(si), where FOMs(si) is the set of FOMs with

mutation positions in the i-th line of code in the program.

The HOMs of the program are composed of FOMs. For the

purpose of clarity, we denote the set of kth-order mutants of

the program as k-HOMs(Sk), where Sk = S × S × · · · × S
represents the kth Cartesian product of the set of program

statements. Specifically, we have the set of kth-order mutants

related to statement si, denoted as k-HOMs({si} × Sk−1)
and abbreviated as k-HOMs(si×Sk−1). Clearly, given a kth-

order mutant k-HOM(�s) ∈ k-HOMs(�s) ⊂ k-HOMs(Sk), it

can be mapped to a vector of statements �s ∈ Sk. Similarly,

given a statement vector �s ∈ Sk, we can map it to a set of

kth-order mutants k-HOMs(�s) ⊂ k-HOMs(Sk). Based on the

above analysis, we can conclude that there is a many-to-many

relationship between the HOMs of a program and the program

statements.

B. Higher-Order Mutant Reduction Method Based on State-
ment Granularity Sampling

Sampling HOMs for multiple-fault programs requires con-

sidering the relationship between HOMs and program state-

ments. We propose a HOM reduction method based on

Statement Granularity Sampling (SGS) by sampling HOMs

associated with a statement. Sampling HOMs at the statement

granularity level ensures that each statement has a suspicious-

ness value.

The SGS method generates HOMs by mutating the program

using mutation operators and classifying the generated mutants

at the statement level. Fig. 1 shows the framework of the SGS

method. First, we generate FOMs(S) by applying mutation

operators OP on the program’s statements S. Then by repeat-

edly combining k mutants in FOMs(S), we can get kth-order

mutants k-HOMs(Sk). According to the relationship between

HOMs and statements, we divided k-HOMs(Sk) into n set of

mutants, each set per code statement (e.g. k-HOMs(si×Sk−1)
is the set of HOMs related to code statement si). By randomly

selecting x% mutants from k-HOMs(si×Sk−1), we can get a

subset k-HOMs
′
i of k-HOMs(si×Sk−1). Finally, the reduced

HOM set (k-HOMs
′
) is the union of each reduced subset of

HOMs (k-HOMs
′
i).

SGS classifies HOMs corresponding to the same statement,

then samples to ensure each statement has corresponding
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Fig. 1. The framework of SGS.

HOMs. The sampling of HOMs at the statement granularity

level ensures that each statement has a suspiciousness value.
The SGS method is comparable to the conventional MBFL

reduction technique, with the following advantages:

• Sampling the complete set of mutation operators to avoid

missing essential mutation operators.

• Sampling the generated HOMs from the granularity level

of statements prevents some statements from being inca-

pable of calculating a suspiciousness value.

• Sampling the generated HOMs of statements equally

maintains the distribution of the extracted HOMs and

avoids statement suspiciousness bias caused by distribu-

tion difference.

IV. EXPERIMENTAL DESIGN

A. Benchmark
Subject programs from two benchmark suites are used to

measure the effectiveness of our proposed method. Table II

presents statistics for all subject programs.

TABLE II
STATISTICS OF SUBJECT PROGRAMS

Benchmark Program #Versions #LOC #Test Cases #FOMs #2-HOMs

SIR

printtokens 20 563 4,130 21,705 21,161
printtokens2 20 510 4,115 47,215 48,699

tcas 20 173 1,608 13,317 15,180
sed 20 7,125 360 59,571 60,247

Codeflaws 157 51 58 20,631 24,092

Total 237 - - 162,439 169,379

SIR (Software-artifact Infrastructure Repository) [12] is a

repository of open-source programs for program analysis and

software testing. We selected four programs: three small-scale

(printtoken, printtoken2, tcas) and one large-scale (sed) for

their comprehensive test suites and use in previous fault lo-

calization studies [16]. We formed 60 multiple-fault programs

from single-fault SIR programs and 20 versions of the large-

scale program.
Codeflaws [13] is a benchmark collection containing real

faults from Codeforces2. We selected 157 multiple-fault pro-

grams, which have been widely used in prior fault localization

studies [16].

2https://codeforces.com/

B. Experimental setup

We use 15 types of C mutation operators (see Table III)

provided by Agrawal et al. [13] for a total of 199 mutation

operators.

TABLE III
TYPICAL MUTATION OPERATORS

Mutation
Operator Description Example

CRCR Required constant replacement a=b + *p → a=0 + *p
OAAN Arithmetic operator mutation a + b → a * b
OAAA Arithmetic assignment mutation a += b → a -= b
OCNG Logical context negation if(a) → if(!a)
OIDO Increase/Decrease mutation ++a → a++
OLLN Logical operator mutation a && b → a ‖ b
OLNG Logical negation a && b → !(a && b)
ORRN Relational operator mutation a < b → a <= b
OBBA Bitwise assignment mutation a &= b → a |= b
OBBN Bitwise operator mutation a & b → a | b
OCOR Cast operator replacement int a → float a
SRSR Return statement replacement return 0 → return 1

VTWD Twiddle mutations a = b → a = b + 1
VDTR Domain trap c = a → c = a * 0
SSDL Statement deletion a = 1 → <no-op>

Compared to traditional MBFL, HOM execution amounts

are similar to FOMs, ensuring equivalent execution costs. In

our initial experiment, we adapted three SBFL formulas (Dstar,

GP13, Ochiai) into MBFL formulas to eliminate formula

effects on results. Since results were comparable, we report

only Dstar. The mutant generation strategy and statement

suspiciousness measure follow Li et al. [17].

For the experiments, 2-order HOMs were generated for

the following reasons: (1) Nguyen et al. [18] discovered that

lower-order HOMs had better mutation testing results. (2)

Wong et al. [19] also discovered that HOMs of lower order

could detect program faults. (3) 2-HOM can effectively reduce

the number of equivalent mutants in mutation testing [10]. (4)

2-HOM has been widely used in previous mutation testing and

fault localization studies [19].

C. Evaluation Metrics

The performance of our proposed method was evaluated in

terms of the following five evaluation metrics.
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(1) EXAM [20] is used to determine the percentage of

program statements that need to be manually checked to find

the faulty statement.

(2) Top-N [21] represents the number of faults discovered

in the top N most suspicious statements. Based on the previous

studies [4], we set N to 1, 3, and 5 for comparison purposes.

(3) MAP (Mean Average Precision) [21] is the av-

erage position of all fault statements in the ranking list. The

higher the value of MAP , the better the performance of the

corresponding technique.

(4) Wilcoxon signed-rank test [22] is a non-parametric

method for determining whether the difference in localization

results is statistically significant.

(5) MTP (Mutant-Test-Pair) [23] is used to quantify

the mutant execution cost of MBFL techniques. A smaller

MTP value for an MBFL technique indicates a lower execu-

tion cost and higher level of efficiency.

V. RESULTS ANALYSIS

A. RQ1: How does the effectiveness of HMBFL with the SGS
method at different sampling ratios compare?

In RQ1, we evaluate SGS’s fault localization effectiveness

at various sampling ratios (10%-100%) using EXAM , Top-

N and MAP metrics.

(a)

(b)

Fig. 2. The fault localization effectiveness of HMBFL with the SGS method
with different sampling ratios

In terms of EXAM , different SGS sampling ratios show

insignificant differences. As shown in Fig. 2(a), HMBFL with

the SGS method with different sampling ratios can examine

the same proportion of defects as HMBFL with the unsampled

(SGS-100%) method. On Codeflaws (Fig. 2(b)), , SGS-10%

detects 44.4% of faults examining 20% of codes, while SGS-

100% detects 48.1%, showing a decline in effectiveness at

higher ratios.

TABLE IV
THE TOP-N AND MAP OF HMBFL WITH THE SGS METHOD WITH

DIFFERENT SAMPLING RATIOS

Benchmark Sampling Ratio
Top-

MAP
1 3 5

SIR

10% 0 1 3 0.0834

20% 0 8 12 0.1042

30% 0 11 20 0.0951

40% 0 10 20 0.1036

50% 0 10 18 0.1059

100% 0 10 41 0.1217

Codeflaws

10% 45 96 130 0.5673

20% 46 97 130 0.5682

30% 45 100 131 0.5699

40% 47 102 131 0.5781

50% 48 102 132 0.5811
100% 48 104 130 0.5803

In terms of Top-N , MAP , SGS localizes more faults in top

1, 3, and 5 as sampling ratio increases. However, the SGS-20%

method is practical when the fault localization effectiveness

and mutation execution cost are considered. Table IV shows

the Top-N and MAP of the SGS method with different

sampling ratios for two benchmarks. The result indicates that

the SGS-20% method can remove a higher percentage of

mutants while maintaining fault localization effectiveness.

TABLE V
THE P-VALUES OF THE SGS METHOD WITH DIFFERENT SAMPLING RATIOS

Benchmark Sampling Ratio p-value

SIR

10% 0.0548
20% 0.0537
30% 0.0435
40% 0.2174
50% 0.1689

Codeflaws

10% 0.8566
20% 0.8702
30% 0.6498
40% 0.4265
50% 0.4548

Table V details the fault localization performance differ-

ences for SGS with various sampling ratios. The p-values

are often larger than 0.05, indicating no statistically signif-

icant differences. Importantly, the SGS-20% results are not

significantly different from SGS-100%, confirming statistical

significance.

In terms of MTP , the SGS-20% method substantially

reduces the mutation execution cost by around 80%. As the

sampling ratio grows, so does the related mutation cost. On

SIR, the MTP for the SGS-20% method reduces the HOMs

execution cost by 80.4%. On Codeflaws, the SGS-20% method

can reduce the execution cost by approximately 79.7%.
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Summary for RQ1: The effectiveness of HMBFL with

the SGS-20% method is statistically comparable to that

of unsampled while reducing the execution cost by

about 80%. In terms of the Top-N and MAP metrics,

HMBFL with the SGS-20% method provides a higher

fault localization effectiveness.

B. RQ2: How does the effectiveness and efficiency of HMBFL
with the SGS-20% method compare to SBFL and MBFL
techniques?

In RQ2, we compare the effectiveness and efficiency of

HMBFL with the SGS-20% method to that of traditional fault

localization techniques (i.e., SBFL and MBFL). We select a

SBFL (Dstar) and three MBFL techniques (MUSE, Metallaxis,

and MCBFL-hybrid-avg) as the baselines and choose EXAM ,

Top-N , MAP , and MTP as the evaluation metrics.

As shown in Fig. 3, in terms of EXAM , HMBFL with the

SGS-20% method localizes more faults than SBFL and MBFL

techniques while examining the same amount of code in most

cases.

(a)

(b)

Fig. 3. The fault localization effectiveness of different fault localization
techniques

In terms of Top-N and MAP , HMBFL with the SGS-

20% method ranks more faults in the top 1,3,5 and has more

accurate fault localization results than the SBFL and MBFL

techniques. Table VI shows the Top-N and MAP of HMBFL

with the SGS-20% , SBFL, and MBFL techniques. SBFL

and MUSE techniques have a Top-N of 0 on SIR using

the Dstar formula, while Metallaxis and MCBFL-hybrid-avg

TABLE VI
THE TOP-N AND MAP OF DIFFERENT FAULT LOCALIZATION TECHNIQUES

Benchmark Method Top MAP1 3 5

SIR

SBFL 0 0 0 0.0425
MUSE 0 0 0 0.0494

Metallaxis 0 5 15 0.0692
MCBFL-hybrid-avg 0 5 15 0.0726

SGS-20% 0 8 12 0.1042

Codeflaws

SBFL 11 35 69 0.3176
MUSE 8 34 69 0.2992

Metallaxis 33 91 120 0.5295
MCBFL-hybrid-avg 35 91 120 0.5309

SGS-20% 46 97 130 0.5682

techniques rank 5 and 15 faults in the top 3 and 5, and

HMBFL with the SGS-20% method has a maximum Top-

3 of 8 and a highest MAP (0.1217). On Codeflaws, HMBFL

with the SGS-20% method has the highest Top-1 (46), Top-3
(97), Top-5 (130), and MAP (0.5682), although the MCBFL-

hybrid-avg technique can perform better than all other fault

localization techniques.

TABLE VII
THE P-VALUES OF DIFFERENT FAULT LOCALIZATION TECHNIQUES

Benchmark Method p-value

SIR

SBFL 2.70E-06
MUSE 0.0782
Metallaxis 0.0127
MCBFL-hybrid-avg 3.10E-05

Codeflaws

SBFL 3.30E-08
MUSE 6.80E-23
Metallaxis 8.60E-08
MCBFL-hybrid-avg 0.1887

Table VII presents p-values of the Wilcoxon signed-rank

test comparing HMBFL with SGS-20% to other fault local-

ization techniques. Most p-values are below 0.05, indicating

significant differences in fault localization.

In terms of MTP, SGS-20% reduces cost by 80.0% com-

pared to MBFL. On SIR, SGS-20% performed 65,358,134

times while MBFL required 326,790,674. SGS-20% reduces

execution cost on Codeflaws by 78.8%. Overall, SGS-20%

reduces mutation execution cost by approximately 79.9%.

Summary for RQ2: The results demonstrate that

HMBFL with the SGS-20% method can effectively

minimize mutation execution overhead, while its fault

localization effectiveness is superior to SBFL and

MBFL.

VI. THREATS TO VALIDITY

Internal Validity. The first internal threat to our experiment

is the mutant generation and sampling randomness. Different

mutant sets and mutant samples will affect the fault localiza-

tion result. The second internal threat is the order of HOMs

used in our study. Previous studies indicates that higher-order
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mutants aren’t always effective in mutation analysis, and 2-

HOMs are commonly used in previous studies. Therefore, we

select 2-HOMs in this study and will consider HOMs in the

future.

Construct Validity. The formulas used in the SBFL and

MBFL techniques are the first construct validity threat. Dif-

ferent formulas may affect the experimental results, so we

choose three formulas for our experiment. The second con-

struct validity threat is the evaluation metrics. We evaluate the

effectiveness of fault localization using EXAM , Top-N , and

MAP . Moreover, we used Wilcoxon signed-rank test [22] to

verify the statistical difference between different methods.

External Validity. The first external validity threat to our

experiment is the practicability of the methods. In the ex-

periments, the benchmark contains both artifact faults and

real faults, which empirically evaluate the effectiveness of

our methods in practice. The programming language of the

benchmarks used in our experiment is the second external

validity threat. We only use C language datasets. Our proposed

mutant reduction method is irrelevant to program languages so

that it can be easily applied to other program languages. In the

future, we will apply our methods to other program languages

and verify the generalization of our proposed method.

VII. CONCLUSION

Considering the relationship between HOMs and statements,

we propose a HOMs reduction method based on Statement

Granularity Sampling (SGS). We apply our method to two

benchmarks with 237 multiple-fault programs. The experiment

results show that the SGS method with a sampling ratio of

20% is similar to the method of using all the mutants when

considering fault localization performance and reduces the

execution cost by around 80%. Finally, we compare HMBFL

with the SGS-20% method to traditional fault localization

techniques (i.e., three SBFL and three MBFL techniques). The

results of this comparison show that HMBFL with the SGS-

20% method has a higher fault localization effectiveness and

efficiency than state-of-the-art SBFL and MBFL techniques.

In the future, we plan to apply our methods to more

benchmarks (such as Defects4J) to verify the generalization of

its effectiveness further. Moreover, we plan to perform mutant

sampling by considering the HOM value in fault localization.
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