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Abstract

In this paper we argue that since the begin-
ning of the natural language processing or
computational linguistics there has been a
strong connection between logic and ma-
chine learning. First of all, there is some-
thing logical about language or linguistic
about logic. Secondly, we argue that rather
than distinguishing between logic and ma-
chine learning, a more useful distinction
is between top-down approaches and data-
driven approaches. Examining some re-
cent approaches in deep learning we argue
that they incorporate both properties and
this is the reason for their very successful
adoption to solve several problems within
language technology.

1 Introduction

At a surface level, logic and machine learning rep-
resent two distinct methodologies for analysing
(or building models of) the world. Logic based
theories can be characterised as qualitative, sym-
bolic and driven by domain theory,1 whereas ma-
chine learning may be characterised as quantita-
tive, numeric and driven by computational learn-
ing theory. The focus of this paper is to examine
and frame the (potentially synergistic) relationship
between these distinct analytic methods for natu-
ral language processing (NLP). In historic terms
this discussion is a recurrent throughout the his-
tory of NLP, for example in the mid-1990s the
rise of statistical learning methods in NLP inspired
several discussions on this topic (e.g., (Gazdar,
1996; Jones et al., 2000)). However, the dra-
matic recent advances in the NLP based on deep

∗ Both authors contributed equally.
1In this way we use the term “logic” in a loose sense, not

only to refer to formal logics.

neural network approaches have made the ques-
tion of how these two methodologies should be
used/related/integrated in NLP research apposite.

A first step in such a study is to understand the
goal of the task for which the methods are being
used. NLP can loosely be defined as the field of
research that studies how computers can best be
used to process natural language. This definition
is generic enough to be generally acceptable but
lacks clarity in terms of what is the goal of this
processing activity.

One goal for processing natural language is to
develop useful applications that help humans in
their daily life, e.g.: machine translation, and
speech transcription. In application scenarios
where a rough (shallow) analysis is useful (e.g.,
in some situations, even a rough translation that
provides the gist of the message can be helpful)
and large (annotated/structured) corpora are avail-
able machine learning is the ideal methodology to
address this goal. However, where a deeper or pre-
cise analysis is required or where there is a scarcity
of data a pure machine learning approach may not
be suitable. Furthermore, if the goal of process-
ing language is rather motivated by the desire to
better understand the cognitive foundations of nat-
ural language than a machine learning methodol-
ogy, particularly one based on an unconstrained
(e.g. fully connected) deep neural network, are not
appropriate. The criticisms of unconstrained neu-
ral network based models (typically characterised
by fully-connected feed-forward multi-layer net-
works) in cognitive science has a long history (see
(Massaro, 1988) inter alia) and often focuses on:
(1) the difficultly in analysing in a domain the-
oretic sense how the model works, and (2) the,
somewhat ironic scientific short-coming, that neu-
ral networks are such powerful and general learn-
ing mechanisms that demonstrating the ability of a
network to learn a particular mapping/function is



scientifically useless from a cognitive science per-
spective. In particular, as Massaro (1988) argues,
a neural network model is so adaptable that—
given the appropriate dataset and sufficient time
and computing power—it is likely to be able to
learn mappings that not only support a cognitive
theory but also ones that contradict that theory.
One approach to addressing this problem is to in-
troduce domain relevant structural constraints into
the model via the network architecture, early ex-
amples of this approach include (Feldman et al.,
1988; Feldman, 1989; Regier, 1996). Indeed, we
argue in this paper that one of the important (and
somewhat overlooked) factors driving the success
of DL research is the specificity of DL architec-
tures to the tasks they are applied too.

Contribution: In this paper we evaluate the re-
lation between logic and machine learning and ar-
gue that although it appears that logic has lost its
significance in computational models and applica-
tions it is still very much present in the form of
formal language modelling that underlines most of
the current work with machine learning. More-
over, we highlight that many of the recent ad-
vances in deep learning for NLP are not based
on unconstrained neural networks but rather that
these networks have domain/task specific archi-
tectures that encode domain theoretic considera-
tions. In this light, the relationship between logic
and machine learning can be viewed as potentially
more synergistic. Given that many logical theo-
ries are defined in terms of functions and com-
positional operations and neural networks learn
and compose functions, a logic based domain the-
ory of linguistic performance can naturally inform
the structural design of deep learning architectures
and thereby have benefits both in terms of model
interpretability and performance.

Overview: In Section 2 we review the historic
context of the logic versus machine learning for
NLP debate; next, in Section 3, we concentrate on
recent developments in NLP (e.g., deep learning
approaches) and situate these developments within
the broader debate; then, in Section 4, we use
the computational modelling of spatial language
as an NLP case study to frame the possible syner-
gies between logic and machine learning; finally,
in Section 5 we set out our thoughts for potential
approaches to developing a more synergistic un-
derstanding of the logic and machine learning for
NLP research.

2 A brief history of logic and machine
learning

The groundwork for the application of logical
techniques in the computational linguistics has
been set by (Montague, 1974) with his description
of English as a formal language. This introduced
first-order logic, lambda calculus, model building
and theorem proving to linguistics and later with
the development of computational approaches to
NLP. The application of logic also coincided with
the view of language being a formal system driven
by rules (Chomsky, 1968). However, this is not
the only view: there existed a view of examining
linguistic data from which one could extract gen-
eralisations which developed in the work follow-
ing (Firth, 1957) and (Harris, 1954) who mark the
beginning of distributional semantics. The work in
computational linguistics took off with the devel-
opment of computers in the late 1980s and 1990s
with development of several approaches based on
formal rules (Shieber, 1986; Alshawi, 1992) as
well as well as approaches to semantics (Black-
burn and Bos, 2005; Copestake et al., 2005). In
parallel, there has been also development of ma-
chine learning which in several respects also in-
volves the development on learning formal rules
from data (Mitchell, 1997), in many respects sim-
ilar to the rules used in modelling language. An
interesting and promising approach was Inductive
Logic Programming (ILP) (Muggleton, 1991) that
learned specialised or generalised rules in a subset
of first-order logic (Prolog clauses) from positive
and negative examples, also in a subset of first-
order logic. Attempts were made to use this frame-
work to learn the missing grammar rules from a set
of existing rules and linguistic data (Pulman and
Liakata, 2003; Liakata and Pulman, 2004; Kaza-
kov and Dobnik, 2003). ILP worked well on small
and well-defined domains. However, working on
real data introduced inconsistencies that could not
be captured in a pure logical way and therefore the
approach has been extended with non-logical tech-
niques that better captured the variation in data (cf.
(Liakata and Pulman, 2004)).

With the availability of large corpora in early
2000s (Manning and Schütze, 1999) (possibly re-
lated with the expansion of the internet where
large amounts of regular everyday language has
become available in computer-readable form)
there has been a shift in focus from designing
rules that generate representations to inducing



such rules from datasets (Turney et al., 2010), thus
from formalism to the processes, and hence ma-
chine learning has become the focus of the field.
However, both approaches were somehow in a
complimentary distribution as shown in Table 1:2

Symbolic, rule-based approaches provided deep
coverage but of a limited domain; outside the do-
main they proved brittle and therefore limited. On
the other hand, data-based approaches were wide-
coverage and robust to variation but provided shal-
low representation of language.

tech/cov wide narrow
deep our goal symbolic

shallow data-based useless

Table 1: Properties of rule-based and data-based
approaches to NLP

Our desiderata is a wide-coverage system with
deep analyses and it was considered that this could
be achieved by a hybrid system but this was not an
easy undertaking (cf. (Gazdar, 1996) and (Jones
et al., 2000)). The work on ML and language
from data between 2000–2010 has exceeded ex-
pectations and it has become progressively deeper
(learning probabilistic hierarchical language mod-
els, for example (Tenenbaum et al., 2011) for a
general probabilistic approach to cognition), but
a few problems remain which are linked to the
“logical” nature of language and include interpre-
tation of quantification, negation, different kinds
of semantic modifications under compositionality
of expressions and others. Another difficulty is
that the learned theories are not interpretable. ML
methods learn only one of the possible theories
that covers the data, not necessarily the one that
would correspond to human intuitions and there-
fore as stated earlier their applicability for cogni-
tive modelling has been considered limited. Over-
all, it follows that rule-based and logic based sys-
tems are not opposing but they are different ap-
proaches to modelling language: top down vs.
bottom up.

3 Deep Learning and Handcrafted
Network Architectures

In recent years deep learning (DL) models have
improved (and in some cases markedly improved)
the state of the art across a range of NLP tasks.

2Adapted from the slides of Stephen Pulman.

Some of the drivers of DL success include: the
availability of large datasets, more powerful com-
puters, and the powerful learning and adaptabil-
ity of connectionist neural networks. However,
another and less obvious driver of DL is the fact
that DL network models often have architectures
that are specifically tailored or structured to the
needs of a specific domain or task. This fact be-
comes more obvious when one considers the va-
riety of DL architectures that are currently being
researched (see Figure 1 for some examples).

This diversity of network architectures is not a
given. For example, given the flexibility of neural
networks one approach to accommodating struc-
ture into the processing of a network is to apply
minimal constraints on the architecture and to rely
on the ability of the learning algorithm to induce
(and encode) the relevant structure constraints by
adjusting the network’s weights. However, it has
long been known that pre-structuring a neural net-
work by the careful design of its architecture to fit
the requirements of the task results in better gener-
alisation of the model beyond the training dataset
(LeCun and others, 1989). Understood in this con-
text, DL is assisted (dare we say supervised) by
the task designer which decides what kind of net-
works they are going to build, the number of lay-
ers, the connectivity of the layers and other pa-
rameters. DL is not using fully connected lay-
ers, instead it developed several kinds of layered
networks tailored to the task. In this respect it
captured top-down specification that we have seen
with the logic/rule-based systems.

The designer of the learning task brings signif-
icant background knowledge to learning: for ex-
ample if language models are to be learned then
the system should capture sequence learning and
RNNs (LTSMs and GRUs) will be used. The in-
puts (and outputs) to such networks can be either
characters of words, the latter represented as word
embeddings in vector spaces. ConvNet have their
origin in image processing where convolutions are
meant as filters that encode a region of pixels into
a single neural unit. Additionally, to decrease the
effects of spatial continuum, operations such as
pooling are used that encode convolved represen-
tations from various parts of the image. ConvNets
are also used for language processing to capture
different patterns of words or strings. The size of
the network and the depth of the layers, the sizes of
the matrices passed between the layers, activation



Figure 1: An illustration of some popular neural network architectures. Image sourced from (van Veen,
2016).



functions and optimiser are also relevant parame-
ters that appear highly task dependent and are nor-
mally determined through an empirical trial-and-
error process that is informed by designer intuition
(Jozefowicz et al., 2016).

Another design aspect of DL architectures is the
treatment of DL networks themselves as modular
components within larger DL networks. In these
modular DL architecture networks may be se-
quenced or stacked on top (defining compositional
operations) of each other. For example, currently
the standard Neural Machine Translation archi-
tecture is the encoder-decoder architecture (e.g.,
(Bahdanau et al., 2015; Luong et al., 2015)). This
architecture uses one RNN (known as the encoder)
to fully process the input sentence and generate a
vector based representation of this sentence that is
then passed to a second RNN (the decoder, essen-
tially implementing a language model in the target
language) that generates the translation word by
word. Domain theoretic considerations have af-
fected the design and development of this archi-
tecture in a number of ways. For example an un-
derstanding that enabling the decoder to look both
back and forward along the input sentence dur-
ing translation is one of the reasons why the input
is fully processed prior to translation beginning.
However, the understanding of the need for local
alignments between different sections of the trans-
lation (and somewhat contrary requirement to the
need for a potentially global perspective on the in-
put) has resulted in the development of attention
mechanisms within the NMT framework. A vari-
ant of the NMT encoder-decoder architecture that
replaces the encoder RNN with a ConvNet has rev-
olutionised the field of image captioning research
(e.g., (Xu et al., 2015)). It is noteworthy, how-
ever, that sometimes the design of the network ar-
chitecture constrain what the model can learn in
undesirable ways. For example, Kelleher (2016)
argues that these image captioning networks have
been configured in a way that they capture visual
properties of objects rather than relations between
them. Consequently, within the captions generated
by these systems the relation between the preposi-
tion and the object is not grounded in space but
only in the linguistic sequences through the de-
coder language model where the co-occurrence of
particular words in a sequence is estimated. An-
other dimension in DL network architecture de-
sign is to stack (as opposed to sequences) network

modules. A fundamental NLP task where module
DL design has result in significant breakthroughs
is in language models. For example, the language
model proposed by (Models, 2016) uses a Con-
vNet to generate word representations, that factor
the international (character level) structure of the
word, which are then passed to a RNN model to
predict the next word in the context of preceding
words in the sequence. This example illustrates
how the DL architecture design can guide the net-
work to process and integrate different levels of
linguistic information. In summary, the design of
a DL architectures, where DL networks are treated
as composable modules, can constrain (and guide)
a number of factors that are important to NLP,
in particular the (hierarchical) composition of fea-
tures and the sequencing of the processing.

4 Spatial language

Our focus is computational modelling of spatial
language such as (“the chair is to the left and close
to the table” or “go down the corridor until the
large painting on your right, then turn left”) which
requires integration of different sources of knowl-
edge that affect the semantics of spatial descrip-
tions: scene geometry, knowledge about dynamic
kinematic routines of objects, and language coor-
dination with dialogue partners. Furthermore, be-
cause situated agents are located within dynamic
linguistic and perceptual environments they need
to continuously adapt their understanding and rep-
resentations of the environment.

It follows that an appropriate computational
model of spatial language should consist of sev-
eral connected modalities (for which individual
neural network architectures would be specified)
but also of a general network that connects these
modalities, thus akin to the specialised regions and
their interconnections in the brain (Roelofs, 2014).
Furthermore, two areas in DNN research that are
particular relevant for such stratified modelling
of DNNs are active learning (Olsson, 2009) and
transfer learning (Pan and Yang, 2010). In an ac-
tive learning framework the learning algorithm is
able to query an oracle for labels on examples cho-
sen by the algorithm and incrementally improv-
ing its understanding of the concept it is learning
through interaction (in language). Transfer learn-
ing describes learning methods that can transfer
knowledge learned in one task to improve learn-
ing on a new (but related) task. A common thread



to both of these approaches is that they involve su-
pervision in the form of the design of the network
and information transfer from other modalities.

5 Conclusion and future research

DNNs provide a platform for machine learning
that allow us a great flexibility in combining top-
down specification (in terms of hand-designed
structures and rules) and data driven approaches.
This way we can tailor the learning algorithm to
each individual learning problem and therefore ef-
fectively reach the goal of combining symbolic
and data-driven approaches: a problem that has
been investigated in NLP for several decades. The
strength of DNNs is their compositionality of per-
ceptrons/neural units which represent individual
classification functions that can be combined in
novel ways. This was not possible with other ap-
proaches in ML that worked more as black boxes.
Finally, it is important to note that DNNs take in-
spiration from neural connections in human brain
and hence at some abstract level share similarities
with models of human cognition that NLP models
are trying to capture at least at the level of out-
put forms. Relating and understanding the perfor-
mance of DNNs to models of language and cog-
nition in general provides an interesting research
question for the future.
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