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Abstract

The notions of Hopfian and co-Hopfian groups have been of interest for some time. In

this present work we exploit some unpublished ideas of Corner to answer questions relating to

such groups. In particular we extend an answer given by Corner to a problem of Beaumont

and Pierce and show how the properties may be lifted from subgroups to the whole group in

certain situations.

1 Introduction

The classes of groups which are today called Hopfian and co-Hopfian groups were first studied

by Baer [1], under the names Q-group and S-group. In modern terminology we say that a group

G is Hopfian if every surjection G → G is an automorphism; it is said to be co-Hopfian if

every injection G → G is an automorphism. Finite groups are, of course, the prototypes for both

Hopfian and co-Hopfian groups. The existence of infinite co-Hopfian p-groups was first established

by Crawley [4]. Hopfian and co-Hopfian groups have arisen recently in the study of algebraic

entropy and its dual, adjoint entropy – see e.g. [5, 8]. Despite the seeming simplicity of their

definitions, Hopfian and co-Hopfian groups are notoriously difficult to handle, for example, it is

still not known whether the direct sum of two co-Hopfian groups which are not torsion-free, is

co-Hopfian.

Our motivation for this work arose from some unpublished work of the late A.L.S. Corner, which

we have adapted and extended to use in the context of Hopfian and co-Hopfian groups. In the

first section we quickly review some standard results and consider the question of when subgroups

inherit the Hopfian or co-Hopfian properties. We show, under a suitable simple condition, that

the properties ‘lift’ from certain subgroups to the whole group; our argument is based on a result

which may be of independent interest and utilizes arguments reminiscent of those used by Pierce

[10] in his seminal work on homomorphism groups. In the final section we utilize an idea from an

unpublished paper of A.L.S. Corner which answered a conjecture of Beaumont and Pierce [2], to

exhibit, without assuming (CH), mixed Hopfian and co-Hopfian groups with torsion subgroups of

arbitrary cardinality λ ≤ 2ℵ0 . Moreover, the groups are the extension of a non-Hopfian (non-co-

Hopfian) group by a non-Hopfian (non-co-Hopfian) group.

The word group shall normally mean an additively written Abelian group; the books [6] shall serve

as a reference to ideas needed in Abelian group theory. We shall denote the set of primes by the

symbol P.
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2 Lifting Hopficity (co-Hopficity) from Subgroups

We begin by recording some well-known properties of Hopfian and co-Hopfian groups.

Definition 2.1 A group G is said to be Hopfian if every surjection G → G is an automorphism;

it is said to be co-Hopfian if every injection G → G is an automorphism.

It is easy to show that the Hopfian property for G is equivalent to G having no proper isomorphic

factor group, while co-Hopficity is equivalent to having no proper isomorphic subgroup. The groups

Z and Z(p∞) show that the notions are independent of each other.

The following simple proposition records some well-known and easily established facts about Hop-

ficity and co-Hopficity:

Proposition 2.2 (i) A torsion-free group G is co-Hopfian if, and only if it is divisible of finite

rank.

(ii) A torsion-free group of finite rank is Hopfian.

(iii) Finitely generated groups are Hopfian and finitely co-generated groups are co-Hopfian.

(iv) A group G with End(G) ∼= Z is Hopfian; thus arbitrarily large Hopfian groups exist.

(v) Reduced Hopfian (co-Hopfian) p-groups are semi-standard and so have cardinality at most 2ℵ0 .

(vi) A reduced countable Hopfian (co-Hopfian) p-group is finite.

The classes of Hopfian and co-Hopfian groups exhibit some weak closure properties which are well

known:

Proposition 2.3 Let 0 → H → G → K → 0 be an exact sequence.

(i)If H, K are both Hopfian and if H is left invariant by each surjection φ : G → G, then G is

Hopfian. In particular, extensions of Hopfian torsion groups by torsion-free Hopfian groups are

again Hopfian.

(ii)If H,K are both co-Hopfian and if H is left invariant by each injection ψ : G → G, then G

is co-Hopfian. In particular, extensions of co-Hopfian torsion groups by torsion-free co-Hopfian

groups are again co-Hopfian.

Proof The proofs of the two statements are essentially dual, so we present only the proof of the

Hopfian property. Let φ : G → G be a surjection, then by assumption, Hφ ≤ H and so we get an

induced map φ̄ : G/H → G/H giving the following commutative diagram:

0 −−−−→ H −−−−→ G
β−−−−→ K −−−−→ 0

yφ�H
yφ

yφ̄

0 −−−−→ H −−−−→ G
β−−−−→ K −−−−→ 0
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Since φ is onto, φ̄ is onto and so K, being Hopfian, gives that φ̄ is an automorphism. If we show

that φ ¹ H : H → H is onto, then as H is Hopfian, φ ¹ H will also be an automorphism and the

result will follow by an appeal to the “Five Lemma”. However the fact that φ ¹ H is onto follows

immediately from the commutativity of the first square of the diagram above.

The following example, which provided the first examples of unbounded Hopfian and co-Hopfian

p-groups, will be useful.

Example 2.4 If B is a standard basic p-group and G is a pure subgroup of the torsion-completion

B̄ of B with End(G) = Jp1G ⊕ Es(G), where Es(G) is the ideal of small endomorphisms, then G

is both Hopfian and co-Hopfian.

Proof The details of this result are contained in Section 16 of Pierce’s fundamental work [10].

The critical part of his argument is that a group with this type of endomorphism ring does exist;

other proofs using variations of a realization theorem due to Corner [3] are possible. So assume

such a group exists and suppose that ψ = r + θ, where r ∈ Jp and θ ∈ Es(G), is a monic (epic)

endomorphism of G, then using Lemma 16.1 in [10], we conclude that r must be a p-adic unit.

Moreover, Lemma 16.3 of [10] shows that if B =
∞⊕

n=1
Bn, where each Bn is a direct sum of cyclic

groups of order pn, then there are decompositions G = B1⊕· · ·⊕Bm⊕Hm = B1⊕· · ·⊕Bm⊕Hmψ,

where Hm = 〈pmG,Bm+1, . . .〉. Now, if ψ is monic then Gψ/Hmψ ∼= G/Hm
∼= G/Hmψ and so,

since G/Hm is finite, we have G = Gψ and ψ is an automorphism. If ψ is epic, then G/(Hm +

Kerψ) ∼= G/Hmψ ∼= G/Hm and again finiteness yields that Hm + Kerψ = Hm. Since r is a unit,

it follows that Hm and Kerψ are disjoint, whence Kerψ = 0 and ψ is again an automorphism.

If G is a Hopfian (co-Hopfian) group then it is easy to see that subgroups of G do not necessarily

inherit this property: for example, if G is an unbounded group which is both Hopfian and co-

Hopfian as in Example 2.4, then a basic subgroup of G is an unbounded direct sum of cyclic

groups and hence is neither Hopfian nor co-Hopfian. However, we do have:

Proposition 2.5 If G is Hopfian (co-Hopfian), then, for each natural number n, the subgroup nG

is Hopfian (co-Hopfian).

Proof If φ : nG → nG is epic (monic), then it follows from the proof of Proposition 113.3 in [6], that

there exists an epic (monic) ψ : G → G such that ψ ¹ nG = φ. Since G is Hopfian (co-Hopfian),

ψ must be an automorphism and hence its restriction to nG is also an automorphism, i.e. φ is an

automorphism.

The converse of Proposition 2.5 is not true in general: consider the p-group G constructed by Pierce

in [10, Theorem 16.4] which is both Hopfian and co-Hopfian - see Example 2.4 above. It follows
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from the last proposition that pG is also both Hopfian and co-Hopfian. Now set H =
⊕
ℵ0

Z(p)⊕G;

clearly H is neither Hopfian nor co-Hopfian but pH = pG has both properties.

We now show that, under a suitable restriction, a converse to Proposition 2.5 may be obtained.

The key result is derived using arguments similar to those used by Pierce in [10] and may be of

some independent interest.

First we make an ad hoc definition first used by Corner in unpublished work: an endomorphism ε

of the group G is said to be a q-map if q(ε− α) = 0 for some automorphism α of G.

Theorem 2.6 If G is a group which has no q-bounded pure subgroup of infinite rank and qG is

Hopfian (co-Hopfian), then G is Hopfian (co-Hopfian).

Proof Let φ be an epic (monic) endomorphism of G. Then φ ¹ qG is an epic (monic) endomorphism

of qG and hence is an automorphism of qG. It follows from [6, Proposition 113.3] that there is an

automorphism ψ (say) of G such that ψ ¹ qG = φ ¹ qG. Consequently q(ψ − φ) = 0 and φ is a

q-map of G. The result now follows immediately from Theorem 2.7 below.

Theorem 2.7 Suppose G is a group which has no nonzero q-bounded pure subgroup for some

integer q = pk1
1 pk2

2 . . . pkt
t . Then if ε : G → G is either monic or epic and a q-map, then ε is an

automorphism of G.

Proof We remark at the outset that there is no loss in generality in assuming that qε = q1G:

since ε is a q-map, there is an automorphism α with qε = qα, then simply replace ε by εα−1 and

note that ε is epic (monic) if, and only if, εα−1 has the same property. We consider the three

possibilities for G, i.e. G is torsion-free, torsion or mixed. If G is torsion-free, then ε = 1G and

hence is an automorphism. Suppose then that G is torsion and let Gi(1 ≤ i ≤ t) denote the

pi-primary component of G. Then G =
t⊕

i=1

Gi⊕G0 for some complement G0 having no pi-primary

component (1 ≤ i ≤ t). Now each Gi is left invariant by ε. Moreover, the assumption that G has

no nonzero q-bounded pure subgroup means that the first ki Ulm invariants of each Gi vanish.

Then, it follows from Proposition 2.8 below that ε ¹ Gi is an automorphism of Gi. Clearly ε acts

as the direct sum of these restrictions and hence is an automorphism.

Finally, suppose that G is mixed with torsion subgroup T . From the last paragraph it follows that

ε ¹ T is an automorphism of T . Moreover the induced mapping ε̄ on G/T is also an automorphism

as noted above, since G/T is torsion-free. It follows immediately from the Five Lemma that ε is

an automorphism of G.

The final step in the proof of Theorem 2.7 is completed by the following more general result:
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Proposition 2.8 Let G be a p-group such that the first r Ulm invariants fG(0), fG(1),

fG(2), . . . , fG(r−1) are finite and let B =
∞⊕

i=1

Bi, where each Bi is a direct sum of cyclic groups of

order pi, be a basic subgroup of G. If ε : G → G is monic (respectively epic) such that prε = pr1G,

then ε is an automorphism of G.

Proof. Let G = B1 ⊕ · · · ⊕ Br ⊕Hr, where Hr = {prG,Br+1, Br+2, . . . }; note that B1 ⊕ · · · ⊕ Br

is then finite.

(i) Claim that ε ¹ Hr is monic.

Observe firstly that ε ¹ Hr[p] is the identity map since Hr[p] ≤ prG. Hence if 0 6= x ∈ Hr ∩Kerε,

there is a k ≥ 0 such that 0 6= pkx ∈ Hr[p] and this would lead to the contradiction that 0 =

pk(xε) = (pkx)ε = pkx 6= 0.

(ii) Claim that Hrε is pure in G.

It suffices to check this on the socle, so suppose that x ∈ Hrε∩G[p]∩pnG for an arbitrary n. Then

x = yε for some y ∈ Hr. Since ε is monic on Hr, then px = 0 implies that py = 0 and so y ∈ Hr[p].

It follows from (i) above that x = yε = y ∈ Hr[p]. Thus x ∈ Hr ∩ pnG = pnHr and so x = pnz for

some z ∈ Hr. It now follows that x = xε = pnzε and so x ∈ pn(Hrε) ∩G[p] as required.

(iii) Claim that Hr[p] = Hrε[p].

It follows from (i) that the LHS of the above is contained in the RHS. So suppose that z ∈ Hrε[p].

Then z = xε for some x ∈ Hr and 0 = pz = (px)ε. Since ε is monic on Hr, then it is immediate

that x ∈ Hr[p], and then by (i) above, we have z = xε = x ∈ Hr[p].

It follows from (ii) and (iii) that Hr and Hrε are pure subgroups of G having equal socles. Since

Hr is a summand, it follows from a result of Irwin and Walker [9, Theorem 16], that Hrε is also

a summand and that it has a common complement to Hr. Thus G = Hr ⊕X = Hrε ⊕X where

X ∼= B1 ⊕ · · · ⊕Br; as observed above, X is finite.

If ε is monic, it induces an isomorphism G/Hr
∼= Gε/Hrε. Moreover G/Hr

∼= G/Hrε, and so both

of these groups are then finite. It follows immediately that G = Gε and ε is an automorphism,

as required. If ε is epic, then the mapping x 7→ xε + Hrε has kernel Hr + Kerε and so there are

isomorphisms G/Hr +Kerε ∼= G/Hrε ∼= G/Hr. Again all the groups are finite and so Hr +Kerε =

Hr. However if x ∈ Kerε[p], then x ∈ Hr[p] and so from (i) above, 0 = xε = x. Thus Kerε = 0 and

ε is again an automorphism.

3 Mixed groups

We now switch our attention to mixed Abelian groups. Our approach in this section is heavily

influenced by an unpublished paper of Corner answering a conjecture of Beaumont and Pierce –
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this is [U16] in [7]. We proceed via a series of steps starting with an arbitrary unbounded semi-

standard (not necessarily separable) reduced p-group T . Firstly we determine the structure of the

quotient A/T , where A is the cotorsion-completion of T and then we construct a subgroup H of

the group of p-adic integers Jp with End(H) = Zp, the integers localized at the prime p. Finally

we use A and H to construct, via a suitable pullback, a mixed group G which will be both Hopfian

and co-Hopfian.

(1) So suppose that T is an arbitrary unbounded semi-standard (not necessarily separable) reduced

p-group and let A = Ext(Q/Z, T ). Then A is the cotorsion-completion, T •, of T and A/T ∼=
Ext(Q, T ) is torsion-free divisible. We claim A/T ∼= ⊕

2ℵ0

Q.

To establish the claim note that if B is a basic subgroup of T , then B is pure and dense in T

and so there is an epimorphism Ext(Q, B) ³ Ext(Q, T ). Moreover, B is, by Szele’s Theorem,

an epimorphic image of T and so there is an epimorphism Ext(Q, T ) ³ Ext(Q, B). Since Q is

torsion-free and divisible, both Ext(Q, B) and Ext(Q, T ) are Q-vector spaces and the existence

of the above epimorphisms ensures that they are of the same dimension. Hence Ext(Q, B) ∼=
Ext(Q, T ); furthermore, the algebraic compactness of B̂ implies that Ext(Q, B) ∼= Hom(Q, B̂/B).

We remark that the exact structure of the quotient B̂/B may be computed but it is not essential

for our purposes here: it suffices to note that as it is divisible, it has the form B̂/B ∼= ⊕
λQ ⊕⊕

κ Z(p∞), where max{λ, κ} = 2ℵ0 . Thus Hom(Q, B̂/B) ∼= Hom(Q,
⊕

λQ)⊕Hom(Q,
⊕

κ Z(p∞)).

The first term is easily seen to be isomorphic to
⊕

λQ. Now Hom(Q,
⊕

κ Z(p∞)) is torsion-free

divisible since so is Q, and it has cardinality ≤ (2ℵ0)ℵ0 = 2ℵ0 since κ ≤ 2ℵ0 . However, Z(p∞)

is an epimorphic image of Q and so Hom(Q,
⊕

κ Z(p∞)) also contains a subgroup isomorphic to

Hom(Z(p∞),
⊕

κ Z(p∞)); this latter is isomorphic to
⊕̂

κ Jp and hence has cardinality ≥ 2ℵ0 .

Thus Hom(Q,
⊕

κ Z(p∞)) ∼= ⊕
2ℵ0

Q and in any event we have that Hom(Q, B̂/B) ∼= ⊕
2ℵ0

Q and so

A/T ∼= ⊕
2ℵ0

Q, as claimed.

Note that if φ : A → T is any homomorphism, then the image Aφ is both cotorsion and torsion,

and hence is bounded [6, Corollary 54.4].

(2) Let H be a maximal pure subgroup of Jp containing Zp, then H has cardinality 2ℵ0 and

Jp/H ∼= Q. Since every endomorphism of H extends to an endomorphism of Jp, it must be

multiplication by a p-adic integer. Moreover, this multiplication must induce an endomorphism on

the quotient Jp/H ∼= Q, and so it must be both a p-adic integer and a rational integer i.e. it is in

Zp. Conversely since Jp is q-divisible for all primes q 6= p, any multiplication by an element of Zp

is an endomorphism of H.

Thus we have a pure subgroup H of the group of p-adic integers Jp such that H contains the

subgroup Zp of integers localized at p and End(H) = Zp. Moreover, as H has rank 2ℵ0 , we have
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that H/Zp is torsion-free divisible of rank 2ℵ0 .

(3) We now use the groups A and H constructed above to construct a mixed group G.

The groups A/T and H/Zp are isomorphic, fixing such an isomorphism we form the pullback of A

and H with kernels T and Zp. The resulting group G is a subgroup of the direct sum A⊕H and

satisfies

G/T ∼= H, G/Zp
∼= A.

Since G/T is torsion-free, T is the torsion subgroup of G. Note that G/T is reduced in this case.

We claim that the group G so constructed is both co-Hopfian and Hopfian.

To see this, suppose that ε : G → G is any monomorphism (respectively epimorphism) of G; we

shall show that ε is an automorphism of G. Now, ε induces a mapping ε̄ of G/T ∼= H and so ε̄

is multiplication by a rational n/m where n,m are coprime and p - m. Thus, mε − n1G induces

the zero map on G/T and so G(mε− n1G) ≤ T , in particular Zp(mε− n1G) ≤ T . However, every

homomorphic image of Zp in T is cyclic, and so bounded, so there exists an integer r ≥ 0 such that

prZp(mε − n1G) = 0. Thus, the endomorphism pr(mε − n1G) of G annihilates Zp and so passes

to the quotient inducing a map: G/Zp
∼= A → T ; as noted above the choice of A means this image

is also bounded. So replacing r by a larger integer if necessary, we may suppose that this image is

zero i.e. pr(mε− n1G) = 0.

We consider firstly the case where ε is monic. Since T is unbounded there is a cyclic summand

〈x〉 of T of order greater than pr; say O(x) = r + s. Thus, prm(ps−1x) 6= 0 and so prn(ps−1x) =

prm(ps−1x)ε 6= 0 as ε is monic. Hence, p - n and n/m is a unit in Zp.

If ε is epic, then note that since T is reduced and unbounded, prT > pr+1T . However, as ε is onto

and p - m, (prT )mε = prT , but on the other hand (prT )mε = prnT and we deduce immediately

that p - n and n/m is a unit in Zp.

Thus, in either case, the endomorphism induced on G/T by ε, is in fact an automorphism. To

prove that ε is an automorphism of G, it is enough, by the Five Lemma, to prove that ε induces an

automorphism of T . Moreover, as multiplication by n/m effects an automorphism of T , n/m(ε ¹ T )

is a monomorphism (respectively an epimorphism) T → T and it is enough to prove it is an

automorphism of T . In other words we may restrict attention to the case n = m = 1.

Then ε : T → T is a monomorphism (respectively an epimorphism) such that pr(ε − 1T ) = 0

for some r ≥ 1. We show that ε is an automorphism of T . (When T is the torsion-completion

of a standard basic group, it is possible to give a fairly direct element-wise proof of this fact.

To the best of our knowledge, this was first done for monomorphisms by A.L.S. Corner in 1962

in an unpublished paper ([U16] in [7]) answering a conjecture of Beaumont and Pierce – see the

conjecture before Example 1, p218 in [2].) This, however, is immediate from Theorem 2.7 above,

7



since we have assumed that T is semi-standard.

Summarizing the above, we have established:

Theorem 3.1 If T is an arbitrary semi-standard unbounded reduced p-group, then there is a mixed

Abelian group G, which is both Hopfian and co-Hopfian, and which satisfies

(i) T is the torsion subgroup of G

(ii) the quotient G/T is isomorphic to a pure subgroup H, of cardinality 2ℵ0 , of the group of p-adic

integers Jp (and, in particular, is reduced).

Our first corollary answers negatively a conjecture of Beaumont and Pierce [2] mentioned above.

Note that in their terminology an I-group is precisely a group which is not co-Hopfian.

Corollary 3.2 For any infinite cardinal λ ≤ 2ℵ0 , there exists a mixed Abelian group G with

torsion subgroup T of cardinality λ, such that G/T is reduced and G is co-Hopfian (and hence not

an I-group) and Hopfian.

Proof Let B be a semi-standard p-group so that the quotient D = B̄/B ∼= ⊕
2ℵ0 Z(p∞). Let T

be the pre-image in B̄ of a subgroup D1 of D such that D1
∼= ⊕

λ Z(p∞). Then T is a semi-

standard separable p-group of cardinality λ. So, by Theorem 3.1, there is a co-Hopfian group G

with t(G) = T and G/T is a reduced subgroup of Jp.

The mixed groups we have constructed, in contrast to Proposition 2.3, can have the property that

they are the extension of a non-co-Hopfian fully invariant subgroup by a non-co-Hopfian group,

and yet are co-Hopfian: simply choose T to be a standard basic group which is clearly not co-

Hopfian and observe that a pure subgroup of Jp with endomorphism ring Zp, is not co-Hopfian

since multiplication by p is a monomorphism which is not an automorphism.

We conclude this brief discussion of Hopfian and co-Hopfian groups by raising a number of problems;

we believe that solutions to these problems would give a great deal of insight into the structure of

such groups. Our first problem comes from the observation that reduced p-groups constructed to

date seem to possess both properties or neither.

Problem 1 Find a reduced p-group which is Hopfian but not co-Hopfian and vice versa.

We have noted above that countable Hopfian (co-Hopfian) p-groups are finite and that there exist

Hopfian and co-Hopfian groups of cardinality 2ℵ0 . Thus we pose:

Problem 2 Assuming the negation of the Continuum Hypothesis, do there exist Hopfian (co-

Hopfian) p-groups of cardinality κ for ℵ0 < κ < 2ℵ0?
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