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Abstract 
Micro-generation technologies such as photovoltaics and micro-wind power are becoming increasing popular 

among homeowners, mainly a result of policy support mechanisms helping to improve cost competiveness as 

compared to traditional fossil fuel generation.  National government strategies to reduce electricity demand 

generated from fossil fuels and to meet European Union 20/20 targets is driving this change.  However, the real 

performance of these technologies in a domestic setting is not often known as high time resolution models for 

domestic electricity load profiles are not readily available.  As a result, projections in terms of reducing 

electricity demand and financial paybacks for these micro-generation technologies are not always realistic. 

 

Domestic electricity load profiles are often highly stochastic, influenced by many different independent variables 

such as environmental, dwelling and occupant characteristics that shape individual customer’s load across a 

single day.  This paper presents a stochastic method for generating electricity load profiles based on the 

application of a Markov chain process.  Electricity consumption was recorded at half hourly intervals over a six 

month period for five individual Irish dwelling types and used to generate synthetic electricity load profiles.  The 

purpose of this paper is to determine whether Markov chain modelling is an effective way of re-generating 

electricity load profiles for domestic dwellings and identify shortcomings with this particular technique.  The 

results show that the magnitude component of the load profile can be reproduced effectively whilst the temporal 

distribution needs to be addressed further.  

 

Keywords: Markov chain, electricity 

 

 

Introduction 

 
Domestic electricity use in most European 

countries accounts for a major proportion of 

overall demand.  In Ireland, 32% of final 

electricity was consumed in the residential sector 

in 2008 (SEAI, 2009).  This is the second largest 

electricity consuming sector in the economy, 

exceeded only by commercial and public services 

sectors.  The EU has set stringent targets for 2020 

based on a 2005 emissions baseline: a reduction 

of 21% in greenhouse gas emissions for the 

emission trading sector across the EU-27 

countries and a 10% reduction for the non-

trading sector across the EU.  The 10% reduction 

across the EU-27 countries for the non-trading 

sector is broken up collectively for the different 

member states.  Ireland has been assigned a 

target of 20% reduction in greenhouse gas 

emissions by 2020. 

 

In order to effectively respond to the EU 20/20 

targets, national governments will need to 

accurately assess the cost and emissions effects 

of any energy policy decisions up to 2020.  In 

Ireland, the National Energy Efficiency Action 

Plan published in 2009 makes recommendations 

to fully investigate the role of micro-generation, 

such as photovoltaics and micro-wind turbines, 

as an alternative to traditional power generation 

(DCENR, 2009).    

 

Support mechanisms for mico-generation exist 

across the EU to encourage the up-take of 

technologies in an attempt to make them more 

cost competitive with conventional generation.  

In Ireland, the level of support for micro-

generation is quite small compared to other 

European countries like Spain and Germany 

where a Renewable Energy Feed in Tariff 

(REFIT) price of 34cent/kWh and 39cent/kWh 

respectively is offered for micro-generation 

installations (EPIA, 2010).  In February 2009, the 
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Minister for Communications and Natural 

Resources offered 19cent/kWh to support micro-

generation but only applies to the first 4000 

installations over the next three years (DCENR, 

2009).   

 

Photovoltaics and micro-wind are highly site-

specific technologies.  Depending upon the 

available resources at a particular site, energy 

yield will vary considerably.  Furthermore, 

depending on site demand characteristics and the 

REFIT price, payback periods and greenhouse 

gas marginal abatement costs will vary.  

Manufactures and retailers usually supply the 

customer with payback periods for their products 

based on local environmental conditions and 

electricity price and support mechanisms.  These 

calculations are usually based on an average load 

profile, usually daily or monthly, for a typical 

dwelling type.  However, the actual load profile 

for a particular dwelling rarely resembles the 

average, with large fluctuations between peaks 

and troughs throughout the course of a day. 

 

Historically, electricity metering at a domestic 

level has been carried out at a low time 

resolution, usually on a monthly or bi-monthly 

basis.   However, with improvements in 

technology, time of use metering is now 

becoming more prevalent, with large energy 

utilities throughout Europe trialling the 

technology.  In this paper the first stage of a 

Markov chain model is presented to generate 

high time resolution load profiles for five 

individual dwelling types in Ireland.  Markov 

chain is a type of Monte Carlo analysis where 

probability distributions determine the likelihood 

of a dwelling consuming a particular load.  It is 

suited to modelling stochastic processes such as 

that relating to the generation of domestic 

electricity load profiles. 

 

 

Methodology 

 
Domestic electricity load profiles are usually 

cyclical with typically a morning and evening 

peak and a small base load over the night time 

period.  The load profile is shaped by switching 

on/off individual electrical appliances which is 

influenced by various environmental, dwelling 

and occupant characteristics.  Although some 

appliances are cyclical, other appliances may 

appear to be switched on and off at random.  

Firth et al. (2008) looked at groups of electrical 

appliances (continuous and standby, cold 

appliances and active appliances) and examined 

periods of the day with which they are likely to 

be switched on. Continuous and standby 

appliances tend to form a base load with the 

switching in and out of cold appliances across a 

24 hour period.  Electricity consumption from 

active appliances such as kettles and electric 

showers are more random and typically have 

high power requirements.  

 

Wood and Newborough (2003) used three 

characteristic groups to explain electricity 

consumption patterns in the home: “predictable”, 

“moderately predictable” and “unpredictable”.  

“Predictable loads” consisted of small cyclic 

loads occurring when a dwelling is unoccupied or 

all the occupants are asleep.   “Moderately 

predictable” related to the habitual behaviour of 

the occupants and “unpredictable” described the 

vast majority of electricity consumption within a 

dwelling.  The “predictable” component could be 

classed as a deterministic process, the 

“unpredictable” component as a stochastic 

process and the “moderately predictable” 

somewhere between the two.  

 

An electricity load profile can therefore be 

described as a combination of deterministic and 

stochastic processes.  For example a cold 

appliance such as a fridge is usually left on 24 

hours a day, would be a deterministic process.  

This could be approximated as a function of 

internal dwelling temperature.  The use of other 

appliances such as kettles are more random and 

difficult to model and may be a function of 

various independent variables relating to a 

dwelling occupant.   This introduces a stochastic 

component to a typical electricity load profile 

and can be difficult to model.   

 

Markov chain modelling is an autoregressive 

process that can be used to generate synthetic 

sequences for modelling stochastic domestic load 

profiles.  This technique has been used in the past 

to model various applications such as rainfall 

(Srikanthan, 1985) and wind speed at particular 

locations (Shamshad et al. 2005).  In particular it 

is suited to modelling systems where the current 

state of a sequence is highly correlated to the 

state immediately preceding it and where a large 

sample size of data exists.   

 

Markov chain modelling is based on the 

construction of a transitional probability matrix 



 3 

where the transition from one discrete state to 

another discrete state is represented in terms of 

its probability.  A first order Markov chain model 

looks at the current state and the one immediately 

preceding it to calculate the probability of going 

to the next state.  A second order Markov chain 

model looks at the two previous states and 

compares with the current state to determine the 

next state.  For a first order Markov chain model, 

the transitional probability matrix, P, can be 

defined with pk,k probabilities for k states as 

follows: 
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The state probabilities are calculated by the 

relative frequencies for each state changing from 

one to the next.  A cumulative probability matrix 

is calculated by summing the number of 

frequencies of a particular state, ni,j, where i and j 

represent different states, and dividing by the 

total number per state: 
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For each group of states (i.e. each row) the 

cumulative probability equals one.  This 

represents the relative probability of changing 

from the current state to every other state 

including the current state.   

 

A first order Markov chain model using a 24x24 

probability matrix was chosen to model 

individual domestic load profiles based on the 

distribution of household loads in Ireland.  Bin 

sizes for sampling were chosen based on standard 

deviation (0.0837) and mean electricity 

consumption (0.5525kW) for a sample of 4,500 

Irish dwellings.  Synthetically generated output 

values were calculated using a uniformly 

distributed random number generator choosing a 

value between each bin width.  

 

The first state of the Markov chain sequence is 

generated by a random number generator with 

values between 0 and 1.  After the initial state is 

chosen the transitional probability matrix is used 

to select every consecutive state after this.  The 

state with the highest probability, which is 

usually the same state, will be selected most 

often but will depend upon the probability 

matrix.  This is reflected in the matrix where the 

largest probabilities are usually located along the 

diagonal. 

 

Five different dwelling types were modelled by 

generating transitional probability matrices for 

detached, semi-detached, bungalow, terraced and 

apartment dwellings.  Six months electricity 

consumption data, metered at half hourly 

intervals between 1
st
 July 2009 and 31

st
 

December 2009 was used to calculate the 

probability matrices.   

 

 

Results and Discussion 
 

A Markov chain approach to modelling domestic 

load profiles was discussed above.  A program 

was coded in Matlab to calculate probability 

transitional matrices and generate synthetic load 

profiles for five individual dwelling types based 

on metered data.  Table 1 compares statistical 

properties between metered and synthetic 

sequences such as mean, standard deviation (std), 

maximum and minimum values over a six month 

period.  For each dwelling type the difference 

between mean and standard deviation for each 

sequence is less than 6%.  However, the synthetic 

sequence continually over-estimated the mean 

and standard deviation for each dwelling over the 

period shown.  This is most likely a result of 

sampling error and could be resolved by further 

increasing the number of bins at the lower end of 

a customer load at the expense of higher values.  

Maximum and minimum values of dwellings 

load are also shown in the Table 1 below. 
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Table 1 – Statistical properties for each dwelling 

type for metered and synthetic profiles (kW) 

 

 

Table 2 shows total kWh for each dwelling type 

for metered and synthetically generated profiles 

over a one year period.  Six months data (July – 

December 2009) was mirrored to extend to a full 

years data.  This can be compared with national 

and international benchmarks such as that 

published by Sustainable Energy Authority of 

Ireland where it is estimated that an ‘average’ 

dwelling in Ireland consumed 5,591kWh in 2006 

(SEAI, 2008).  The error between metered and 

synthetic profiles is shown with terraced dwelling 

showing the largest deviation from the real data. 

  

 

Table 2 – Electricity consumption per dwelling 

type for metered and synthetic profiles (kWh) 

 

Synthetic sequences were generated for each 

dwelling type with similar results.  Due to space 

requirements within this paper only figures for a 

single detached dwelling are shown with results 

in table form for all dwelling types where 

appropriate.  Figure 1 shows metered and 

synthetic sequences over a six month period for a 

detached dwelling. A simple visual inspection of 

the sequences indicates that they both compare 

reasonably well in the time domain and further 

comparative tests are carried out to determine 

whether this is the case.   
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Figure 1 – Detached Dwelling 

Six Month Profile 

 

Figure 2 shows the frequency distribution for 

both sequences.  A three parameter log-normal 

distribution is fitted to the data and location, 

scale and threshold statistical properties are 

shown in Table 3. Marginal differences exist 

between the log normal distribution parameters 

for metered and synthetic generated sequences. 
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Figure 2 – Detached dwelling histogram 

for metered and synthetic profiles over six 

months 

 

 

 

 

 

 

 

 Detached Semi-

detached 

Bungalow Terraced Apartment 

Mean 

(metered) 

0.4901 0.5834 0.7460 0.6510 0.1397 

Mean 

(synthetic) 

0.5073 0.5917 0.7661 0.6583 0.1436 

STD 

(metered) 

0.5969 0.7265 0.7578 0.7023 0.1976 

STD 

(synthetic) 

0.6300 0.7477 0.7930 0.7198 0.2021 

Max 

(metered) 

5.9820 5.4400 6.6060 5.5980 3.6980 

Max 

(synthetic) 

5.7638 5.3840 7.3146 6.4895 3.4000 

Min 

(metered) 

0.0800 0 0 0 0 

Min 

(synthetic) 

0.0503 0.0002 0.0110 0.0504 0.0001 

 Detached Semi-

detached 

Bungalow Terraced Apartment 

Metered  4305 5125 6553 5718 1227 

Synthetic  4456 5170 6922 6094 1261 

Error 3.4% 0.9% 5.3% 6.2% 2.7% 
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Table 3 – Three parameter lognormal for metered 

and synthetic distribution over 6 month period 

 

Figures 3 and 4 show autocorrelation functions 

for the same detached dwelling for metered and 

synthetic profiles over a weekly period.  A period 

of one week is shown with lag of half hourly 

intervals.  There is a clear cyclical pattern to the 

metered data over a 24 hour period showing the 

high correlation between electricity consumed at 

the same time interval each day.  For the 

synthetic sequence the autocorrelation function 

decays to zero almost instantly indicating that the 

same daily cyclical pattern is not present in the 

synthetic sequence.  

 

 
Figure 3 – Autocorrelation function for metered 

profile of a detached dwelling 

 

 
Figure 4 – Autocorrelation function for synthetic 

profile of a detached dwelling 

 

Spectral density functions are also shown for 

metered and synthetic sequences in Figures 5 and 

6 with frequency period in hours.  The metered 

profile shows large frequency components 

around twelve and twenty-four hour periods 

which was also reflected in the autocorrelation 

function.  This is in stark contrast to the synthetic 

sequence where multiple frequency components 

are shown which don’t appear to indicate any 

clear pattern. 

 

 
Figure 5 – Spectral periodgram for detached 

dwelling for metered profile over a six month 

period 

 Detached Semi-

detached 

Bungalow Terraced Apartment 

Location 

(metered) 

-1.752 -1.215 -0.7807 -0.8834 -2.316 

Location 

(synthetic) 

-1.523 -1.233 -0.7896 -1.003 -2.203 

Scale 

(metered) 

1.37 1.162 1.024 0.9482 0.7286 

Scale 

(synthetic) 

1.299 1.21 1.073 1.105 0.7696 

Threshold 

(metered) 

0.07889 -0.00027 -0.00097 -0.00442 -0.00121 

Threshold 

(synthetic) 

0.04463 -0.00056 0.009584 0.03553 -0.012 
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Figure 6 – Spectral periodgram for detached 

dwelling for synthetic profile over a six month 

period 

 

Figure 7 shows metered and synthetic sequences 

for the same detached dwelling on the 1
st
 July 

2009.  It is apparent from Figure 7 that the daily 

peaks for each profile do not coincide on a time 

basis.  The synthetic profile predicted a daily 

peak in the early hours of the morning around 

1.30am where as the metered profile showed a 

daily peak at 5.30pm over a daily period.   
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Figure 7 – Detached dwelling daily profile for 

01
st
 July 2009 

 

The Markov chain process shown above was 

unable to model the effect of time of day on 

electricity consumption patterns.  This is an 

obvious flaw to the model where time of day is a 

major determinant for electricity consumption.  

Hence daily peaks did not occur at the same time 

interval.  A time component needs to be included 

as part of the transitional probability matrices. 

 

Figure 8 shows the daily distribution of 

electricity consumption for the detached 

dwelling.  A two parameter log normal 

distribution is fitted to the data showing location 

and scale parameters.  The synthetic profile 

slightly under estimated the load in this particular 

instance with the difference between metered and 

synthetic generated electricity consumption 

10.3kWh compared to 8.2kWh respectively for 

the 1
st
 July 2009. 
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Figure 8 – Detached dwelling daily histogram for 

01
st
 July 2009 

 

When averaged over time, a clear pattern of a 

small peak in the morning with a larger peak in 

the evening and a small baseload over the night 

time period is apparent.  This can be seen in 

Figure 9 where mean and 95% confidence 

intervals are shown over a daily period for six 

months.  The synthetic sequence shown in Figure 

10 did not reproduce this characteristic profile 

shape with an almost flat response across the 

entire day reflecting a mean value for electricity 

consumption across a random day.  It is clear that 

Figures 9 and 10 represent two distinctly 

different profiles for the same detached dwelling 

when compared over the same time intervals. 
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Figure 9 – Mean and 95% Confidence Intervals 

for detached dwelling over a six month period – 

metered profile 
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Figure 10 – Mean and 95% Confidence Intervals 

for detached dwelling over a six month period – 

synthetic profile 

 

 

A large number of independent variables 

influence the magnitude and time component of 

electricity consumption.  However, time is a 

major factor in determining the amount of 

electricity consumed with a dwelling even though 

the profile may appear to be highly stochastic.  In 

its current form the model is unable to 

characterise load profiles for individual dwellings 

as the generated synthetic sequence is 

independent of time.  However, the synthetic 

sequence generates a good approximation of the 

total electricity consumed within dwellings as 

one would expect from an empirical model.   

 

 

Conclusions 

 

A Markov chain model was used to model 

domestic electricity load profiles using a 24x24 

probability matrix.  Five different dwelling types 

were modelled over half hourly intervals and 

results compared to the original data. Certain key 

statistical properties such as mean, standard 

deviation, maximum and minimum values were 

satisfactory transferred between metered and 

synthetically generated load profiles.  The 

temporal properties of the synthetic sequence 

compared poorly with the original data.  The 

autocorrelation function was not reproduced in 

the synthetic profile and there was little 

correlation shown between spectral density plots.  

 

Time of day is a major factor in determining 

electricity consumption.  The Markov chain 

process was unable to successfully model the 

time component.  The results showed 

uncharacteristic peak loads occurring at times of 

the day and night uncommon to typical domestic 

load profiles.   
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