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An LPC pole processing method for
enhancing the identification of dominant
spectral features

Jin Xu, Mark Davis and Ruairí de Fréin

This paper proposes a new time-resolved spectral analysis method based
on a modification to the Linear Predictive Coding (LPC) method for
enhancing the identification of the dominant frequencies of a signal. The
method described here is based on a z-plane analysis of the LPC poles.
These poles are used to produce a series of reduced order filter transfer
functions which can accurately identify and estimate the frequency of the
dominant spectral features. The standard LPC method has been shown to
suffer from a sensitivity to noise and its performance is dependent on the
filter order. The proposed method can accurately identify the dominant
frequency components over a range of filter orders and is shown to be
robust in the presence of noise. Compared with traditional time-resolved
methods, it is a parameterized method where the identification of the
dominant frequency changes can be directly obtained in the form of
frequency measurements. In a series of 10,000 Monte Carlo experiments
on single component and multiple component signals, this LPC Pole
Processing (LPC-PP) method outperforms the standard LPC method by
accurately identifying the dominant frequency components in the signals.

Introduction: Time-resolved spectral methods enable us to study the time-
frequency characteristics of signals which exhibit transient oscillatory
behavior. Many spectral analysis methods, such as the short-time Fourier
transform and the continuous wavelet transform [1], are waveform methods
which identify the dominant frequencies by estimating the complete
spectrum at discrete time intervals. These waveform methods are excellent
at demonstrating whether a certain frequency component exits or not
by showing how the energy of the signal is distributed across the time-
frequency domain. LPC is a parameterized spectral analysis method which
can directly estimate the dominant frequencies in a signal. To date,
researchers have used the LPC poles to estimate the frequencies of the
spectral peaks [2, 3, 4]. However, not all of the LPC poles correspond
to the dominant frequencies in the signal. Furthermore, the standard LPC
method suffers from a sensitivity to the filter order used and exhibits a poor
tolerance of high noise environments [2, 3]. Specifically, a LPC model
with too low a filter order tends to provide a poor spectral separation of
frequencies in the frequency domain, while a model with too high an order
causes a deterioration in the noise immunity of the spectral estimator by
producing a profusion of candidate spectral peaks. Here we propose a LPC-
PP method which is based upon a modification to the LPC method which
overcomes these short-comings of the LPC method.

The LPC-PP method implements a further processing of the LPC poles
estimated by LPC to generate a series of reduced order filter transform
functions which can more easily identify and estimate the dominant
frequencies of a signal. In a series of Monte Carlo experiments, a pseudo-
randomly varying frequency signal is used to analyse the performance
of the method where the standard LPC method is used as a comparison
method.

The experimental results show that the LPC-PP can significantly
improve the identification of the dominant frequencies of signals where
the specific advantages are as follows: (1) The LPC-PP method can
significantly reduce the number of invalid frequency estimates and increase
the percentage of the valid frequency estimates; (2) The performance of
the LPC-PP method is less sensitive to the filter order; (3) The LPC-PP
method has a more robust performance in high noise environments; (4) The
LPC-PP method can give more accurate estimates than the LPC method.
In summary, the LPC-PP method provides a new parametrisation spectral
analysis method for identifying the dominant frequency components in a
signal.

LPC Method: LPC estimates the parameters that characterize a linear
time-varying system [3, 5]. It is based on the assumption that the current
signal sample s(n) can be closely approximated as a linear combination of
past P samples as follows:

ŝ(n) =

P∑
i=1

ais(n− i), (1)

where the predictor coefficient ai is determined by minimizing the sum
of the squared differences between the actual signal samples s(n) and
the linearly predicted ones ŝ(n), and P is the LPC filter order. In the z-
transform domain, a P th order linear predictor is a system of the form

Q(z) =

P∑
i=1

aiz
−i =

Ŝ(z)

S(z)
, (2)

where Ŝ(z) is the output of the filter. The z-transform of the prediction
error is written as

E(z) = S(z)−
P∑

i=1

aiS(z)z
−i. (3)

The prediction error is the output of a system with the transfer function

A(z) =
E(z)

S(z)
= 1−Q(z) = 1−

P∑
i=1

aiz
−i, (4)

where A(z) is an inverse filter of the LPC synthesis filter H(z) and is given
by H(z) = 1/A(z). Thus, we get

H(z) =
1

1−
∑P

i=1 aiz
−i

. (5)

The fundamental theorem of algebra tells us that A(z) has P roots which
are the values of z for which H(z) =∞. The roots of A(z) are called the
poles of H(z). The poles of H(z) are expressed as

zi = γie
jωi , (6)

where ωi = tan−1(Im(zi)/Re(zi)) is the angle associated with the ith

pole. The magnitude of a pole is mi = |zi| and the corresponding pole
frequency is

pi =
ωi

2πTs
, (7)

where Ts is the sample period. The roots occur as complex conjugate pole
pairs which are mirrored in the real axis of the z-plane. The number of
poles generated equals P . Here, we consider those poles with non-negative
imaginary parts Im(zi)≥ 0 as the estimation results of the LPC method.

Pole Processing Method: The LPC poles of the filter transfer function
H(z) are first categorised into dominant poles and non-dominant poles.
The method for identifying the dominant and non-dominant poles is shown
in Fig. 1. The parameter γ is a threshold value which has a range from

Fig. 1. Flow chart of the method used to identify the dominant peaks.

0 to 1.0, the details for choosing γ will be discussed later. The LPC
poles closest to the dominant peaks are marked as the dominant poles
{d1, d2, · · · , dM}, while the other poles are marked as non-dominant
poles {d̄1, d̄2, · · · , d̄W } where M and W are the number of dominant
poles and non-dominant poles respectively. Fig. 2 (a) shows the two
dominant peaks that were found and Fig. 2 (b) shows the classification of
the dominant poles and non-dominant poles. The input signal in Fig. 2 is
composed of two sinusoidal signals with frequencies f1 = 12 Hz, f2 = 31

Hz, the sampling frequency is Fs= 100 Hz, the window size is N = 100
samples and the signal is corrupted with Additive White Gaussian Noise
(AWGN) where the SNR=3 dB. The filter order is P = 30 and γ=0.5.

The second step is to use the local pole(s) in conjunction with the
dominant pole to determine the final position of the spectral peak. The
local poles are selected from the non-dominant poles and they depend on
the distance (frequency separation) ∆f between the non-dominant poles
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Fig. 2. Identifying dominant poles and non-dominant poles.

and the dominant pole. A distance threshold value α is defined to identify
the local poles. If the distance ∆f < α, we consider them to be the local
poles {d̂i1, d̂i2, · · · , d̂iL} of the ith dominant pole di and L is the number
of local poles. When the sampling frequency and the filter order are the
same, the larger the value of α, the more local poles will be selected. In
Fig. 3, we chose α= 10 Hz where the red lines represent the frequency
range 2α around each dominant pole where we can identify the local poles
associated with this dominant pole.
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Fig. 3 Dominant poles and local poles on the z-plane. The red circles represent
the dominant poles and the blue circles represent the local poles of each
dominant pole within a range of α= 10 Hz.

In the last step, the dominant poles and their corresponding local
pole(s) are used to form a series of reduced order filter transfer functions
{H̃1(d), H̃2(d), ..., H̃M (d)} and each H̃i(d) is given by

H̃i(d) =
1

(1− d−1
i )

×
L∏

j=1

1

(1− d̂−1
ij )

, (8)

where the di is the ith dominant pole, the dij are the associated local
pole(s). As the new filter transfer function H̃i(d) has a lower order, it has
fewer local maxima which makes it easier to find the peaks. The maximum
peak p̂i of the H̃i(d) is one estimate of the dominant frequency, estimated
by the LPC-PP method. The results of this process are shown in Fig. 4. The
classification process of the LPC poles is shown in Fig. 5.

Fig. 4 Local Spectrum. The spectral responses of each of the individual
(reduced order) transfer functions H̃(d) and the estimated spectral peaks are
p̂1 = 12 Hz, p̂2 = 31 Hz.

Experimental Design: The simulation experiment uses sinusoidal signals
whose frequencies are uniformly distributed in the range 0 to Fs/2.
The signals are corrupted by the AWGN noise and they are evaluated
using 10,000 Monte Carlo trials. In correctly identifying and estimating
the frequency components of these simulation signals, there are three
questions that need to be considered: (1) How many dominant components
in the signal are identified? (2) How many of the frequency estimates
of dominant components are valid? (3) How accurate are the frequency
estimates of the dominant components? To answer these questions, three
performance metrics are proposed. Before defining the three metrics,
we first need a threshold value β to determine whether the frequency
component of the signal has been correctly identified and whether the
estimate generated by the method is valid. The frequency error between

Fig. 5. Classification produce for LPC-PP poles.

the true frequency and the estimated frequency is expressed as ∆e.
When ∆e < β, the frequency of the signal component is considered to be
identified and the estimate is valid. The performance metrics are defined as
follows: The Identification Frequency Percentage (IFP) is used to indicate
the proportion of the identified dominant components. It is defined as

IFP =
total number of identified frequencies
total number of all signal frequencies

× 100(%). (9)

The Valid Estimate Percentage (VEP) is used to measure the proportion of
valid estimates. It is defined as

V EP =
the number of valid estimates
the number of all estimates

× 100(%). (10)

The Relative Deviation Percentage (RDP) measures the relative error
between an identified frequency and its corresponding valid estimate. It is
defined as RDPi =∆ei/fi, where fi is the signal frequency. The Average
Deviation Percentage (ADP) is defined as the average of the RDP values
which is defined as

ADP =

∑C
i=1 RDPi

C
× 100(%), (11)

where C is the number of the identified signal frequency.

Numerical Evaluation: The first experiment demonstrates a simple
scenario of a single frequency component signal in a high noise
environment where the SNR=3 dB. The sampling frequency Fs= 100 Hz
and the window size is N =20 samples. The parameters of the LPC-PP
method are γ = 0.3 and α= 10 Hz. The value of the threshold parameter
β = 2.5 Hz. Fig. 6 shows the results of the three metrics. For the different

Fig. 6 The simulation results for a single component test signal for 10,000
Monte Carlo trials.

filter orders considered, the IFP values of the LPC-PP method and the
LPC method are all above 85%. Consequently both methods can identify
the dominant frequency component in most of the experiments. The
VEP values of the LPC-PP method are greater than 87% and are much
greater than the VEP values of the LPC method for different filter orders.
Specifically, when the filter order P = 15, the LPC method can identify
99.52% of the signal frequencies, but the VEP value of the LPC method
is only 23.66%. This is because the LPC method achieves high IFP values
while also producing many invalid estimates. For the same filter order, the
ADP value of the LPC-PP method is less than that of the LPC method,
so the LPC-PP method is more accurate than the LPC method in this
experiment.

The second simulation experiment is an analysis of the performance
using a multiple components signal where the signal comprises three
frequencies which are produced from a random uniform distribution in the
range of 0 to 50 Hz. The threshold value of the LPC-PP method is γ = 0.85.
The other parameters are the same as for the last experiment. The results
for the three metrics are shown in Fig. 7. For the same filter order, the IFP
value of the LPC-PP is slightly lower than that of the LPC, but the VEP

2



value of LPC-PP is still much higher than for LPC. When the filter order
is 10 and 15, the VEP value of the LPC-PP method is 27% greater than the
VEP value of the LPC. This feature of the LPC-PP method is particularly
attractive for scenarios where the number of frequency components in the
signal is unknown. Similarly, the ADP values of the LPC-PP method are
less than that of the LPC method. The LPC-PP method produces more
accurate frequency estimates.

Fig. 7 The simulation results for a multiple component test signal for 10,000
Monte Carlo trials.

Although the IFP value of the LPC-PP method is slightly lower than
that of the LPC method in the above experiments, the LPC-PP method
improves the VEP value and reduces the number of invalid estimates. For
different filter orders, LPC-PP is less sensitive to the filter order than LPC
and it has a more robust performance. For the two experiments above, we
also analysed the number of experiments which had all-valid estimates in
the Monte Carlo experiments, i.e. where all the signal frequencies were
identified without additional estimates generated, in the Table 1. In the
single component signal analysis, the number of experiments with all-valid
estimates for the LPC-PP method was much greater than that of LPC for
the same filter order. This result shows LPC is adversely affected by the
filter order. When the filter order is increased, the LPC method will produce
invalid estimates. This is the reason why the LPC method produces no
experiment results with all-valid estimates when the filter order is 10 and
15. In the multiple component signal analysis, when the filter order is P =
5, the number of experiments with all-valid estimates for both methods
is low. This is because the filter order is too small to produce sufficient
numbers of poles to estimate the three frequency components. It is worth
noting that the LPC has more experiments with all-valid estimates when
the filter order is 10 than when the filter order is 5 or 15. This is because the
LPC method is sensitive to the filter order. When LPC has an appropriate
filter order, it exhibits a better performance. But its performance is still
worse than the LPC-PP method.

Table 1: The number of experiments with all-valid estimates.
Signal Type Single-component Signal Multi-components Signal
Filter Order LPC-PP LPC LPC-PP LPC

P=5 8572 670 36 43
P=10 9530 0 4671 330
P=15 9509 0 4178 9

The selection of the threshold γ value in the LPC-PP is analysed in the
Fig. 8. The IFP value increases with an increase in γ. Conversely, the VEP
value decreases when γ decreases. There is a trade-off between the IFP
and the VEP in the LPC-PP method. The γ value is used to achieve an
acceptable trade-off between the two metrics. The ADP value shows little
change when γ increases. When the filter order is 10 and 15, the number
of experiments with all-valid estimates has a maximum at the intersection
of the IFP and VEP curves. The γ value corresponding to the intersection
point of the IFP and VEP curves is optimal for LPC-PP in order to produce
the maximum number of experiments with all-valid estimates. The IFP and
VEP curves do not intersect in Fig. 8(a), the reason is that the filter order
is too low (P=5) to produce sufficient poles to estimate the components.
Therefore, the greater the intensity of the noise and the filter order, the
smaller the value of γ required to filter out the peaks caused by the noise
and the redundant poles. Similarly, when the number of frequencies that is
needed to be identified increases, the value of γ needs to increase in order
to find more dominant peaks. Accordingly, the γ value used is different for
the single component signal analysis and the multiple component signal
case.

Fig. 8 Performance analysis of LPC-PP method under different threshold
values γ. The x-axis is the threshold γ from 0.05 to 0.95. The left y-axis is
for IFP, VEP and ADP. The right y-axis represents the number of experiments
with all-valid estimates.

Conclusion: This paper has proposed a modification to the standard
LPC method that overcomes a number of its short-comings, specifically
its sensitivity to the filter order and its poor performance in noisy
environments. The LPC-PP method is based upon a further processing
of the poles generated by LPC method in order to produce a series of
reduced order filter transfer functions that enhances the identification of
the dominant spectral features. The majority of the frequency estimates
of the LPC-PP method are valid and are more accurate than the estimates
of the LPC method. This is particularly useful for applications where it
is required to identify the dominant frequencies of an unknown signal.
The LPC-PP method can identify the dominant frequencies without
being adversely affected by the filter order and has a high tolerance of
noise on the signal. Furthermore, the LPC-PP method is a parameterized
method that can identify the dominant frequencies and produce numerical
frequency estimates. As the LPC-PP method requires further processing
of the LPC poles, it has a slightly higher computational cost compared to
the standard LPC method. The extra computational complexity of LPC-PP
is O(P ×N logN). We believe that the additional computational effort is
worthwhile compared to the significant improvement in the accuracy of the
frequency estimates.
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