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A plucked string in its steady state of vibration contains overtones which, in
simple textbook terms, are harmonics or integral muiltiples of the fundamental
vibrating frequency. In practice, the frequency of overtones can differ
significantly from these values due to factors® such as the significant stiffness of
real strings, the clamping effect of the string hole on string ends and the fact
that the string anchor point on the soundboard is itself vibrating. Amplitude of
vibration varies from one overtone to another. While there is a general
tendency for amplitudes to decline with increasing harmonic number®, this
tendency may be counteracted by factors such as plucking posi’cion5 along the
length of the string and the variation with frequency of coupling conditions

between string and soundboard at the string point.

The uneven frequency response of the instrument body produces different
amplifications at each frequency. This uneven frequency response of the body
operating on the input spectrum of the string helps to give a unique tone to

each instrument.

In addition to the steady state frequencies of the vibrating string, there are other
frequencies input to the body. The initial pluck is an impulsive excitation
containing essentially a continuous spectrum. It therefore can set in motion a
wide range of the vibrational resonances (modes) of the body. Although these
die out over a ‘short time, leaving only the steady state string spectrum
resonantly amplified in a characteristic way, they make a vital contribution to the

unique temporal quality of the musical note from a particular instrument.

The manner in which the note dies away also affects its perceived tonal quality.
In the case of the harp, according to Richardsone, the variation in the tension of
the string, while vibrating, inputs a driving force perpendicular to the board
which can regenerate decayed harmonics and overall, give rise to non-linear

decays.



1.2 Admittance

The driving point or input admittance is the velocity of the point on the body or
soundboard driven per unit driving force, under conditions of steady state
alternating driving force. For a given instrument the admittance varies with the

frequency as shown in figure 1.1 and with the position of the driving point.

The amplitude of the a.c. force input to the body from a plucked string varies
with frequency, while the admittance is a measure of the response of the driven
point when the same force amplitude is input at all frequencies. The
admittance enables one to assess the relative resonant amplification at all
frequencies in the testing range.  The plot of driving point admittance versus
frequency, the so-called "admittance plot" is therefore the fingerprint’ of the
instrument. As shown in figures 1.1 it has a different shape for each
instrument. The shape or profile is characteristic of that instrument and is
linked to the tonal quality or timbre of the notes from that instrument.
Differences between the admittance plots of versions of the same basic
instrument can indicate considerable differences in tonal quality between these
instruments. It will be seen from the results of this work, that although different
versions of the harp have similar admittance plots, they do display important

differences.

1.3 Construction of Musical Instruments

The frequencies at which resonances occur, the strength of the response at
each resonant frequency and the sharpness or Q factor of each resonance are
related to the mechanical parameters of the instrument body. These
parameters include the elasticities of its component materials, their densities
and the geometric shape of the body. In addition, where there is an air cavity,
its volume, dimensions, hole areas and lip thicknesses also play a role.
Another important factor is the coupling between different resonant modes and

this will be discussed in chapter 5.

In principle, therefore, it should be possible to construct a musical instrument of

good tonal quality by first determining and optimising the physical parameters of
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the body and of the strings. This has been done with a degree of success for
instruments of the violin family by Carleen Hutchins, the pioneer of musical
instrument acoustics who is also a luthier>. A Stradivarius has not been
replicated but it is claimed that instruments of very good tonal quality have been

produced.

However, in general, it can be said that variations in the physical properties of
wood (the most common instrument body material), even in adjacent pieces
from the same tree, together with the intricacies of mode coupling, make the
task of reproducibly constructing a wooden musical instrument based on

quantitative physical parameters a very complex one.

A further problem is exemplified by the very weak response of the body of the
harp to excitation over a frequency range which includes the fundamental
frequencies of its bass strings. This can be seen from the admittance plots
contained in chapter 5 of this work. Nevertheless, on plucking a bass string the
pitch corresponding to its fundamental frequency of vibration is clearly heard by
the ear. The explanation lies in the fact that the ear hears the pitch which
corresponds to the repeat time of the sound wave incident on it. Several
overtones of the bass string lie in a frequency range in which there is a strong
response from the body of the instrument. Superposition of the sound waves
corresponding to these overtones gives rise to a wave whose repeat time is that
of the fundamental frequency of the string. For example, a tone made up of
frequency components 500 Hz, 600 Hz and 700 Hz repeats at a time interval of
0.01 s which corresponds to a frequency of 100 Hz. Consequently the pitch
perceived is that corresponding to 100 Hz. It is therefore clear that a
knowledge of the manner in which the ear perceives pitch is also necessary for

the scientific construction of musical instruments

According to Richardson®, the best instruments are constructed by individual
makers or by small groups of skilled craftsmen, who work to traditional designs
and employ mainly hand-tool techniques. "The most elusive aspect of the
maker's art is his ability to produce instruments with consistent or

predetermined tone qualities.... At present, all but the very best of makers
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perform this task with a very high degree of uncertainty. Makers are not
secretive about their methods but find that their knowledge is difficult to share
because their skills are intuitive and acquired over long periods while
apprenticed to a master luthier." These observations by Richardson are
supported by Aine Ni Dhuill'®, harpist, and by Colm O Meachair, harp-maker,
Dublin™".

Nevertheless, a Japanese company is mass-producing lIrish folk harps and
marketing them on a world scale, including in Ireland. According to Grainne
Yeats, eminent Irish Folk Harpist and recording artiste, the mass-produced

harps are adequate for students learning to perform'.

It is becoming clear that if the Irish harp-maker is to survive economically,
traditional skills must be complemented by the methods of science and

technology.

it is hoped that this work will form a small contribution to the process of making

scientific methods available to Irish harp-makers.
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Chapter 2

STRUCTURE AND OPERATION OF HARPS

2.1 The O Meachair Cedar and Mahogany Harp

This O Meachair cedar and mahogany harp has 34 strings, two short of five
octaves. The shorter strings at the upper (treble) end produce the higher pitch
notes. The lowest pitch string is a C and the highest is an A. Each octave
contains 7 notes. It is usual in the harp to count octaves from the treble end
downwards, each octave beginning with an E string and ending with the F
string below. Calthorpe' classifies the topmost three strings (F, G, A) as being
above the first octave, while Firth? classifies the same strings as first octave.
As the harp in the experiments reported in this thesis was tuned with an
electronic tuner working to an even-tempered scale with the A above middle C
set at 440 Hz, and in order to avoid confusion, the strings in these experiments

were classified as in table 2.1.

The treble strings are of nylon and the bass strings are of wire wound on silk.
The transition from one string material to the other takes place between E4 and
F4. The strings make an angle of 40° to the soundboard at F1 and of 37° to the
soundboard at F5. A very gradual variation in the angle takes place between
these string points. Firth® quotes a string angle of 32° for the Clarsach

examined by him.

Cross-blades on the curve or string-arm, when turned upwards, increase the

pitch of each string by one semitone.

The soundboard is of quarter-sawn cedar, believed to be of the Western Red
variety. The pieces are edge-jointed so that the grain runs across the board
perpendicular to the string plane. The thickness of the soundboard tapers from
4.5 mm at the base end to'1.5 mm at the treble end. The spruce soundboard

on the Clarsach examined by Firth? tapered in thickness from 8 mm to 2 mm.
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String Name  Frequency as Tuned

(Hz)
A1 1760.0
G1 1568.0
F1 1396.0
E1 1318.4
D1 1174.8
C1 1046.6
B2 987.8
A2 880.0
G2 784.0
F2 698.4
E2 659.2
D2 587.4
c2 523.3
B3 483.9
A3 440.0
G3 392.0
F3 349.2
E3 329.6
D3 2937
C3 261.6
B4 247.0
A4 220.0
G4 196.0
F4 174.6
E4 164.8
D4 146.9
C4 130.8
B5 123.5
Ab 110.0
G5 98.0
F5 87.3
Eb5 82.4
D5 73.5
Cb 65.4

Table 2.1 Stringing on Irish Folk Harp
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Its extreme width at the base end was 6.0 cm less than that of the O Meachair

Cedar and Mahogany Harp.

All other wooden parts are of mahogany, including strain bar, cover bar,

soundbox, column and string arm. The salient dimensions are set out in figures

2.1(a), (b), (c) and (d).

2.2 The O Meachair Spruce and Maple Harp

In the O Meachair Spruce and Maple Harp the stringing is identical to that of
the O Meachair Cedar and Mahogany Harp. The only change in soundboard
measurement is that the spruce soundboard tapers from 4 mm in thickness at
the bass end to 1 mm in thickness at the treble end. The maximum height of
the spruce and maple harp is slightly greater at 130.5 cm than that of the

former one.

While the overall shapes of the soundbox and air-holes are the same in the two
harps, the dimensions show small but significant differences. The relevant

dimensions of the spruce and maple harp are set out in figures 2.2(a), (b) and

(c).
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Figure 2.1(a) Dimensions of O Meachair Cedar and Mahogany Harp.
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Figure 2.1(b) Dimensions of O Meachair Cedar and Mahogany Harp.
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Figure 2.1(c) Dimensions of O Meachair Cedar and Mahogany Harp.
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Figure 2.1(d) Dimensions of O Meachair Cedar and Mahogany Harp.
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Figure 2.2(a) Dimensions of O Meachair Spruce and Maple Harp.
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Figure 2.2(b) Holes in Back Plate of O Meachair Spruce and Maple Harp.
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Figure 2.2(c) Dimensions of O Meachair Spruce and Maple Harp.
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CHAPTER 3

THEORETICAL BACKGROUND AND EXPERIMENTAL
PROCEDURES.

3.1 Introduction

In this investigation, the completely strung harp was tested first using the input
admittance method. Then the same method was used to test a held and barred
soundboard isolated from a harp instrument body. Finally, the held and barred
soundboard was investigated by the Chladni powder pattern method. The
object of the experiments on the held and barred soundboard was to assist in
the analysis of the vibrations of the fully strung instrument and to gather data

that may later be useful in the scientifically based construction of Irish folk

harps.

In this chapter the theoretical background to the methods used is set out and

an account is given of the experimental procedures employed.

3.2 Theory of Flexural Vibrations of a Plate

Though wood is not an isotropic material, it is useful to consider first the flexural
vibrations of an isotropic plate. Because the slight lateral expansion that
accompanies a compression is constrained in the plane of a flat plate, the

speed of longitudinal (compressional) waves, C,. is slightly greater than in a

bar', thus

I E
C = \ m (3.1)

where E is Young's modulus of elasticity, p is density, o is Poisson's ratio.
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The equation of motion for flexural waves of small amplitude in an infinite plate

is given by
V4 +G1—§IE%)-§% =0 (3.2)
or
Vi + 12pé1h2 <) SZ f; = (3-3)

where h is plate thickness and ¢ is the displacement of the plate perpendicular

to the static plane of the plate.

For harmonic solutions,

o = d(x y)elot (3.4)

where ¢ is complex and o = 2zf, where f is the frequency.

By substitution,
12p(1-6* o ?
V‘@—(M}D =0 (3.5)
Eh?
VD -K*d=0 (3.8)

where k2 = w\r/]ﬁ (1/ pﬂécz)] = (Dh“g? (3.7)

Such flexural waves are dispersive, that is, their phase speed v varies with

frequency, thus

V=1 =4187hC, (3.8)
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The solution of the differential equation for ®(x, y) is generally achieved by
separation of variables. Initial conditions and boundary conditions must then be

taken into account in each particular case to get an exact solution.

In all cases, the set of solutions involves discrete frequencies. These are the

resonant frequencies or modes of the plate.

For an isotropic rectangular plate with simply supported (hinged) edges,

Rossing' gives the solution as

®(x,y)= Asin(mnx/L,)sin (n ny/Ly) (3.9)

where Lx and Ly are the length and width, respectively, and m and n are

integers each beginning with zero.

The resonant frequencies are given by

f(m,n) = 0453C hr(mjz nf, 2mn]
m,n)= 0. L L'—x +H, +LxLyJ (3.10)

The manner in which the soundboard is affixed to the soundbox of the harp
approximates to the clamped edge situation. In some experiments in this
project, a separate soundboard, isolated from the harp soundbox, was clamped

all around the edges.

Due to the extra stiffness created by the clamping at the edges, the resonant
frequencies are expected to be somewhat higher in the clamped case than in
the unclamped or hinged case®. This difference between resonant frequencies
for the clamped case and hinged case is greatest for the low frequency modes

and generally declines progressively as resonant frequencies increase.
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Rossing’ presents the nodal patterns for a square isotropic plate which is
clamped all around the edges. These are shown in figure 3.1. He also
presents the relative frequencies for the four lowest frequency modes of a

clamped rectangular isotropic plate for different ratios L/ Ly. These are shown

in table 3.1.

When a plate bends concavely downwards in one direction, the upper layers
stretch and the lower layers contract in that direction, as in a bending beam.
This causes a contraction in the perpendicular direction in the upper layers and
an expansion in the perpendicular direction in the lower layers, an effect known
as the Poisson Effect. If the frequencies of different modes are close together
or identical, the above process can cause significant Poisson coupling between
them’. In the square isotropic plate, the coincidence in frequency of the (1,3)
and (3,1) modes and the Poisson coupling between them causes the plate to
resonate at two separate frequencies, that of the cross-mode being lower than
that of the ring-mode. This is due to a different phase relationship in the
coupling. So, in the (3,1) - (1,3 case, the separate vibrations aid each other but
in the ring-mode they oppose each other. This adds a little stifiness to the ring-

mode, thereby raising its frequency.

Rossing1 points out that in a quarter-sawn rectangular spruce plate, in which
Young’s modulus is 16 times greater along the grain than across the grain, the
coincidence of frequency that leads to the appearance of the cross mode and
the ring mode occurs if the length of the plate is twice its breadth. In the harp
soundboard, however, the quarter-sawn spruce or cedar pieces are edge-
jointed so that the grain runs across the board. This means that there is no
length to breadth ratio in this case for which modes such as (3,1) and (1,3)
would coincide in frequency. Mode splitting associated with this type of
coincidence of frequency is therefore not to be expected in the harp

soundboard.
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(1,1) (2,1) (1,2) (2,2)

1.00 2.04 2.04 3.01
(351)_(1 93) (331)+(1s3) (392) (2:3)
3.00 3.07 4.58 4.58

Figure 3.1 Nodal patterns for the first eight modes of a square plate with
clamped edges. Relative frequencies are given below the

patterns.(after Rossing)'

Mode LylLy =1 15 2 2.5 3 ®
1.1 1.00 075 | 068 | 066 | 064 | 062
(1,2) 2.04 188 | 182 | 179 | 178 | 1.72
2.1) 2.04 116 | 0.88 - - -

2.2) 3.01 227 | 202 | 191 | 186 | 1.72

Table 3.1 Relative Vibrational Frequencies of Rectangular Plates with

Clamped Edges (after Rossing)’
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3.3 Wooden Plates

Wood is an orthotropic substance. Its Young's modulus has three different

values, E_(along the grain), Ey (across the grain and perpendicular to the tree

rings) and E, (along the tree rings).

Caldersmith® takes twisting elasticity, as well as bending elasticity, into account
in finding an expression for the resonant frequencies of the hinged wooden
plate. Account is also taken of the significantly differing values of Poisson's
ratio along the two axes of the wooden plate. The resonant frequencies may

then be written

i [b,m* Dyn? m?n? |
2D, o
zg6p 1L 15 20wz

2(m,n) = (3.11)

where D =E /(1-00),D =E /(1-00) andD,, is the twisting modulus,
X X Xy y y Xy

given by Dy, =Dy +2G, where G is the shear modulus.

As pointed out earlier, the resonant frequencies expected for a clamped plate
are higher than those for a hinged plate with the differences getting

progressively less as one moves to higher modes.

The harp soundboard is not rectangular but trapezoidal in shape. In relation to
the narrower end of the board the equivalent rectangular plate would have

Lx / Ly ~ 9 and in relation to the wider end of the board Lx / 'y ~ 2.5 for the

equivalent rectangular plate.

Furthermore, a piece of wood as well as having three orthogonal values of
Young's modulus, has three values of shear modulus and six values of
Poisson's ratio. According to Mclntyre4 there are also nine separate internal

damping coefficients. If a theoretical vibrational analysis of a harp soundboard
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is to be carried out, all these factors, in addition to the effects of the edge-
jointing, of the trapezoidal shape of the board and of the tapered thickness,
must be taken into account. The data accumulated here should be of some

assistance in such a process.

Further complications are added when the cover and strain bars made of

another stiffer wood are firmly glued to the central axis of the board.

3.4 Mechanical Resonance

When the board is impulsively excited by plucking a string attached to it, the
board will vibrate with all its resonant frequencies simultaneously. The
resonant modes will die out over time, but generally at different rates depending
on the degree of damping associated with each mode. It should be possible to
find these modes through a Fourier analysis of the onset transient response of

the board to the plucked string.

Except at high frequencies where the resonant frequencies effectively merge
into a continuum, if a sinusoidal force is applied at the same frequency as that
of a resonant mode, that resonance will occur, giving rise to large amplitude
vibrations of the board. If the point of application of the driving force is near a
node for the resonant mode concerned, the vibrations will be much smaller than
if the point of application were in an anti-nodal region. If other resonances,
either of the board itself or of structures to which the board is attached, are
coupled to the particular mode concerned, such resonant modes will also be set

in motion.

Such a resonance can be treated broadly by analogy with a single degree of
freedom under-damped spring-mass system driven sinusoidally. Hussey® gives

the following treatment of the topic.
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The equation of motion is
F(t)— bx—kx = mX (3.12)

where F(t) is the applied sinusoidal force, b is the damping coefficient, m is the
mass attached to the spring, k is the stiffness of the spring and x is the

displacement of the mass.

Dividing each term by m, one obtains

X+ 20X + 02X = g(t) (3.13)
F(®) _ b 5
where g(t =" the so-called coefficient of decay a = m and ®©g = m

()
where f, =_é_g is the undamped resonant frequency of the system.
T

F
If F(t) = Fo cos ot, then g(t) = G, cos ot and G, = ﬁo'

The solution to the differential equation can be written for the steady state, in

the case of under-damping, as
x=Acos(ot-y) (3.14)

A and y can be found by substitution in equation (3.13), thus

)

(
A= L 1 JGO (3.15)
\} (@3- 0)2)2 +Qaw)
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and

y= tan‘{— 20 j (3.16)
o — »? '

. . . . ®
The amplitude A is a function of the applied frequency f = o and becomes a

maximum (and resonance occurs) when ® = ng — 202

When damping is very slight o ~ o, Then the maximum value of the

displacement amplitude A may be written in a number of ways.

Go

Amax =
20c\f o2 — o

— GO
2q081- o

— GO
202./4Q2 — 1

(3.17)

b o b
where the damping ratio q=b— — = 2«/k_rﬁ’ b, being the damping
Cc

coefficient at critical damping.

The quality factor Q = -2—q =5 =54

A high value of Q is indicative of a system with low coefficient of decay o and
low damping ratioc q. In such a system the value of A, is high and the
resonance is said to be high. Also due to the low decay coefficient, the

resonance amplitude declines slowly when the driving force is removed.
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3.5 Impedance

The mechanical impedance Z of the damped mass/spring system is defined as

the ratio of the driving force to the resulting velocity of the mass.
F(t
Z= -% (3.18)

and it has units of kg/s.

For a thorough analysis of impedance, it is instructive to use the complex

solution to equation (3.13) for the underdamped case in the steady state, thus
x = Aefet-7) (3.19)
The real part of this solution is equation (3.14). Then
% = joAe®tY) (3.20)

The complex form of the driving force is F(t) = F,e/®t

The complex mechanical impedance is then given by

, __ Foelt
B ijei(mt—vj

=b- j(lf— - mco) (3.22)

ting @ = - and 20 = >
pumgcoo—man a—m.
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The magnitude of Z is given by

®

1Z) = \/{bz + (5 ~ mmﬂ (3.22)

and the phase angle is given by

o

a1 /T
¢ = tan b =5 (3.23)
The complex mechanical impedance Z can therefore be written

7 =|7] et (3.24)

)
When f = f = -2—;’; the undamped natural frequency, the imaginary part of the

impedance is zero and the impedance reduces to b, the damping coefficient,
and the phase angle ¢ becomes zero. The impedance is then a minimum, the

velocity of the mass and the driving force are in phase and resonance occurs.

At frequencies less than f_, the stiffness of the spring predominates over the

inertia of the mass and the system is said to be stiffness controlled. The phase

angle ¢ is then positive. At frequencies greater than £, the mass predominates

over the stiffness, the system is said to be mass controlled and the phase

angle ¢ is negative.

3.6 Admittance

The admittance is the inverse of the impedance.
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The magnitude of the admittance B is given by

B=p =" - (3.25)

ol

Since the impedance is a minimum at resonance, the admittance is a maximum

at resonance.

If B, be a chosen reference value of admittance, one can define an

amplification ratio or gain, (G) thus
B
G= §; (3.26)

The admittance B varies with the position of the driving point and with

frequency. As By is a constant, G is thus a function of driving point position and

of frequency.

It is customary to express the G on a logarithmic scale
B
10910 G= |Og10 B. (3.27)
0

= IOg10 B- |Og10 Bo (3.28)
On a decibel scale, this expression becomes
20log,, G = 20log,, B-20log,, B, (3.29)

Hence, if measured admittance is expressed on the dB scale, relative gain and
relative admittance are identical and can be found by subtracting the two

admittances concerned when expressed on the dB scale.
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3.7 Power in the Resonant System.

The time averaged vibrational power delivered to the system is given by

__R | (200?) |
4 O‘mt(a)ﬁ - m2)2 + (o)

P

f (ZOL(DZ) —'
=F {(0)% - mz)z + (o)

(3.30)

where P is the value of P at @ = ;.

P is plotted against o in figure 3.2.

Finding the values of @ at the half-power points from equation (3.30), one finds

e \/(cog +a2)-a  and o =/(0%+02)+a.

The resonance width A® = @y — @ = 21 Af = 2.

The quality factor Q, may therefore be written in the alternative versions, thus
=A== e (3.31)

When the damping is increased, for instance from o, to a, in figure 3.2, the

maximum of the curve is reduced and the width between the half-power points
is increased. In this case Q is reduced and the sharpness of the resonance

curve is also reduced.

32



T e W s o . —— D e -

I'd

s
DN T

v
U G
Y

£
[
O
€ boe e o
N

a2:}~ (q2>q1)

w

Figure 3.2 Average power (P) dissipated in the damped harmonic

oscillator as a function of driving frequency f [=o/(2r)]

33



Substituting the basic system parameters for (Dg and 2o in equation 3.30.

bFZ
P= }5'2—2"' = J4bFZB? (3.32)

Where B is the magnitude of the admittance.

3.8 Resonant Modes of a Distributed Mass System

By analogy with the above treatment, which applies to a discrete point mass
connected to a discrete spring, one can consider resonant modes of a
distributed mass/spring object, such as a soundboard. One can attribute to the
mode at each driving point an effective mass, an effective stiffness, as well as
an effective damping coefficient. The impedance/admittance is likely to vary,
not only with the frequency, but also with the point of application of the force. If
this point is near to a node on the soundboard, the admittance will be expected

to be reduced.

The resonant frequency of such a mode is given by

where m is the effective mass of the mode and k is the effective stiffness of the

mode.

Both the effective mass and the effective stiffness tend to have minimum values
at driving points which are anti-nodes for the mode concerned and tend to
increase to maximum values as the driving point approaches points which are

nodes for the mode concerned.

A small additional mass placed on the soundboard brings about the greatest
change in resonant frequency when placed at a point on the board which is an

anti-node for the resonant mode concerned.

34



For a given point on the soundboard, the effective stiffness k being constant,

the rate of change of resonant frequency with effective mass is given by

df, 1 1( 1) =

—90% _ __|2|__ 2

dam = Zgf%l0g)m

df 1€

.- gk 639

The fractional change in resonant frequency brought about by a small change

in mass Am at the driving point is, therefore, given by

1Am
5 m (3.34)
Clearly, the effect of loading the board with additional mass, is to reduce the

resonant frequencies of the modes.

Equation (3.34) enables the effective mass of a mode to be estimated
experimentally by loading the point with a small additional mass and by

measuring the resulting fractional change in resonant frequency.

Increasing the relative stiffiness at a fixed point on the sound board would, of
itself, tend to increase the resonant frequency. But this cannot be readily
carried out without increasing the effective mass also. The stringing of a
musical instrument tends to increase both the effective mass and the effective
stiffness of resonant modes. Iis effect on resonant frequency cannot therefore

be readily predicted.

Work on this project shows that when the strings of the harp are tightened the

frequencies of resonant modes of the soundboard are generally increased.

The removal of a small quantity of material from a point on a soundboard

changes both the effective mass and the effective stiffness of the resonant

35



