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On the (Non)-Integrability of the Perturbed KdV

Hierarchy with Generic Self-consistent Sources

Vladimir S. Gerdjikov, Georgi G. Grahovski and Rossen I. Ivanov

February 6, 2011

1. Introduction Nonholonomic deformations of integrable equations attracted the
attention of the scientific community in the last few years. In [6], based on the
Painlevé test, applied to a class of sixth-order nonlinear wave equations, a list of four
equations that pass the test was obtained. Among the three known ones, there was a
new equation in the list (later known as sixth-order KdV equation, or just KdV6):(

−1

4
∂3x + vx∂x +

1

2
vxx

)
(vt + vxxx − 3v2x) = 0. (1)

One can convert (1) into a “potential” form:

ut + uxxx − 6uux − wx = 0, (2)

−1

4
wxxx + uwx +

1

2
wux = 0, (3)

or equivalently (
−1

4
∂2x + u+

1

2
ux∂

−1
)

(ut + uxxx − 6uux) = 0. (4)

Here ∂−1x is a notation for the left-inverse of ∂x and

Λ = −1

4
∂2x + u+

1

2
ux∂

−1 (5)

is the recursion operator for the KdV hierarchy. In [7] B. Kupershmidt described
(2) and (3) as a nonholonomic deformation of the KdV equation, written in a bi-
Hamiltonian form. Later on, it was shown in [9] that the KdV6 equation is equivalent
to a Rosochatius deformation of the KdV equation with self-consistent sources.
Here we are dealing with the potential form of the KdV6 equation (2), we study the
class of inhomogeneous equations of KdV type

ut + uxxx − 6uux = Wx[u](x), (6)

with an inhomogeneity/perturbation that presumably belongs to the same class of
functions as the field u(x) (i.e. decreasing fast enough, when |x| → ∞).

1



Generally speaking, the perturbation, as a rule destroys the integrability of the con-
sidered nonlinear evolution equation (NLEE). The idea of perturbation through non-
holonomic deformation, however, is to perturb an integrable NLEE with a driving
force (deforming function), such that under suitable differential constraints on the
perturbing function(s) the integrability of the entire system is preserved. In the case
of local NLEE’s, having a constraint given through differential relations (not by evo-
lutionary equations) is equivalent to a nonholonomic constraint.
To the best of our knowledge, the most natural and efficient way for studying inho-
mogeneities/perturbations of NLEE integrable by the inverse scattering method is by
using the expansions over the so-called “squared solutions” (squared eigenfunctions)
or the so-called symplectic basis. The squared eigenfunctions of the spectral problem
associated to an integrable equation represent a complete basis of functions, which
helps to describe the Inverse Scattering Transform (IST) for the corresponding hier-
archy as a Generalised Fourier transform (GFT). The Fourier modes for the GFT are
the Scattering data. The expansion coefficients of the potential over the symplectic
basis are the corresponding action-angle variables.

2. Generalised Fourier Transform for KdV Hierarchy The spectral problem
for the KdV hierarchy is given by the Sturm-Liouville equation [8, 5]

−Ψxx + u(x)Ψ = k2Ψ, (7)

where u(x) is a real-valued (Schwartz-class) potential on the whole axis and k ∈ C
is spectral parameter. The continuous spectrum under these conditions corresponds
to real k. We assume that the discrete spectrum consists of finitely many points
kn = iκn, n = 1, . . . , N where κn is real.
The direct scattering problem for (7) is based on the so-called “Jost solutions” f+(x, k)
and f̄+(x, k̄),given by their asymptotics: x→∞ for all real k 6= 0 [8]:

lim
x→±∞

e−ikxf±(x, k) = 1, k ∈ R\{0}. (8)

From the reality condition for u(x) it follows that f̄±(x, k̄) = f±(x,−k).
A key role in the interpretation of the inverse scattering method as a generalized
Fourier transform plays the so-called ‘generating’ (recursion) operator: for the KdV
hierarchy it has the form [1]:

L± = −1

4
∂2 + u(x)− 1

2

∫ x

±∞
dx̃u′(x̃) · . (9)

The eigenfunctions of the recursion operator are the squared eigenfunctions of the
spectral problem (7):

F±(x, k) ≡ (f±(x, k))2, F±n (x) ≡ F (x, iκn), (10)

For our purposes, it is more convenient to adopt a special set of “squared solutions”,
called symplectic basis [2, 5]. It has the property that the expansion coefficients of
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the potential u(x) over the symplectic basis are the so-called action-angle variables
for the corresponding NLEE.
For the KdV hierarchy, the symplectic basis is given by:

P(x, k) = ∓
(
R±(k)F±(x, k)−R±(−k)F±(x,−k)

)
, (11)

Q(x, k) = R−(k)F−(x, k) +R+(k)F+(x, k), (12)

Pn(x) = −R±nF±n (x), Qn(x) = − 1

2kn

(
R+

n Ḟ
−
n (x)−R−n Ḟ+

n (x)
)
. (13)

Its elements satisfy the following canonical relations:[[
P(k1),Q(k2)

]]
= δ(k1 − k2),

[[
P(k1),P(k2)

]]
=
[[
Q(k1),Q(k2)

]]
= 0,[[

Pm, Qn

]]
= δmn,

[[
Pm, Pn

]]
=
[[
Qm, Qn

]]
= 0,

(14)

(k1 > 0, k2 > 0) with respect to the skew-symmetric product[[
f, g
]]
≡ 1

2

∫ ∞
−∞

(f(x)gx(x)− g(x)fx(x))dx =

∫ ∞
−∞

f(x)gx(x)dx, (15)

The symplectic basis satisfies the completeness relation [5]:

θ(x− y)− θ(y − x)

2
=

1

2π

∫ ∞
0

(
P(x, k)Q(y, k)−Q(x, k),P(y, k)

) dk

β(k)

−
N∑

n=1

(
Pn(x)Qn(y)−Qn(x)Pn(y)

)
, (16)

where β(k) = 2ikb(k)b(−k). Notice that the integration over k is from 0 to ∞. It
follows that every function X(x) from the same class as the potential u(x) (i.e. smooth
and vanishing fast enough when x→ ±∞) can be expanded over the symplectic basis:

X(x) =
1

2π

∫ ∞
0

dk

β(k)
(P(x, k)φX(k)−Q(x, k)ρX(k))

−
N∑

n=1

(Pn(x)φn,X −Qn(x)ρn,X) . (17)

The expansion coefficients can be recovered from the so-called inversion formulas:

φX(k) =
[[
Q(y, k), X(y)

]]
, ρX(k) =

[[
P(y, k), X(y)

]]
,

φn,X =
[[
Qn(y), X(y)

]]
, ρn,X =

[[
Pn(y), X(y)

]]
.

(18)

In particular, if X(x) = u(x) is a solution of the spectral problem, one can compute
[5]: [[

P(y, k), u(y)
]]

= 0,
[[
Q(y, k), u(y)

]]
= −4ikβ(k), (19)[[

Pn(y), u(y)
]]

= 0,
[[
Qn(y), u(y)

]]
= 4ikn. (20)
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Thus, from (19) one gets:

u(x) =
2

πi

∫ ∞
0

P(x, k)dk −
N∑

n=1

4iknPn(x). (21)

The expression for the variation of the potential is

δu(x) =
1

2π

∫ ∞
0

dk

β(k)
(Px(x, k)δφ(k)−Qx(x, k)δρ(k))

−
N∑

n=1

(Pn,xδφn −Qn,xδρn) (22)

with expansion coefficients

ρ(k) ≡ −2ik ln |a(k)| = −2ik ln(1−R−(k)R−(−k)), k > 0, (23)

φ(k) ≡ 2iβ(k) arg b(k) = β(k) ln
R−(k)

R+(k)
, (24)

ρn = −λn = −k2n, φn = 2 ln bn = ln
R−n
R+

n
. (25)

These are known as action (ρ(k)) - angle (φ(k)) variables for KdV equation [10, 8].
Due to the time-evolution of u, δu(x, t) = utδt + Q((δt)2), etc. the equations of the
KdV hierarchy

ut + ∂xΩ(Λ)u(x, t) = 0, (26)

with (21) and (22) are equivalent to a system of trivial linear ordinary differential
equations for the canonical variables (which can be considered as scattering data):

φt = 4iβ(k)Ω(k2), ρt(k) = 0,

φn,t = 4iknΩ(k2n), ρn,t = 0.
(27)

3. Perturbations to the equations of the KdV hierarchy Let us consider a
general perturbation Wx[u] to an equation from the KdV hierarchy:

ut + ∂xΩ(Λ)u(x, t) = Wx[u]. (28)

The function Wx[u] is assumed to belong to the class of admissible potentials for the
associated spectral problem (7) (Schwartz class functions, in our case).
The expansion of the perturbation over the symplectic basis is:

Wx[u] =
1

2π

∫ ∞
0

dk

β(k)
(Px(x, k)φW (k)−Qx(x, k)ρW (k))

−
N∑

n=1

(Pn,x(x)φn,W −Qn,x(x)ρn,W ) . (29)
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The substitution of the above expansion (29) in (28) together with (21) and (22) leads
to a modification of the time evolution (27) of the scattering data as follows:

φt = 4iβ(k)Ω(k2) + φW (k, t; ρ(k, t), φ(k, t), ρn(t), φn(t)), (30)

ρt(k) = ρW (k, t; ρ(k, t), φ(k, t), ρn(t), φn(t)), (31)

φn,t = 4iknΩ(k2n) + φn,W (k, t; ρ(k, t), φ(k, t), ρn(t), φn(t)), (32)

ρn,t = ρn,W (k, t; ρ(k, t), φ(k, t), ρn(t), φn(t)). (33)

Since W = W [u] and u depend on the scattering data, we observe that the expansion
coefficients of the perturbation (φW (k) =

[[
Q(y, k),W (y)

]]
etc.) also depend on the

scattering data. Thus for generic W the new dynamical system (30) – (33) for the
scattering data can be extremely complicated and non-integrable in general. This
reflects the obvious fact that the perturbed integrable equations are, in general, not
integrable.

4. KdV Hirarchy with Self-consistent Sources (SCS). Let us investigate the
integrability of the following equation:

Λ∗(ut + ∂xΩ(Λ)u(x, t)) = 0, (34)

where the star is a notation for a Hermitian conjugation. KdV6 in (4) is a particular
case of this equation with Ω(Λ) = −4Λ. In order to simplify our further analysis,
instead of the equation (34) we study the following one:

(Λ∗ − λ1)(ut + ∂xΩ(Λ)u(x, t)) = 0, (35)

where λ1 is a constant. The corresponding analogue for KdV6 is

v6x + vtxxx − 2vtvxx − 4vxvxt − 10vxv4x − 20vxxvxxx + 30v2xvxx

+ 4λ1(vxt + vxxxx − 6vxvxx) = 0. (36)

Since the operator ∂ does not have a kernel when u is Schwartz class, (34) is equivalent
to

ut +∂xΩ(Λ)u(x, t) =

{
(c1P1(x, t) + c2Q1(x, t))x for λ1 = k21 < 0,

(c1P(x, k1, t) + c2Q(x, k1, t))x for λ1 = k21 > 0,
(37)

where c1,2 = c1,2(t, k1; ρ(k1, t), φ(k1, t), ρn(t), φn(t)) are x-independent functions, but
the important observation is that the time-dependence could be implicit through
the scattering data of the potential u(x, t). Equation (37) is a perturbed equation
from the KdV hierarchy. The perturbation in the right-hand side of (37) is in the
eigenspace of the recursion operator corresponding to the eigenvalue λ1, i.e. it is
given by ’squared’ eigenfunctions of the spectral problem (7) at λ1. Such a special
perturbation is often called ’self-consistent sources’ perturbation. For simplicity we
use the symplectic basis, see the precise definitions (11) – (13). Typically the SCS in
the literature is taken with c2 = 0; such perturbations do not violate integrability.

5



For example, if λ1 > 0 is a continuous spectrum eigenvalue, the dynamical system
(30) – (33) has the form

φt = 4iβ(k)Ω(k2) + 2πβ(k)c1(t, k1; ρ(k1, t), φ(k1, t), ρn(t), φn(t))δ(k − k1),(38)

ρt(k) = −2πβ(k)c2(t, k1; ρ(k1, t), φ(k1, t), ρn(t), φn(t))δ(k − k1), (39)

φn,t = 4iknΩ(k2n), (40)

ρn,t = 0. (41)

Similar equations can be written for the time evolution of the action-angle variables
on the discrete spectrum of the Lax operator L.
It is clear, that dynamical systems like (38) – (41) can not be integrable for a general
functional dependence of c1,2 on the scattering data. Thus the equations (34), includ-
ing KdV6, are not completely integrable. In other words, there are solutions, which
can not be obtained via the Inverse Scattering Method, since the aforementioned
dynamical systems for the scattering data are not always integrable.

5. Conclusions and Outlook Here we have used the expansion over the eigen-
functions of the recursion operator for the KdV hierarchy for studying nonholonomic
deformations of the corresponding NLEE from the hierarchy. We have shown, that in
the case of self-consistent sources, the corresponding perturbed NLEE is integrable,
but not completely integrable.
The approach presented in this article can be applied also to the study of inho-
mogeneous versions of NLEE, related to other linear spectral problems, e.g. the
Camassa-Holm equation, various difference and matrix generalizations of KdV-like
and Zakharov - Shabat spectral problems, various non-Hamiltonian systems, etc.

Acknowledgements This material is based upon works supported by the Science
Foundation of Ireland (SFI), under Grant No. 09/RFP/MTH2144.
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