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The Good, the Bad and the Incorrectly

Classified: Profiling Cases for Case-base Editing

Sarah Jane Delany

Dublin Institute of Technology, Dublin, Ireland
sarahjane.delany@dit.ie

Abstract. Case-based approaches to classification, as instance-based
learning techniques, have a particular reliance on training examples that
other supervised learning techniques do not have. In this paper we present
the RDCL case profiling technique that categorises each case in a case-
base based on its classification by the case-base, the benefit it has and/or
the damage it causes by its inclusion in the case-base. We show how
these case profiles can identify the cases that should be removed from
a case-base in order to improve generalisation accuracy and we show
what aspects of existing noise reduction algorithms contribute to good
performance and what do not.

1 Introduction

Unlike many other supervised learning techniques, lazy learning techniques are
instance-based and depend greatly on individual training examples. This has
motivated considerable research into the identification of appropriate training
examples for case-based maintenance tasks. Case-base editing involves reducing
a case-base or training set to a smaller number of cases while trying to maintain
and even improve the generalisation accuracy. A key aspect of case-base editing
is to identify and remove noisy or exceptional cases that can cause a degradation
in the generalisation accuracy.

In this paper we present a technique for associating a competence profile with
each case in a case-base. The case profile categorises each case based on three
characteristics;

(i) whether the case is classified correctly or not by the rest of case-base,
(ii) what benefit (or good) if any, it brings to the case-base by its inclusion, and
(iii) whether or not it causes damage (or harm) to the case-base by its inclusion.

Different combinations of the three characteristics result in a case having one of
eight possible profiles. Building on established case-base maintenance research
[1, 2], these case profiles are derived from a competence model constructed on
the case-base by a leave-one-out classification of all cases.

A key advantage of identifying the types of cases in a case-base is that it
exposes the effect of removing cases of different types from a training set. This
facilitates identifying which case types are the most useful in maintaining and
improving generalisation accuracy.



A further important benefit of this profiling methodology is that it reveals the
biases of existing noise reduction techniques and shows what aspects contribute
to good performance and what aspects do not. Resulting from our analysis of
these case profiles we present in this paper a simple noise reduction technique
based on these profiles that consistently improves generalisation accuracy and we
compare its performance to existing noise reduction techniques across a number
of datasets.

The rest of this paper is structured as follows. Section 2 of this paper reviews
the extensive existing case-editing literature. Section 3 presents our case profiling
approach while section 4 describes the investigations we performed into showing
which types of cases are most beneficial to remove from a case-base. This section
also includes an investigation into what kinds of cases existing noise reduction
algorithms remove and presents our profile-based noise reduction technique. Sec-
tion 5 concludes with some directions for future work.

2 Case-base Editing

Case-base editing techniques have been categorised as competence preservation

or competence enhancement techniques [3, 4]. Competence preservation corre-
sponds to redundancy reduction, removing superfluous cases that do not con-
tribute to classification competence. Competence enhancement is effectively noise
reduction, removing noisy or corrupt cases from the training set. Competence
preservation techniques aim to remove internal cases in a cluster of cases of the
same class and can predispose towards preserving noisy cases as exceptions or
border cases. Competence enhancement on the other hand aims to remove noisy
or corrupt cases but can remove exceptional or border cases which may not be
distinguishable from true noise, so a balance of both can be useful in a case
editing algorithm.

Editing strategies normally operate in one of two ways; incremental which
involves adding selected cases from the training set to an initially empty edited
set and decremental which involves contracting the training set by removing
selected cases.

An early competence preservation technique is Hart’s Condensed Nearest
Neighbour (CNN) [5]. CNN is an incremental technique which adds to an initially
empty edited set any case from the training set that cannot be classified correctly
by the edited set. This technique is very sensitive to noise and to the order of
presentation of the training set cases, in fact CNN by definition will tend to
preserve noisy cases. Ritter [6] reported improvements on the CNN with their
Selective Nearest Neighbour (SNN) which imposes the rule that every case in
the training set must be closer to a case of the same class in the edited set than
to any other training case of a different class. Gates [7] introduced a decremental
technique which starts with the edited set equal to the training set and removes
a case from the edited set where its removal does not cause any other training
case to be misclassified. This technique will allow for the removal of noisy cases
but is sensitive to the order of presentation of cases. More recent improvements



to CNN have been proposed by Chou et al. [8] and Angiulli [9] with Hao et al.
[10] proposing a variation appropriate for text classification.

Competence enhancement or noise reduction techniques start with Wilson’s
Edited Nearest Neighbour (ENN) algorithm [11], a decremental strategy, which
removes cases from the training set which do not agree with their k nearest
neighbours. These cases are considered to be noise and appear as exceptional
cases in a group of cases of the same class.

Tomek [12] extended this with his repeated ENN (RENN) and his all k-NN

algorithms. Both make multiple passes over the training set, RENN repeating
the ENN algorithm until no further eliminations can be made from the training
set while all k-NN uses incrementing values of k for each case and removes the
case if a misclassification occurs for any value of k. These techniques focus on
noisy or exceptional cases and do not result in the same storage reduction gains
as the competence preservation approaches. A variation on ENN using k nearest
centroid neighbours instead of k nearest neighbours was proposed by Sánchez
et al. [13]. There is also work which considered relabelling examples rather than
deleting them [14, 15].

Later editing techniques can be classified as hybrid techniques incorporating
both competence preservation and competence enhancement stages. Aha [16]
presented a series of Instance Based (IB) learning algorithms to reduce storage
requirements and tolerate noisy instances. IB2 is similar to CNN adding only
cases that cannot be classified correctly by the reduced training set. IB2’s sus-
ceptibility to noise is handled by IB3 which records how well cases are classifying
and only keeps those that classify correctly to a statistically significant degree.
Other researchers have provided variations on the IBn algorithms [17–19].

More recently, Pan et al. [20] proposed a case-base mining algorithm Kernel-
based Greedy Case-base Mining (KGCM) guided by theoretical results to edit
a case-base. It involves using a kernel transformation to map the original case-
base to a new feature space and using FDA to help remove noise and identify
the predictive features. KGCM is an incremental approach that considers cases
from this new space for addition based on their diversity.

Also, Massie et al.’s [21] recent work on case-base profiling introduces a decre-
mental noise reduction strategy called Threshold Error Reduction (TER) that
removes cases based on a complexity measure called the Friend:Enemy (F:E)
Ratio. This measure compares the distances to a case’s nearest like neighbours
with distances to its nearest unlike neighbours. Their case-editing algorithm
iteratively removes cases with F:E ratios higher than certain thresholds to re-
move noisy cases and to smooth out the boundary. They point out that different
datasets are threshold dependent.

2.1 Competence-Based Case-Base Editing

More recent approaches to case-base editing build a competence model of the
training data and use the competence properties of the cases to determine which
cases to include in the edited set. Measuring and using case competence to
guide case-base maintenance was first introduced by Smyth & Keane [1]. They



introduced two important competence properties, the reachability and coverage

sets for a case in a case-base [1]. The reachability set of a case c is the set of
all cases that can successfully classify c, and the coverage set of a case c is the
set of all cases that c can successfully classify. The coverage and reachability
sets represent the local competence characteristics of a case and are used as
the basis of a number of editing techniques. Smyth & Keane first used these
case competence properties in their Footprint Deletion policy which identified a
series of case categories using these competence properties to provide a means of
ordering cases for deletion. The competence footprint is a subset of the case-base
that provides the same competence as the entire case-base.

McKenna & Smyth [22] later presented a family of competence-guided editing
methods for case-bases which combine both incremental and decremental strate-
gies. This family of algorithms is based on different combinations of policies for
adding and removing cases, policies for presenting cases for consideration and
for competence model update. These algorithms also include an RENN based
initial pass to remove noise. Brighton & Mellish [3] also use the coverage and
reachability properties of cases in their Iterative Case Filtering (ICF) algorithm.
ICF is a decremental strategy contracting the training set by removing those
cases c, where the number of other cases that can correctly classify c is higher
that the number of cases that c can correctly classify. This strategy focuses on
removing cases far from class borders. ICF also includes a pre-processing noise
reduction stage, effectively RENN, to remove noisy cases.

Wilson & Martinez [23] presented a series of Reduction Technique (RT) algo-
rithms which they later enhanced into the Decremental Reduction Optimisation
Procedures (DROP) [4]. Although these were originally published before the
definitions of coverage and reachability, they could also be considered to use a
competence model. They define the set of associates of a case c which is compa-
rable to the coverage set of McKenna and Smyth except that the associates set
will include cases of a different class from case c whereas the coverage set will
only include cases of the same class as c. The RTn and DROPn algorithms use
a decremental strategy.

In contrast to the earlier approaches to noise reduction which tend to focus
on removing the cases that are misclassified, Delany & Cunningham’s Blame
Based Noise Reduction (BBNR) [2] attempts to identify those cases causing
the misclassifications and uses this information to identify training cases the
case-base would be better off without. BBNR extends Smyth & Keane’s case
competence model by including an additional set, the liability set which is the
set of all cases that c causes to be misclassified. This attempts to model the
situation of a case being classified incorrectly because of the retrieved cases
that contributed to its classification rather than the case being itself a noisy or
mislabelled case.



3 Case Profiles

In this section we propose an approach to modelling the competence of a case-
base with a view to categorising the competence of each case in the case-base.
We then have the opportunity to investigate the effect that each type of case
can have on case-base competence.

3.1 Enhanced Competence Model

Smyth & Keane’s [1] case-base competence modelling approach proposed two
sets to model the local competence properties of a case, the reachability set of
a case c, the set of all cases that can successfully classify c and the coverage

set of a case c, the set of all cases that c can classify. Using the case-base itself
as a representative of the target problem space, these sets can be estimated as
shown in Equations 1 and 2. Delany & Cunningham’s [2] extension included an
additional property; the liability set of a case c, the set of all cases that c causes
to be misclassified and can be estimated by Equation 3.

ReachabilitySet(c ∈ C) = {t ∈ C : Classifies(c, t)} (1)

CoverageSet(c ∈ C) = {t ∈ C : Classifies(t, c)} (2)

LiabilitySet(c ∈ C) = {t ∈ C : Misclassifies(t, c)} (3)

In the above equations Classifies(t, c) means that case c contributes to the
correct classification of target case t. This means that target case t is successfully
classified and case c is returned as a nearest neighbour of case t and has the same
classification as case t. Misclassifies(t, c) means that case c contributes in some
way to the incorrect classification of target case t. In effect this means that when
target case t is misclassified by the case-base, case c is returned as a neighbour of
t but has a different classification to case t. For k-NN with k = 1, case c causes
the misclassification but for k > 1 case c contributes to the misclassification.
Case t is therefore a member of the liability set of case c.

We propose to further extend the competence properties of a case to include
an additional property, the dissimilarity set, which complements the reachabil-
ity set in the same way as the liability set complements the coverage set. The
dissimilarity set of a case c is the set of cases that misclassify case c and can be
represented by Equation 4.

DissimilaritySet(c ∈ C) = {t ∈ C : Misclassifies(c, t)} (4)

The first point to note about these sets is that one of the reachability set
or the dissimilarity set will always be empty. In effect, if we consider that a set
exists for a case only if that set is non empty, then the reachability set and the
dissimilarity set are mutually exclusive. If a case has a non empty reachability
set then it has been classified correctly by the case-base and, as such, will have
an empty dissimilarity set and vice versa. However, a case can have one, none



or both of the coverage and liability sets. The coverage set of a case c identifies
the potential benefit or usefulness of c in the case-base, represented by the cases
that c contributes to classifying correctly. On the other hand the liability set of
a case c identifies the damage or harm that c causes in the case-base represented
by the cases that it causes to be misclassified. It is possible for a case to be both
useful for some targets and damaging for others.

3.2 Categorising Cases

This leads us to being able to associate an individual case profile with each case
in a case-base. We call the profile the RDCL profile of a case; it is derived from
the competence model of the case-base and includes three characteristics:

(i) Firstly, it is possible to indicate whether the case is correctly or incorrectly
classified by the case-base. This is identified by the case having either a
reachability set (R) or a dissimilarity set (D).

(ii) Secondly, we can consider whether the case is useful, by the existence of a
coverage set (C), and

(iii) Finally whether the case is harmful and causes damage, by the existence of
a liability set (L).

Fig. 1. Composition of datasets with different generalisation accuracies showing the
proportion of cases of each profile type. Breast Cancer has 95% 10-fold cross validation
accuracy, ecoli has 81% accuracy while glass has 66% accuracy.

Taking all possible combinations of these characteristics, each case in a case-
base can have one of eight different case profiles as described below. Fig 1 helps to
interpret these by giving the proportion of the different case profiles in different
case-bases.

R A case which is correctly classified but is not used for classifying any
other case in the case-base.



D A case which is misclassified but is not used for classifying any other
case in the case-base.

RC A case which is correctly classified and is useful in that it has con-
tributed to the correct classification of other cases in the case-base.
This profile and the R profile are generally the majority case profile
types as illustrated in Fig 1.

RL A case which is correctly classified but is harmful in the case-base caus-
ing damage by contributing to other cases being misclassified.

DC A case which is misclassified but is useful in the case-base.

DL A case which is misclassified and is harmful in the case-base, (more
of these occur in the case-base with poorer generalisation accuracy in
Fig 1).

RCL A case which is correctly classified and is both useful and harmful in
the case-base.

DCL A case which is misclassified and is both useful and harmful in the
case-base.

4 Experimental Analysis

The ability to associate a competence case profile with each case in a case-base
offers the opportunity to investigate the structure of case-bases at a case level
and the effect of removing different types of cases from a case-base. This section
outlines a number of different investigations and evaluations performed using
case profile information on a variety of datasets. The datasets used throughout
this paper are listed in Table 1 with a description of their characteristics. All
datasets are available in the UCI repository [24].

Table 1 also includes the baseline 10-fold cross validation accuracy achieved
on each dataset using a k-NN classifier with a Euclidean distance measure and
k = 1. As the objective is to consider the effect of different case editing strategies,
k = 1 was selected as the effect of noise in the data will be more evident with
this value since higher values of k are more noise tolerant.

4.1 Removal of Different Types of Cases

Table 2 shows the effect of removing all the cases of each different type of case
profile from each dataset. The accuracy was calculated using 10-fold cross vali-
dation, using the same folds as the original baseline accuracy given in Table 1. A
competence model was build on each training set of nine folds and the training
set was edited to remove all cases with the specified case profile. The cases in
the remaining fold were classified using the edited training set.

Fig 2 shows the difference, averaged across all datasets, of removing cases
with the specified profile. This figure illustrates some interesting facts which are
discussed below:



Table 1. Datasets

#cases #classes #features class cv

distribution(%) accuracy(%)

breastcancer 683 2 9 65/35 95.5

cmc 1473 3 9 28/16/56 43.3

glass 214 6 9 33/8/35/6/4/14 65.9

musk2 6598 2 166 15/85 73.8

waveform 5000 3 21 33/33/33 77.2

spectf 267 2 44 21/79 71.5

ecoli 336 8 7 42/23/15/10/6/2/1/1 81.0

wine 178 3 13 33/40/27 94.9

ionosphere 351 2 34 68/32 86.0

hill-valley 1212 2 100 50/50 59.4

Fig. 2. Accuracy difference, averaged across all datasets, between the unedited dataset
and the dataset edited with all cases of the specified case profile removed.

DL/DCL cases: The cases that cause the greatest improvement in accuracy
by their removal are the DL cases. DL cases are cases that are misclassified
by the rest of the case-base and are themselves also causing harm as they are
misclassifying other cases. It is to be expected that removing cases such as these
would have a beneficial effect on the generalisation accuracy. Considering the
individual results in Table 2, the removal of the DL cases is damaging in just
one of the datasets where the decrease in accuracy is less than 1%.

DCL cases are somewhat similar to DL cases. The only difference is that these
cases, in spite of being misclassified and doing harm, also do some good in that
they are used to correctly classify other cases. Looking at the individual dataset
results the removal of these cases doesn’t typically decrease generalisation ac-
curacy, in all cases but one accuracy remains constant or increases. Overall the



Table 2. Accuracy values (%) on editing the datasets by removing cases with a specific
case profile. Accuracy values which show an increase over the baseline are highlighted
in bold. Decreases in generalisation accuracy are in italic.

Dataset R RC RL RCL D DC DL DCL DL&DCL

breastcancer 95.5 94.4 95.9 95.5 95.9 95.6 96.1 95.5 95.9

cmc 42.6 42.8 42.9 42.8 42.8 42.7 46.2 44.1 47.0

glass 65.9 62.2 66.4 64.5 65.4 65.9 65.0 65.9 65.4

musk2 72.4 70.5 74.0 74.5 74.9 73.7 74.9 73.8 74.8

waveform 76.7 74.6 77.2 76.9 77.2 77.0 78.0 77.6 78.5

spectf 70.4 67.8 71.9 72.7 72.7 70.8 73.4 71.5 74.2

ecoli 78.1 77.1 80.4 81.0 82.1 80.1 83.3 81.0 83.0

wine 93.8 93.8 94.9 94.9 94.4 94.9 94.9 94.9 94.9

ionosphere 87.2 81.5 86.3 86.3 85.8 84.6 86.3 86.6 86.9

hill-valley 57.7 59.3 59.7 59.7 53.1 57.8 59.5 59.1 59.7

effect is beneficial, albeit marginal. This suggests that we are better off without
these cases.

Considering the beneficial effect of removing DC and DCL cases separately,
Fig 2 and Table 2 also include the results of removing both DC and DCL cases
from each dataset. This only has the effect of decreasing, marginally, the accuracy
for one dataset, glass. It also results in a higher average increase than removing
cases of either profile.

R cases: Cases with an R profile are cases that are classified correctly by
the rest of the case-base but are not used in the classification of any other
case in that case-base. This suggests that these cases are redundant cases and
are not needed. Removing such cases should show no change in generalisation
accuracy. Interestingly enough, the removal of these cases causes a decrease in
generalisation accuracy on average, with only one of the datasets showing an
actual increase in accuracy. This indicates that these cases, although not used
to classify the training data, are useful in the classification of unseen data and
necessary to maintain good generalisation accuracy. This suggests that R cases
may be outlier cases, not well covered by other cases and should not be removed
from the case-base.

D/DC cases: Cases with a D profile are cases that are misclassified by the
rest of the case-base but are not used in the classification of any other case in
that case-base. Corresponding to the reasoning above for the R cases, it might
be considered that these cases are redundant cases, as they are not used for
classification and could be removed. As these cases are also misclassified, there
is an even stronger impetus to remove them from the case-base. However, as Fig 2
shows, overall the removal of these cases has a surprisingly detrimental effect on



the generalisation accuracy. In only four of the datasets is the generalisation
accuracy increased. This suggests, analogous to the R cases, that D cases may
be border cases, situated near the decision boundary which are not well covered
by other cases in the case-base.

DC cases are cases that are themselves misclassified by the case-base but that
are useful as they contribute to the correct classification of other cases. Similar to
the D cases, the removal of these in general decreases the generalisation accuracy
of the case-base with a marginal increase of 0.1% shown in only one dataset. This
suggests that these cases should not be deleted.

It is also interesting to note that both these types of case, D and DC, are
removed by the standard Wilson noise reduction technique used by many case
editing algorithms.

RC cases: RC cases are cases that are correctly classified and are used to
correctly classify other cases. It is to be expected that the removal of these cases
would have a detrimental effect on the generalisation accuracy which we can see
is the case. In fact all datasets show a decrease in generalisation accuracy by
removing RC cases, with some very significant harmful effects including a drop
of over 5% for the ionosphere, spectf and glass datasets.

RL/RCL cases: RL cases are classified correctly but cause harm contributing
to the misclassification of other cases. RCL cases are the same but also do good
by contributing to the correct classification of other cases. This suggests that
these cases are border cases, but considering Fig 2 and Table 2 there is no
strong evidence to support the removal of such cases.

It is interesting to note here that both these types of cases, RL & RCL, are
removed by another noise reduction algorithm, the BBNR algorithm.

4.2 What existing noise reduction algorithms do

The original ENN noise reduction technique proposed by Wilson [11] is the algo-
rithm upon which the noise reduction phases of many of the existing case-base
editing techniques are based, with a number of them using RENN as a noise
reduction stage [3, 22, 23]. Wilson’s technique removes cases that would be mis-
classified by the other cases in a training set, assuming that these are incorrectly
labelled and are therefore noisy cases. In terms of our profiling, this would be
cases that have a dissimilarity set. The later BBNR approach [2] focusses more
on the ‘unhelpful’ or harmful cases that cause misclassification, i.e. the cases with
a liability set. The differences between the principles behind these approaches is
evident in Fig 3 which shows for both the RENN and the BBNR algorithms the
proportion of deleted cases that were of each case profile type, averaged across
all datasets.

RENN removes all cases which are misclassified, which means they contain
a D in their profile as they have a dissimilarity set (i.e. it removes 100% of cases
with a D, DC, DC or DCL profile). As RENN is an iterative algorithm repeating



until no more changes are made to the dataset, it can also remove cases with
profiles other than those containing D. This can be seen in Fig 3 where on average
7.3% of the deleted cases have profile R with smaller percentages for RL, RC
and RCL cases. Overall, RENN removes on average 10% of the total R cases,
20% of the RL cases, less than 1% of the RC cases and almost 2% of the RCL
cases. A high proportion of the cases removed by RENN are, on average, D or
R cases (just over 50%); we saw from our analysis of case profiles that removing
these cases tends on average to have a bad effect on generalisation accuracy.

BBNR removes all cases which do harm, meaning they have L in their profile,
as they contain a liability set. It is obvious from Fig 3 that there is only a small
likelihood of overlap in the cases deleted by the two algorithms. If we follow our
conclusions from section 4.1 above, BBNR focusses more on the types of cases
that are beneficial to generalisation accuracy than RENN (59% of the deleted
cases are DL and DCL cases for BBNR whereas 39% are for RENN). In sec-
tion 4.3 below, we investigate the effect of implementing both algorithms on the
selected datasets and will see that RENN has quite inconsistent behaviour which
may be due to its focus on case types which are not beneficial to generalisation
accuracy.

It is also worth noting that neither algorithms removes the RC cases, which
our investigations show would have a bad impact on accuracy if removed.

Fig. 3. Proportion of deleted cases that are of the specified profile for each noise re-
duction algorithm averaged across all datasets.

The BBNR algorithm is straightforward in dealing with cases that just do
damage, regardless of how they are classified. These cases, DLs and RLs are
simply removed. Where a case has a liability set but also a coverage set the
BBNR algorithm adopts the principle of ‘not causing even more harm’. BBNR
only removes a DCL or RCL case if its removal will not cause even more harm,
in other words all cases in its coverage set will still be classified correctly if the



DCL or RCL case is removed. This is evident in our experiments, as although
100% of DL and RL cases are removed by BBNR, only on average 55% and 61%
of DCL and RCL cases respectively are removed.

We ran an experiment to see the effect of this ‘not causing even more harm’
principle. We only removed a DCL or RCL case if its removal did not result in
any of its coverage set being misclassified. The overall results are displayed in
Fig 4. It shows that the effect of keeping some of the DCL and RCL cases, those
that cause even more harm (labelled v2 in Fig 4) has a worse effect, albeit small,
than removing all of them. This raises questions about the benefit of this aspect
of the BBNR algorithm.

Fig. 4. Percentage accuracy difference, averaged across all datasets, between the
unedited datasets and the datasets edited with the specified case profile removed; v1
figures show the result of deleting all cases with the specified profile, v2 figures show
the results of keeping those profile cases that cause even more harm by their removal.

4.3 Comparison of editing algorithms

The analysis shown in Fig 2 suggests another noise reduction algorithm, the
identification and removal of the DL and DCL cases in a dataset. In this section
we compare the performance of existing noise reduction algorithms, RENN and
BBNR and this new algorithm. Table 3 presents the results of a 10-fold cross vali-
dation accuracy (on the same folds) across these noise reduction algorithms. The
statistical significance of the differences in accuracy of each algorithm against
the unedited alternative was calculated using McNemar’s test [25]. Where there
were small levels of disagreement (15 cases or less) an exact sign test was used.

The main point to note here is the more consistent performance of removing
just DL & DCL cases from the datasets. In just one dataset the generalisa-
tion accuracy of the dataset reduces; in all others but one the accuracy actu-
ally increases. Compare this with the performance of RENN. For a number of
the datasets the generalisation accuracy is in fact higher for RENN than for
DL&DCL, with a highest difference of 2.7% for the ecoli dataset. However the



Table 3. Comparison between different noise reduction algorithms. Algorithms which
show an increase in accuracy over the unedited case-base are highlighted in bold. De-
creases in generalisation accuracy are in italic. Differences significant at the 95% level
using McNemar’s test [25] are highlighted with an asterisk.

Unedited cv RENN cv BBNR cv DL & DCL

accuracy (%) accuracy (%) accuracy (%) cv accuracy (%)

breastcancer 95.5 96.6∗ 96.5∗ 95.9

cmc 43.3 46.1∗ 45.1∗ 47.0∗

glass 65.9 63.1 65.4 65.4

musk2 73.8 76.0∗ 75.1∗ 74.8∗

waveform 77.2 78.9∗ 78.4∗ 78.5∗

spectf 71.5 75.3 71.9 74.2

ecoli 81.0 85.7∗ 82.7 83.0∗

wine 94.9 93.8 94.9 94.9

ionosphere 86.0 84.9 86.9 86.9

hill-valley 59.4 48.5 ∗ 58.3 59.7

Avg Diff -0.1% 1.0% 1.9%

performance of the RENN algorithm is not consistent with considerable decreases
in generalisation accuracy for a number of datasets, including a significant 18%
drop for hill-valley and more than 3% for glass and ionosphere.

The performance of BBNR seems better, recording only a lower generalisation
accuracy over the unedited case-base in two datasets. However, removing DC &
DCL cases records equivalent or higher generalisation accuracy than BBNR for
all but one of the datasets.

5 Conclusions & Future Work

A methodology for categorising cases in a case-base into individual case profile
types was presented in this paper. The profile is based on three characteristics
that are derived from constructing a competence model of the case-base. These
characteristics indicate whether the case has been classified correctly or not,
whether the case is helpful to the case-base by its inclusion and/or whether it
causes damage in the case-base. Using these profiles we investigated the effect of
removing the different types of cases from the case-base. Based on this analysis a
simple noise reduction algorithm based on case profiles, was proposed which was
more consistent at improving generalisation accuracy on a number of evaluation
datasets that the other noise reduction techniques considered.

The ability to categorise cases within a casebase allowed the identification
of the types of cases that are removed by existing noise reduction algorithms.
Knowing the effect of removing different types of cases, we were able to identify



the aspects of the algorithms that contribute to good performance and those
that do not.

The work presented in this paper offers opportunities for further work in a
number of directions. With a case profiling strategy available, we hope to gain
further insights into other case editing algorithms, such as Massie et al.[21]’s TER
algorithm, investigating exactly which types of cases are removed. We would like
to investigate further into the case profiles, by quantifying the good and harm
performed by the cases to allow prioritising cases within a profile for deletion.
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