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Abstract. Personal GeoServices are emerging as an interaction paradigm link-

ing users to information rich environments like a university campus or to Big 

Data sources like the Internet of Things by delivering spatially intelligent web-

services. OpenStreetMap (OSM) constitutes a valuable source of spatial base-

data that can be extracted, integrated, and utilized with such heterogeneous data 

sources for free. In this paper, we present a Personal GeoServices application 

built on OSM spatial data and university-specific business data for staff, facul-

ty, and students. While generic products such as Google Maps and Google 

Earth enable basic forms of spatial exploration, the domain of a university cam-

pus presents specific business information needs, such as “What classes are 

scheduled in that room over there?” and “How can I get to Prof. Murray’s of-

fice from here?”. Within the framework of the StratAG project 

(www.StratAG.ie), an eCampus Demonstrator was developed for the National 

University of Ireland Maynooth (NUIM) to assist university users in exploring 

and analysing their surroundings within a detailed data environment. This work 

describes this system in detail, discussing the usage of OSM vector data, and 

providing insights for developers of spatial information systems for universities. 

Keywords: personalised maps, GeoServices, spatial-business data linking, 

OSM. 
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1 Introduction 

As today's spatially aware users are becoming more sophisticated and inter-

ested in retrieving more personalized information
1
, they will increasingly re-

quire more detailed two dimensional (2D) and three dimensional (3D) city-

scapes linked to relevant non-spatial attribute data. In this work, Personal 

GeoServices are developed that employ mobile devices (spatially aware 

smartphones) to provide contextual search and visualization utilities over 2D 

OpenStreetMap (OSM) building footprint data and detailed 3D building mod-

el data. At smaller map scales, Google Maps/Earth with satellite/street views 

can assist users searching for general information at specific locations. Users 

can search a street address on the map, then explore the location in street view 

mode, or find how to reach a certain address or location given options like 

pedestrian or driving constraints. However, generic query tools available in 

these familiar products are usually limited to keyword-based search. At larger 

local scales, where detailed 2D and 3D geometries and associated business 

data are needed, there is a recognized lack of advanced spatial search func-

tionality and linked attribute information available in these products for do-

main-specific, task-oriented, and personalized visual exploration of an area 

[18]. 

For instance, the following types of questions (queries/searches) cannot be 

answered when interacting with Google Maps/Earth on a typical university 

campus: “What classes are scheduled in that room over there?”; “Whose of-

fice window is that up there?”; “What computer labs can I actually see around 

me from this location on campus?”; “What are their opening times?”. In order 

to answer these types of task specific queries, Location Based Services (LBS) 

need the ability to search and link spatial map data together with non-spatial 

business data. 

Spatial data includes detailed topology and geometry of objects while busi-

ness data can describe the attributes or semantic aspect of related objects in 

some business domain. Conventional business data is often produced and 

managed by traditional enterprise information systems, often ignoring the 

spatial dimension altogether. However, it can often be indirectly or virtually 

associated to spatial data via its location given by a generic address, room 

number, building name, or sometimes even geographic (lat/long) coordi-

nates [18]. Linking spatial data and business data together in one application 

can help to fulfil more task specific needs. In particular, decision-making ap-

plications need access to detailed local-scale data typically found in museums, 

hospitals, shopping malls, retail/office park settings, or a university campus. 

Business data specific to a university campus may be in the form of class 

                                                      
1  http://googleblog.blogspot.ie/2013/01/mapping-creates-jobs-and-drives-

global.html 
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schedules for a specific classroom, lists of equipment installed in a lab, office 

hours or contact details for a lecturer, today's special meal deal in the cafete-

ria, etc. 

Typically, 2D vector “footprint” data provides just boundary geometry rep-

resentation of physical objects (e.g. buildings, roads, rivers, etc.) in the hori-

zontal plane. However, in our eCampus application, we link spatial and non-

spatial attribute details in the vertical dimension as well for more advanced 

3D information search operations. For instance, 3D model data of a building 

can include detailed digital representations of physical and functional charac-

teristics for its different floors, rooms, windows and doors, where all objects 

are potentially available for interrogation. 

In this paper, we describe our prototype eCampus information system in 

which the ideas above are implemented. Within the framework of the StratAG 

project (www.StratAG.ie), the eCampus Demonstrator was developed for the 

National University of Ireland Maynooth (NUIM), in collaboration with Dub-

lin Institute of Technology (DIT), and University College Dublin (UCD). This 

Personal GeoServices application aims to assist users in exploring and analyz-

ing their surroundings to answer more task specific user queries within a de-

tailed data environment. The Demonstrator addresses two types of users: pub-

lic users (e.g. visitors) and local users (e.g. students, faculty, and staff). Ac-

cess privileges and query levels depend on user type. For example, visitors are 

presented with a campus map for general information querying about campus 

buildings and rooms. Visitors are also provided with general campus news, 

events, and utilities for navigation to various buildings or rooms, or any other 

locations on campus using different routing options. In addition to these gen-

eral functions, staff and students are able to overlay on the map their individu-

al class schedules together with personalized news feeds and events tailored to 

their academic and social interests. 

Each project partner in the StratAG cluster is responsible for developing 

different functionality in the eCampus Demonstrator, such as; utilities for 

2D/3D directional and visibility-based querying (DIT), path navigation assis-

tance (NUIM), personalizing news and events according to user interests 

(UCD), or for detailed mapping and modelling of the campus infrastructure 

itself (NUIM/DIT). RESTful web-services [1, 3, 5] were chosen as the de-

ployment technology for these distributed components due to its simplicity 

when applied to the geospatial domain [7]. Regarding 3D maps, there are sev-

eral commercial and free mapping products available that allow users to in-

corporate 3D building models for such visualization and interaction type ap-

plications. Of these, Google Earth (GE) was selected for displaying the 3D 

building models in this work because it is both free and increasingly familiar 

to web and wireless GeoService users, although currently GE does have vo-

luminous data processing limitations that must be addressed to accommodate 

real-time display. 
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In the remainder of the paper, we first discuss some related work before in-

troducing our approach to integrating 2D OSM and 3D model data within the 

application. The 2D/3D building information is then imported into a spatial 

database and converted to GE readable format in the case of 3D map display. 

Then we present the system architecture of the eCampus Demonstrator based 

on a Resource Oriented Architecture (ROA) model. Some unique search func-

tionalities of eCampus are described in detail together with its graphical user 

interfaces. Finally we draw conclusions and give some possible direction for 

future work. 

2 Related eCampus Applications 

Assisting people with exploring an area, such as a university campus, with a 

mapping interface is very useful, and is not a new idea in itself. Some existing 

projects provide this type of GeoService, as listed below. 

Kent State University Campus Maps [14] is a web-based application 

providing an interactive 2D map with detailed information and images of each 

building in the campus. It also highlights specific locations on the campus 

such as computer labs, parking, sculpture walk, and residence halls. The Get 

Direction functionality allows finding pedestrian/driving/cycling routes be-

tween two locations, e.g. using building names. However, this application 

provides very basic query/search functionality overall, have no 3D maps, or 

any form of personalization. 

The Interactive Map developed in University of California; Berkeley [15] 

provides an isometric campus map with clickable buildings to provide de-

tailed information and an image of each building. There is also a list of build-

ing names placed outside the map window from where users can choose a 

name, and then the corresponding building object on the map is highlighted. 

This application has no search facility, no routing service, and provides lim-

ited spatial support. 

The University College Dublin Mobile services [16], released natively on 

Android and iOS, has the following functionalities: Campus maps, details 

about places, and tours; Campus directory; Access to Library; Access to e-

learning facility (Blackboard); Schedule of general events (lectures, concerts, 

etc.); Campus news; Image search on university archives; and Emergency 

numbers. The application has two main versions, one for staff and one for 

students, with different permissions. Although this application provides many 

useful services, particularly in relation to campus events, its spatial support is 

still very limited. It has only a simple, non-interactive 2D map, with no rout-

ing functionality. 

In [9], the early stages of a web-based campus information system was de-

veloped for the University of Karabuk, Turkey, allowing users to explore the 
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university campus in 3D. It provides information at the building level and 

points of interests, but room level details have not been fully incorporated, 

and the implementation does not provide utilities to further query the area 

beyond its physical, spatial nature. 

The Youngstown State University developed interactive 2D and 3D cam-

pus maps [30] which allows the retrieval of building information when click-

ing on a building or to download a KMZ file (zipped KML archive file) of an 

area to interact with in Google Earth. However, the attribute information pro-

vided is also limited to building level only. 

A clear trend is evident in the above GeoService applications in that more 

advanced functionality for exploring non-spatial business data of sub-objects 

like rooms, windows and doors to retrieve the content, schedule, or purpose of 

a specific room in a building is still obviously lacking. This is largely due to 

insufficient levels of geometric granularity of building models available in 

today's online mapping platforms like Google Earth, and importantly a subse-

quent lack of any spatially linked business data. 

3 OSM and Volunteered Geographical Information (VGI) 

The availability of detailed geographic data is critical for delivering compre-

hensive GeoService applications. Most geospatial data in Europe is collected 

and controlled by either national mapping agencies (e.g. OSi in Ireland) or 

private companies, such as Google Maps, Yahoo! Maps, and Bing Maps. 

However, data coverage over many areas can still be of considerably poor 

quality and extent – especially in less populated areas. 

Some initial research to address this shortcoming looked at imaging and 

georeferencing public displays of “You Are Here” type maps to fill the cover-

age gap for local navigation purposes [28]. However, a rapid growth in volun-

teered geographic information (VGI) has also started to fill this gap with 

OSM being a successful example of this. In relation to VGI, this “citizen-as-

sensor” paradigm contributes to OSM by creating, assembling and dissemi-

nating geospatial features including streets, highways, buildings, etc. and 

gradually this collective geospatial information shows surprising coverage all 

over the world [29, 31]. Another vitally important feature of using OSM data 

is that “you are free to copy, distribute, transmit and adapt our maps and data, 

as long as you credit OpenStreetMap and its contributors”
2
, which affords 

users to build value-added applications on top of it. 

Considering this increasing trend of free VGI sourced data, our project is 

built upon base geospatial data from OSM covering the National University of 

Ireland, Maynooth (NUIM) and its surrounding areas. A screenshot of the 

                                                      
2  http://www.openstreetmap.org 
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OSM map coverage for this area at the time of project implementation is 

shown in Figure 1(a), while the corresponding map coverage over the same 

time/area from Google Maps is shown in Figure 1(b). The detailed OSM data 

is mainly created by students from NUIM and is freely available for inclusion 

in all value-added projects, a clear example of how OSM grows research and 

business opportunities through volunteers contributing data [13]. 

 

 

Fig. 1. (a) 2012 OSM map coverage of NUIM, Ireland; (b) Map coverage of the same place and 

time from Google Maps. 

In this project, 2D footprints of NUIM campus buildings were downloaded 

directly from the OSM map interface (www.openstreetmap.org) and/or from 

its data repository (e.g. Planet OSM
3
 and Metro Extracts

4
). For NUIM campus 

data, which covers a relatively small area, the entire campus can be exported 

by drawing a bounding box over the campus region to specify the area of in-

terest. The downloaded OSM data contains several layers of geometry types 

(features), such as polygons (e.g. building footprints), polylines (e.g. roads), 

and points (e.g. points-of-interest). In our case, a layer of building polygons 

was extracted and inserted into an Oracle Spatial database via the Feature 

Manipulation Engine (FME) Workbench utility [22], which is a toolset that 

converts and transfers data between different data formats. The inserted poly-

gon data in Oracle Spatial is shown in Figure 2. 

                                                      
3  http://planet.openstreetmap.org/ 
4  http://metro.teczno.com/ 
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Fig. 2. 2D footprints (polygons) of NUIM buildings inserted into Oracle Spatial. 

4 Preparing 3D Models for Google Earth Integration 

Google Earth (GE) allows developers to upload 3D building models for direct 

visualization in the GE environment or for inclusion in a webpage using their 

application programming interface (API). When retrieving data for visualiza-

tion, a client (desktop or mobile) queries for data either from temporary cache 

memory or from GE databases. However, due to realtime display require-

ments and other issues, GE can only process very simple 3D block models if 

display speed is a priority. Therefore, in order to include our detailed 3D 

campus building models in GE, we first needed to develop a modelling work-

flow to transform raw LiDAR point cloud data to Google Earth KML format 

using various mapping tools like CloudWorx [21] and the FME Workbench 

utility. The KML format supports both solid and polygon data types, and both 

are needed to address real-time GE display issues as discussed below. 

Raw data used to construct detailed building models for 3D city maps can 

be obtained from various sources through a wide range of techniques. With 

recent developments in photogrammetry and remote sensing, building models 

can be automatically reconstructed given the geometric resolution of satellite 

imagery and Light Detection and Ranging (LiDAR) point cloud data [19]. The 

geometric and semantic properties of 3D models are typically stored in five 

consecutive levels-of-detail (LoD), in which LoD0 defines a coarse regional 
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scale model while LoD4 denotes architectural building models with detailed 

walls, roof structures, balconies, interior structures, and detailed vegetation 

and transportation objects [27]. An advantage of the LoD approach is the co-

herent modelling of semantics and geometric/topological properties together 

at each level, where geometric objects get assigned to semantic objects. In 

order to meet our eCampus objectives, 3D building models have to be at least 

to LoD3 level. 

To achieve this LoD, a modelling workflow (Fig. 3) was developed to re-

construct building models suitable for real-time GE display from LiDAR 

point clouds. LiDAR point clouds of campus buildings were first acquired 

using a Leica ScanStation C10 controlled by Cyclone-3D Point Cloud Pro-

cessing Software installed on a laptop linked to the scanner. Subsequently, the 

point clouds were registered and geo-referenced within the Cyclone environ-

ment [20] and the 3D building models manually created using AutoDesk and 

a CloudWorx plug-in [21]. Leica CloudWorx for AutoCad offers many ma-

nipulation and editing tools to assist users to trace or auto fit lines, arcs and 

polylines to 3D point cloud data. Finally, by employing FME Workbench, a 

3D building model's underlying CAD geometry is transformed to KML for-

mat to allow for online display by web-based mapping applications in Google 

Earth. A more detailed description of each step in this modelling workflow 

can be found in [17]. 

 

 

Fig. 3. LiDAR workflow for 3D BIM modeling. 

This modelling methodology was applied to the north campus of the NUIM 

study area. This area was selected because it contains a mixture of simple and 

complex buildings with various architectural styles (e.g. historic and modern 

buildings), which can be most problematic when reconstructing 3D building 

models. The tallest building is 20 m. Due to GE constraints with how it pro-

cesses (accesses/displays) 3D solids, the AutoCAD DWG format solid models 

created in Step 4 (above) have some limitations after converting to 3D solid 

KML format concerning access to their object/sub-object attributes (such as 

building/room name). 

In Google Earth, linked attribute information cannot be accessed by simply 

clicking (pointing/selecting) just anywhere on the solid building shape. To 
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overcome this limitation, the solid building shape must be converted to 3D 

polygon data, which can be accessed in GE by clicking anywhere inside the 

polygon. However, by transforming all 3D solids to KML polygons, a map 

scene can contain a huge number of polygons because numerous polygons are 

required to represent all the doors/windows, which can make the KML file so 

large that it exceeds the limit that GE supports for real-time display. There-

fore, the KML 3D polygon file has to be thinned to show important detail of 

attribute-bearing objects only. So, an overlay layer of empty 3D polygons 

around each window/door was added and the DWG solids of the 

doors/windows were transformed to KML solids for visualisation purposes, 

otherwise users would only see holes in a wall rather than doors or windows. 

In summary, 3D solids and 3D polygons together represent the campus 

building models in KML format with their associated rooms linked to any 

available metadata information. While polygons are applied to all objects, 3D 

solids are also used for visualizing geometries of window/door frame details. 

This allows us to assign a different appearance to each building sub-

component by filling with either a color or texture and importantly the ability 

to click anywhere inside a polygon shape (e.g. window/door/wall) to se-

lect/query the object directly. 

5 eCampus Architecture 

The eCampus Demonstrator is a browser-based application based on 2D OSM 

data and 3D GE data and is accessible to both desktop and mobile devices. It 

aims to help users explore in more detail the campus by providing those de-

tailed maps and utilities for both 2D and 3D querying and visualisation. Dif-

ferent search functionality is provided so that users can ask questions by inter-

acting with the map itself. For instance, they can ask: “What is that building 

over there?” by pointing at it with their mobile device; “What is the class 

schedule of this room?” by clicking on its window in the mobile/desktop dis-

play or by choosing a room id from a list; “What can I actually see around 

me?” when standing at a particular location on campus; they can also ask to 

visualise a route together with directional images (i.e. containing superim-

posed arrows pointing the way) between two buildings/rooms or any location 

by choosing a building/room from a list or by clicking locations directly on 

the map. Query results are visualised on the 2D/3D map overlaid with further 

business data where available. The application architecture includes 3 layers: 

interface layer, web-services, and database layer (Fig. 4). 
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Fig. 4. Three Tier eCampus Demonstrator System Architecture. 

5.1 Database layer 

The 2D building footprint and detailed 3D models of NUIM campus that 

serve the spatial data web-services are physically hosted at DIT in Oracle Spa-

tial 11g databases. Other data related to pathways, roads and building images 

are hosted at NUIM in PostGIS databases. Many 2D campus footprints were 

first downloaded from OSM and then uploaded to the Oracle Spatial DBMS 

where geometry data is stored in a single column data type of 

SDO_GEOMETRY to define the geometry type (e.g. points, lines, polygons, 

solids, etc.), the dimension, and an array of x, y (and z for 3D) coordinates 

comprising points or vertices of campus objects. 

In Section 4, the workflow for 3D BIM modelling and export to KML for-

mat for displaying in GE was discussed. In fact, 3D building detail is also 

needed and stored in Oracle Spatial for visibility calculations and other ad-

vanced search operations. In this case, the FME workbench utility was also 

used to export the 3D models to the spatial database – a similar process as 

when exporting to KML. After reaching Step 4 (3D BIM in AutoCAD) in the 

modelling workflow, there are two groups of layers stored in the AutoCAD 

database: (i) stored solid components involving exterior walls, window/door 

frames, roofs, and balconies and (ii) stored polygons of window/door extents. 

These two layers are then exported to Oracle Spatial. As mentioned previous-

ly, the reason for this type of data management is because of “clicking” re-

strictions inherent to Google Earth regarding pointing/selecting solid building 

objects/sub-object attributes directly from the map. 
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5.2 Web-services layer 

At the logical level, the spatial data retrieval web-services and business data 

retrieval webservices are installed in this layer. 

Spatial data retrieval web-services.  
Spatial data retrieval web-services include routing navigation, image retrieval 

for directional visualisation of routes, and 2D and 3D visibility based direc-

tional querying; 2D Isovist, point-to-select, and field-of-view queries; plus 3D 

Isovist, point-to-select, and frustum spatial searches. These web-services were 

developed by various project partners on different platforms, but have the 

same deployment methods in the form of RESTful web-services [1, 3]. More 

specifically, an IIS (Internet Information Services) server is appointed to host 

the web-services, and query requests are constructed using standard HTTP 

calls containing a valid URL filled with the required query parameters. 

The routing navigation web-service needs query parameters such as 

transport mode (e.g. pedestrian, driving, wheelchair, or directional images), 

and a starting and destination location in terms of longitude and latitude coor-

dinates taken from clicking on the map. The navigation web-service then re-

turns a list of points (i.e. OSM object vertices along the route) in KML for-

mat. The eCampus applications then uses OpenLayers API to read this list and 

connect the KML points to display the route as a line drawn on the map. Us-

ers can also provide a building or room name for the start/end location. The 

corresponding coordinates of the building/room is retrieved from 2D and 3D 

spatial databases and passed to the web-service in this case. 

The directional images web-service provides a list of images (thumbnails) 

along the route augmented with superimposed arrows pointing the way. The 

parameters for this web-service are the same as for normal routing. The web-

service returns in JSON format a list of image URLs, their location, and the 

view angle of each image with respect to the direction (path) needed to fol-

low. Figure 6 shows how the directional image web service result displays on 

the OSM basemap. 
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Fig. 5. The directional image web-service result overlaid on the OSM base map. Clicking on 

each thumbnail opens a larger image showing an arrow pointing the direction to travel. 

2D and 3D visibility-based directional query web-services correspond to 

different search options in relation to different spatial data types in the data-

base. These web-services are divided into two sub-groups, one applied to 2D 

OSM building footprints and the other applied to the 3D GE (KML) building 

models. 2D Isovist view, 2D Field-of-View, 2D/3D Line-of-Sight (Point-to-

Select), 3D Frustum and 3D Threat Dome are the different types of 2D and 

3D spatial queries available. More detail on these spatial search algorithms 

and the web-services developed for each can be found in [11, 12]. 

 

 

Fig. 6. The 2D Isovist web service result overlaid on the OSM basemap. Only objects that a 

user can actually see out to a specified distance (e.g. 100m) in 2D get returned by the query. 

The business data retrieval web-services.  
Useful business data attributes for student/staff users mainly relates to class-

room schedules and facilities. RESTful web-services were developed to re-
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trieve this information by querying an external NUIM database containing 

university business data associated to room numbers. The web service returns 

the classroom schedule in html format. 

5.3 Interface layer 

The interface layer consists of html pages displayed to users (client side) in a 

standard web browser. At this level, spatial data returned from 2D queries is 

visualized on 2D OSM maps as additional layers using OpenLayers API. For 

3D queries, the results are returned in JSON format and drawn as placemarks 

added to a GE view. The integration of spatial data and business data is per-

formed at the client side when attribute information about buildings and asso-

ciated rooms/objects is found. 

6 Advanced GeoService Functionality 

The eCampus Demonstrator is developed for both web and wireless devices. 

However, there are some differences in the look and feel of the interfaces and 

user interactions between the desktop version and the smartphone version. 

This is mainly due to additional limitations of the Google Earth API for mo-

bile devices. In addition, on mobile devices information like user location, tilt, 

and compass readings can be captured automatically, while users need to in-

put them when interacting with the desktop interface. The eCampus Demon-

strator GeoService functionality and its organization are depicted in Figure 7. 

 

 

Fig. 7. eCampus search functionality. There are 5 main search functions in the eCampus De-

monstrator. Each function provides a further subset of query utilities (dashed boxes). 

6.1 Exploring eCampus information 

This search functionality is available from the home page of the desktop ap-

plication (Fig. 10). It shows a 2D OSM basemap of the campus where users 
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can selectively click on each building (polygon) on the map to explore more 

detailed information visualised on the right side of the interface. The available 

business data includes information on rooms within the building, facul-

ties/departments in each building, opening hours of the building, car park in-

formation, building images and detailed architectural plans (Figs. 10, 11). 

 

 

Fig. 8. Selected building information displayed on right side of desktop interface. 

Personalised Information.  
This functionality provides information specifically targeted to user interests. 

Campus users manage their interests by adding or removing them from their 

profile. An auto complete list of keywords is provided to help users in select-

ing and adding interest keywords. After logging into the system with a stu-

dent/staff ID, campus information such as school/course calendar and 

news/events are personalized based on these chosen interests (e.g. History, 

Sports, Societies, Restaurants, etc.) (Fig. 12). 

 

 

Fig. 9. Personalised news and events overlaid on OSM basemap. 
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6.2 2D Queries on the desktop 

2D search functionality allows us to perform Isovist, Field-of-View and Point-

to-Select queries. On the desktop interface, a user first chooses a query type 

and then clicks a location and drags the mouse to indicate the search radius 

directly on the OSM map. Depending on the query type, the user may option-

ally enter a field-of-view angle and search direction. The query result is dis-

played as blue shaded buildings with the field-of-view (viewshed) shaded in 

red (Fig. 6). As opposed to a simple range query where all objects out to a 

certain distance are retrieved, a 2D Isovist is a 360° line-of-sight query around 

a user’s location that is clipped by OSM building footprints. This allows for 

more task specific queries such as “retrieve all objects around me that I can 

actually see within 50 meters”. 

By further constricting the 360° Isovist search, the Field-of-View query al-

lows users to indicate a viewshed angle, direction, and distance from their 

chosen location. The application then retrieves all visible objects that fall 

within that angular Field-of-View, in that particular direction, and within that 

specified distance (Fig. 13). 

 

 

Fig. 10. Results of 2D Field-of-View query looking northwards out to 160m. 

The Point-to-Select query intends to mimic a user pointing their 

smartphone at actual objects in the real-world, but is invoked on the desktop 

by clicking 2 (or more) locations on the map and retrieving all objects that 

intersect the line (Fig. 14). 
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Fig. 11. 2D Point-to-Select query with 4 points indicating the chosen “line-of-sight”. 

6.3 2D queries on the mobile 

Mobile interfaces for exploring the campus on a smartphone are depicted in 

Figure 15. Building information gets retrieved by simply tapping on any 

building in the OSM map. 

 

 

Fig. 12. Mobile eCampus interface on smartphone. 

The mobile interface takes into account the current user location from the 

device GPS, tilt of the device from accelerometer, and azimuth of the pointing 

direction from the digital compass. The search radius is indicated by dragging 

the distance slider left or right with the resulting red viewshed changing dy-

namically to indicate scale. The final viewshed query shape gets clipped by 

the OSM building footprints before being sent to the spatial database to re-

trieve any intersected objects (Fig. 16). 
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Fig. 13. Mobile 2D Isovist viewshed (in red) set to search out to 320m. Only objects that can 

actually be seen (in blue) from current location get returned. 

Regarding the mobile version of route navigation, users can ask to find a 

route from their current location (based on their GPS location) to any build-

ing/room or between any two campus buildings selected from a list (Fig. 17). 

 

 

Fig. 14. Mobile route navigation with directional images between selected buildings/rooms. 

6.3 3D queries on desktop and mobile 

The 3D eCampus search functionality displays NUIM maps in KML format 

using Google Earth (3D map). At this stage, users can query the campus by 

clicking directly on any building or door/window (i.e. room). The correspond-

ing building/room information gets overlaid on the 3D map (Fig. 8). The 

eCampus Demonstrator provides two 3D search options: 360° Isovist query 
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(Threat Dome) and a directional Frustum query. The 360° Isovist query is a 

3D version of the 2D Isovist query, which means it, returns objects that users 

can actually see around them in all directions horizontal and vertical out to a 

specified distance (Fig. 18). The final dome shape (i.e. search space) is deter-

mined by first calculating all intersections between a sphere centred on the 

user's location and the 3D building models stored in the spatial database. 

Next, the intersection points are joined into a 3D polygon shape that is then 

used as the query “window” into the database to retrieve all visible objects 

(e.g. rooms/buildings) it contains. 

The Frustum view query is the 3D version of 2D Field-of-View query. It con-

strains the shape of the search space to a location having vertical and horizon-

tal angular visibility (and tilt) in a particular direction, out to a specified dis-

tance and clipped to the 3D building models stored in the spatial database. 

The intersection of the resulting frustum query “window” with other database 

objects represents what users can actually see in a given 3D direction, con-

strained, for example, to their actual field-of-view (Fig. 19). 

 

 

Fig. 15. 3D 360° Isovist (Threat Dome) view query. Only visible objects (e.g. buildings/rooms) 

that fall within the dome shape get returned by the query. 

 

Fig. 16. 3D Frustum query. The final frustum shape is clipped by any building objects in its 

path before getting utilised as a 3D query window in the spatial database. 
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Currently, due to API limitations with mobile GE, e.g. in drawing/inserting 

user defined 3D objects, the mobile 360° Isovist and Frustum query interfaces 

look the same as in 2D. However, the query results do take into account the 

true 3D nature of the search space. In this case, the search results provide a 

list of buildings and rooms intersected by the 3D query but displayed on a 2D 

OSM map view (Fig. 20) (i.e., the objects intersected by the yellow Threat 

Dome shape in Figure 18 or by the green frustum shape in Figure 19). 

 

 

Fig. 17. 3D Isovist search and result. Note query result is shown overlaid in 2D OSM as GE 

API does not yet allow functionality for user-defined customized 3D objects overlaid on their 

mobile 3D maps. 

7 Discussion 

During the development phase of this application, some important limiting 

factors emerged regarding the technology employed. After first analyzing the 

capabilities of the chosen technologies for implementation, the following dis-

cussion presents some advantages and disadvantages of our approach. 

3D modelling and visualisation 

When creating 3D virtual cities for such Personal GeoService applications and 

general mobile spatial interaction in the Internet of Things, the most important 

task is to generate detailed and geometrically accurate building models. In 

contrast to traditional methods (e.g. on-site surveying), terrestrial laser scan-

ning is an attractive alternative for collecting building coordinate data in terms 

of field time and accuracy [23–25]. However, the process of building detailed 

3D models from point cloud data is still quite a manual process. In our appli-

cation, it takes around 6–8 hours for each building. This implies automatic or 

semiautomatic processes must be developed to reconstruct building models 
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with LoD3 to reduce post-processing bottlenecks for city-wide 3D modelling 

workflows used by this type of application. 

As the GE platform currently only displays 3D objects above the earth's 

surface, this restricts visualisation of any underground detail below ground 

elevation level. To display and interact with entire building models above and 

below ground, an alternate web mapping platform should be considered. Also, 

mobile device browsers do not currently (2013) support the Google Earth 

API, therefore there are limitations when visualising 3D models and other 

customised vector objects on smartphones. 

Integration level of spatial data and business data 

As mentioned previously, the integration of spatial data and business data is 

performed at the client side, i.e. at the visualisation level. We considered three 

options to provide spatial data and related business data to users as shown in 

Figure 21. 

 

 

Fig. 18. Different spatial data and business data integration approaches. The red (X) represents 

the integration point. The arrow describes the calling direction. WS: Web-Service; SD: spatial 

data WS; BD: business data WS; GUI: Graphical User Interface. (a) Early-integration: In this 

approach, retrieving business data is performed from inside the spatial data retrieving WS. The 

final results sent back to GUI include spatial data and business data; (b) Aggregated web-

service: A new web-service is developed to compose the results returned by the spatial data 

web-service and the business data web- service; (c) Integration at the visualisation level: The 

results of the spatial data web-service and business data web-service are overlaid at the visuali-

sation level. We have chosen the third approach: integration at the visualisation level, as this 

approach provides some advantages compared to the other two approaches (Table 1). 

OGC services 

The Open Geospatial Consortium (OGC) has developed some standards for 

geospatial processing technologies to enable applications from different 

commercial vendors to interoperate. However, the locationing services devel-

oped within OGC focus mainly on tracking and location-based applications 

for mobile devices [8]. These services are far from what we require in this 
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application, where all RESTful web-services for location-dependent direc-

tional and visibility space querying have been developed in our own algo-

rithms. 

Table 1. Spatial data and business data integration options. 

(a) Earlyintegration 

There is a dependency of SD retrieving WS and a specific BD re-

trieving WS. That means SD WS cannot be reused for other purpos-

es 

(b) Aggregated web-

service 

SD and BD WS are independent. It depends on the user needs that 

the aggregated WS (AggWS) will integrate suitably SD and BD 

WS. 

Suppose )(WSfA  is the cost of analyzing the result of a WS, 

)(WSfC  is the cost of calling a web-service, then the cost of this 

approach to display the result is: 

)()()()()( BDfCSDfASDfCAggWSfAAggWSfC   

Note that the results of AggWS needs to be analyzed to draw the 

geometry shapes and the business data is then added to the feature 

data of the geometry object. In case the results of AggWS is in 

KML format, there is no need of analysing AggWS (so no cost), all 

spatial data and business data can be visualized. However, in that 

case the visualisation is fixed according to the API provided. 

(c) Integration at visu-

alization level 

SD and BD WS are independent. It depends on user needs that 

suitable SD and BD WS are consumed at the visualisation (client 

side code source). The cost to display the result to the users is: 

)()()( BDfCSDfASDfC   

Visualization of the results is flexible according to the users' needs. 

 

ROA instead of SOA 

For the last decade, Service Oriented Architectures (SOA) has been widely 

used for distributed applications, particularly on the Web. In Geographic In-

formation Systems (GIS), there is no exception here. For instance in [2], a 

GIS web-service architecture was proposed based on SOA technology. How-

ever, while SOA is a proven approach, in some cases it can be overly compli-

cated and processor heavy. For example, when handling a SOAP message, the 

client (desktop or mobile) needs to send a request with parameters constructed 

and wrapped in XML format with special headers and other elements. It also 

has to parse any response from the server in the same effusive XML for-

mat [4]. 

In the case where the client is a mobile device, this approach contains far 

too much processing overhead in terms of the volume of data, most of it quite 

unnecessary, that must be sent/received on mobile devices having relatively 

limited wireless connection speeds and often a data transmission cost [10]. In 

this respect, JSON is a much lighter data format in terms of processing and 
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transmitting wirelessly. Furthermore, we agree with the general statement that 

the REST architecture provides a “scalable and simple deployment of 

webservices and particularly appealing for Earth and Space Science” [6] as 

RESTful web-services have been much used in geo-information sharing. 

Dependency of 3D query performance and 3D data details. 

In our application, users carry out spatial queries from outside of buildings. 

Therefore only the geometries of exterior structural components of the build-

ing (e.g. facades, roofs, windows, doors, balcony, canopy, etc.) associated 

with room level attribution (e.g. room name and function) were loaded into 

the database. In this way, it helps to reduce the complexity of the 3D models 

and thus improve 3D spatial query performance. 

8 Conclusions 

Providing users with business context data in location dependent queries helps 

to fulfil more task specific user needs within detailed data environments. In 

order to meet that objective, there is a need for 3D building modelling to at 

least LoD3. The workflow employed in this paper was successful in recon-

structing geometrically accurate building models with LoD3 detail. However, 

the procedure is time consuming for larger project areas where numerous 

building models need to be reconstructed; therefore, automation of this ap-

proach is still an open problem. The flexibility, interoperability and heteroge-

neity of this kind of GeoService application demand suitable software archi-

tecture. In particular to this geospatial application, a Resource Oriented Archi-

tecture (ROA) was chosen for the implementation. 

At time of writing, the eCampus Demonstrator presented in this paper is 

among the first GeoService applications to explore an area in detail on both 

desktop and mobile 2D and 3D maps. It provides users with more personal-

ized search utilities, like directional/visibility query functionality, than con-

temporary eCampus information systems currently allow. However, there are 

still some significant 3D data processing limitations that need solving by GE 

if their mapping platform is to be widely adopted for similar detailed data 

geo-application development in future. In the meantime, alternative platforms 

to consider could be 3D games engines such as Unity
5
. We also need more 

testing with student/staff users to get their feedback on overall functionality as 

well as the general performance of our application. Semantic Web technolo-

gies might also be employed to facilitate the integration of heterogeneous 

data [26]. In summary, this detailed data eCampus implementation can be 

                                                      
5  http://unity3d.com/unity 
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considered as a starting point for developers and researchers when developing 

for similar application domains, such as business parks, hospitals, airports, 

and shopping centres. 
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