2012-01-27

Investigation of a New Material for Heart Valve Tissue Engineering

Claire Brougham
Technological University Dublin, claire.brougham@tudublin.ie

Nian Shen
Trinity College Dublin

Allison Cudsworth
Trinity College Dublin

Thomas Flanagan
Trinity College Dublin

Stefan Jockenhoevel
Aachen University of Technology

Follow this and additional works at: https://arrow.tudublin.ie/biodevcon

Part of the Biology and Biomimetic Materials Commons, and the Biomaterials Commons
See next page for additional authors

Recommended Citation

This Conference Paper is brought to you for free and open access by the Biomedical Devices and Assistive Technology Research Group at ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/)
Authors
Claire Brougham, Nian Shen, Allison Cudsworth, Thomas Flanagan, Stefan Jockenhoevel, and Fergal O'Brien

This conference paper is available at ARROW@TU Dublin: https://arrow.tudublin.ie/biodevcon/8
INVESTIGATION OF A NEW MATERIAL FOR HEART VALVE TISSUE ENGINEERING

Claire Brougham1,2, Nian Shen1,2, Allison Cudsworth3, Thomas C. Flanagan4, Stefan Jockenhovel4, Fergal J.O’Brien1,3

1 Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.
2 Biomedical Devices and Assistive Technology Research Group, DIT
3 Trinity Centre for Bioengineering, Trinity College Dublin
4 Helmholtz Institute for Biomedical Engineering & Institute for Textile Engineering
University Hospital Aachen | RWTH Aachen University
5 School of Medicine & Medical Science, University College Dublin

Introduction

• Approx 300,000 heart valve replacements are performed annually however, current treatment options have limited success.

• Current therapies cannot grow or remodel with the patient. These shortcomings have prompted increased focus on tissue engineering techniques to create fully autologous heart valve replacements.

• Despite significant advances in the field of heart valve tissue engineering, a major problem is the inability of valves to maintain an appropriate seal upon closure as a result of cell-mediated retraction of the leaflets [1].

Materials and methods

• Scaffold were crosslinked physically by dehydrothermal (DHT) cross-linking at 105°C for 24 hours. They were subsequently chemically crosslinked using 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDAC) in the presence of N-hydroxysuccinimide (NHS), solution which stiffens the scaffold while maintaining elasticity [7].

• To infiltrate the CG material with fibrin (a four stage solution which polymerises once the final ingredient is added), both drop loading and injection methods were assessed.

• Masson’s Trichrome staining and SEM were used to assess the distribution of the fibrin throughout the CG material.

• Mechanical properties were tested using a Zwick/Roell Z050 testing machine.

Aims and objectives

• Hypothesis: A CG-fibrin scaffold will provide sufficient structural stiffness to resist the contractile forces of cells.

• Aim of this study: Develop a method of fabricating the CG-fibrin scaffold and analyse the resulting material.

Materials and methods

• A CG scaffold will be fabricated through freeze drying in a 3-D mould (Figure 2).

• Freeze drying parameters such as final freezing temperature, cooling rate and drying times were optimised to produce a CG scaffold with a homogenous pore size structure [6].

• The freeze drying cycle optimisation was assessed using SEM, pore size and porosity analysis.

Results

• Successful development of a freeze dried CG material with a homogenous structure in a tri-leaflet valve conduit shape.

• Scaffold were crosslinked physically by dehydrothermal (DHT) cross-linking at 105°C for 24 hours. They were subsequently chemically crosslinked using 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDAC) in the presence of N-hydroxysuccinimide (NHS), solution which stiffens the scaffold while maintaining elasticity [7].

• To infiltrate the CG material with fibrin (a four stage solution which polymerises once the final ingredient is added), both drop loading and injection methods were assessed.

• Masson’s Trichrome staining and SEM were used to assess the distribution of the fibrin throughout the CG material.

• Mechanical properties were tested using a Zwick/Roell Z050 testing machine.

Discussion and conclusions

• This study has led to the development of a freeze-dried CG-fibrin scaffold which will be used for heart valve tissue engineering.

• This CG scaffold has a homogeneous pore structure throughout and can be manufactured in a repeatable, 3-D form.

• The proof of principle that fibrin can be successfully infiltrated into the CG material has been demonstrated.

• The stable ratio of fibrin to CG has been established at 0.7 μl per mm² CG.

• A method of injecting the fibrin into the CG has been developed which has demonstrated full infiltration of the fibrin through the CG.

• The use of crosslinking has been found to increase the compressive and tensile moduli of the material backbone which will improve the ability of the material to withstand the contractile forces of the cells on the material.

On-going Work

• The next phase of this study is to introduce cells to the scaffold in order to assess the biological performance of the material. This will also demonstrate the resistance of the material to the contractile forces exerted by the cells.

References

Acknowledgements

Acknowledgements to RCSI Tissue Engineering Research Group and the FOCUS institute, DIT. Funding for this research was provided by Irish Heart Foundation and the European Research Council. Funding for this conference was provided by DIT.