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Single Channel Vocal Separation using Median
Filtering and Factorisation Techniques

Derry FitzGerald, Mikel Gainza, Audio Research Group, Dublin Institute of Technology, Kevin St, Dublin 2,
Ireland

Abstract— This paper deals with the problem of the extraction
of vocals from single channel audio signals containing both
vocals and other instruments, including both pitched instruments
and percussion instruments. A novel median filtering-based
approach for the extraction of vocal tracks is described, which
is simple and efficient to implement. Further improvements in
separation quality are then obtained by the application of tensor
factorisation techniques to further extract residual instruments
from the vocal mix. Finally, a novel use of non-negative partial
matrix cofactorisation is demonstrated as a means of further
improving separation quality. Here the original single channel
mixture is partially cofactorised in conjunction with the separated
vocal signal in order to obtain improved separation of the vocal
and instrumental tracks. The effectiveness of these techniques is
then demonstrated on a test set of real world signals.

Index Terms— Single channel sound source separation, vocal
separation and suppression, Non-negative partial cofactorisation,
tensor factorisation.

I. INTRODUCTION

The topic of singing voice (or vocal) separation/extraction,
a subset of the more general sound source separation problem,
has recieved attention over the past number of years. Here, in
this case, the separation problem is limited to extracting the
singing voice from a recording of polyphonic music, with no
restrictions on the instrumentation present.

Vocal separation is a topic of interest due to its numerous ap-
plications. For example, once the vocals have been extracted,
the vocal melody line can be more easily transcribed by pitch
estimation algorithms, the output of which can then be used in
query by humming systems. The separated vocals can also be
repurposed or “sampled” for use in other pieces of music. This
is commonplace in popular music, and the availabilty of high
quality vocal separations would greatly increase the amount
of material available for this purpose.

Further, much existing research on sound source separa-
tion has focused on pitched instruments and/or percussion
instruments, and the addition of vocal separation algorithms
in conjunction with these existing approaches would allow
other applications, such as the upmixing of old recordings
from mono to stereo or 5.1 surround sound. Other applications
include automatically aligning lyrics to music and singer
identification.

A. Previous Research

Much of the existing research on vocal separation has fo-
cused on stereo or two channel recordings, where the position
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of the vocal in the stereo field is often used to aid separation.
Work in this area includes the system proposed by Sofianos
et al [1], which makes use of both Independent Component
Analysis [2] and the Azimuth Discrimination and Resynthesis
algorithm (ADRess) [3] to extract vocals from stereo signals.
A variant of ADRess has also been used commercially for
vocal removal for kareoke games. However, a problem with
such approaches is that there are often multiple instruments
occupying the same position in the stereo field as the vocals,
such as bass guitar and drums such as the kick and snare
drums. Further, a large proportion of older recordings from
the 1950s and before are only single channel recordings.
Therefore, it can be seen that a system that is capable of
separating vocals from single channel or mono recordings
would be advantageous, both to handle old recordings, and
deal with the source overlap problem in modern recordings.
To this end, the work in this paper focuses on the problem of
vocal extraction from single channel recordings of polyphonic
music, and so a brief overview of previous research on this
topic is now presented.

Li and Wang [4] presented a system which consisted of three
stages, the first divided the input signal into regions where
vocals were present and regions where they were not. The
regions with vocals were then passed to a predominant pitch
estimator, which attempted to identify the vocal melody, Then
knowledge of this melody was used to separate out the singing
voice from the recordings using an adaptation of a previous
technique for single channel speech separation [5]. However,
as it is based on a predominant melody estimator, it cannot
deal with vocal harmonies.

Ozerov et al proposed the use of Bayesian methods for the
purposes of single channel vocal separation [6]. Their system
required the use of training data consisting of a set of solo
vocal recordings, which were then used to train a Bayesian
model for singing voice. Similarly, a set of instrumental tracks
were then used to create a model for instrumental parts found
in music. Their algorithm consisted of a number of stages.
First the input signal was segmented into regions where the
vocal was present, and regions where only instruments were
present. The instrument-only segments were then used to
adapt the general instrumental model to better fit the actual
instruments present in the input signal. This adapted model,
in conjunction with the existing general vocal model, was then
used to attempt separation of the vocals. Both of these were
further adapted during the course of the separation to better
match the characteristics of the input signal, Finally, separation
was obtained by using the adapted models to create adaptive
Wiener filters which were then applied to the input signal. This



system was found to be capable of giving good separation
results, but did have a number of shortcomings. Firstly, the
input signal must have sufficient non-vocal segments to allow
the instrumental model to adapt to the characteristics of the
input signal. Secondly, the music from the non-vocal parts
had to be similar to that during the vocal parts, and finally,
the system was designed to deal with solo singing voice, in
other words, the system performed better in the absence of
backing vocals.

Vembu et al [7] proposed a singing voice separation system
based on non-negative matrix factorisation (NMF) [22]. The
first stage of their technique was to build a classifier to dis-
criminate automatically between sections of the music where
no vocals were present and segments where they were present.
They then proceeded to decompose a spectrogram of the input
signal using NMF, and then to cluster the basis functions
into vocal and nonvocal basis functions. Two techniques
for clustering were tested, the first used the vocal/nonvocal
classifier to discriminate between vocal and non-vocal basis
functions, while the second was an unsupervised classifier
based on features known to discriminate between vocal and
non-vocal segments of music. The first method was not found
to perform well, while the second was capable of giving good
results in simple music, such as just voice and guitar with no
other instruments present.

Raj et al also proposed a factorisation-like technique for
separating singing voice [8]. Here, they manually identified
regions which did not contain vocals and used these segments
to train a model of the accompaniment. The vocal parts were
then learned from the mixture while keeping the accompani-
ment model fixed. This suffered from a similar drawback to the
method proposed by Ozerov et al, namely, the mixure signal
needed to have sufficient non-vocal segments to accurately
train the model.

Hsu et al extended work by Li et al to improve the
separation of singing voice [10]. They used Hidden Markov
Models to identify regions where the accompaniment was
dominant, where voiced singing (ie where a discernible pitch
was present in the vocals) was dominant, and where unvoiced
singing was dominant. They then used the method proposed
by Li et al to identify and separate the voiced parts of the
singing. Further enhancements included the use of a spectral
subtraction method to reduce the level of accompaniment in
the separated singing, as well as using statistical models to
attempt to separate the unvoiced regions of singing. However,
it still suffered from the disadvantage that the system is based
on predominant melody estimation.

Hsu et al. later proposed another single-channel singing
voice separation algorithm in [9]. This algorithm consists of a
number of steps. First, sinusiodal partials are extracted from
the signal. Then parameters measuring vibrato and tremelo are
estimated for each of the partials. Then the vocal partials are
discriminated from the instrumental partials by thresholding
on the extracted parameters. A technique called Normalised
sub-harmonic summation [10] was then applied as a means of
further enhancing the vocal harmonics, and improve the sep-
arations. This principal application of this paper was melody
estimation, but the technique appears to give good separation

results. However, a drawback of this approach is that it focuses
on the extraction of a solo singing voice, without attempting
to extract backing vocals.

As can be seen from the above, the principal problems with
existing vocal separation algorithms is that they depend on
either previous training data, or training on non-vocal segments
of the music, or a predominant melody estimation stage, which
can introduce problems if the incorrect pitch is determined.
Further, it can be seen that these algorithms are all designed to
deal with a single solo voice, as opposed to handling backing
vocals and other vocal harmony parts. These are shortcomings
which are addressed in the algorithms proposed in this paper.

Other research of interest, though on source separaration of
drum sounds in particular, includes the Harmonic-Percussive
Median Filtering-based algorithm developed by the authors of
this paper [11]. This uses median filtering on spectrograms
to separate harmonic and percussive components in audio
signals. As will be seen later, the properties of this algorithm
can be modified for use to separate vocals, and so section II
describes this algorithm in greater detail. A further technique,
also proposed by the authors, uses tensor factorisations to
separate musical sources, both pitched and percussion [17].
This can be used as a means of improving vocal separations
by reducing artifacts remaining after initial vocal separation.
Finally, a partial cofactorisation approach to drum separation
was described in [21]. This approach uses pre-existing samples
of drums which are cofactorised in conjunction with the
mixture spectrogram in order to constrain some of the basis
functions to correspond to drum instruments. However, there
is no restriction on the source to be used in the cofactorisation,
and so the vocal separations obtained from one method can
be used to drive the cofactorisation, resulting in a further
improved separation of the vocals.

B. Paper Overview
In the following section, a simple median filtering-based

approach to harmonic-percussive separation is discussed, with
particular reference to it’s properties when dealing with
singing voice. This leads to Section III where a multipass
extension of this algorithm is proposed for the purposes of
vocal separation. Section IV describes how the vocal separa-
tion output from the multipass median filtering algorithm can
be enhanced by the addition of another separation algorithm
based on non-negative tensor factorisation. The following
section then proposes a novel use for non-negative partial co-
factorisation. Here, the output of the previous vocal separation
algorithm is used as a guide to perform a new factorisation of
the original mixture into vocal and instrumental tracks, result-
ing in improved separation over previous approaches. Section
VI then describes the test set and the testing procedures used,
as well as detailing the performance of the algorithms. Finally
Section VII offers some conclusions on the methods proposed
and highlights areas for future research.

II. HARMONIC-PERCUSSIVE SEPARATION USING MEDIAN
FILTERING

Recently, a median filtering-based technique for the separa-
tion of harmonic and percussive events from single channel



audio signals has been proposed by the author [11]. This
is based on the idea that broadband impulsive noises such
as drums and percussion form stable vertical ridges in a
magnitude or power spectrogram,typically obtained from a
Short-Time Fourier Transform (STFT), while harmonics from
pitched instruments form stable horizontal ridges in a mag-
nitude or power spectrogram, This is illustrated in Figure 1,
which shows a spectrogram of an audio signal containing a
snare drum and a piano. It can be seen that the harmonics
of the piano form stable horizontal lines in the spectrogram,
while the snare drum forms a vertical line in the spectrogram.
Therefore, a technique that emphasises vertical lines while
suppressing horizontal lines should result in a spectrogram
that contains mainly percussion instruments. Similarly em-
phasising horizontal lines at the expense of the vertical lines
should result in a spectrogram which contains mainly pitched
instruments.

This principal was first used for the separation of harmonic
and percussion instruments by Ono et al [12], who used
an iterative diffusion-based approach to emphasise horizontal
lines and vertical lines in spectrograms respectively. In effect,
this process smoothed out vertical lines in the spectrogram
by reducing spikes associated with harmonics, and smoothed
horizontal lines by reducing spikes associated with transients
due to drums or percussion. Another way of looking at this
problem is to regard the spikes due to harmonics within a
given time frame as outliers, and to regard spikes due to
percussion onsets as outliers across a given frequency slice
in time. Therefore, the problem of separating percussive and
pitched events reduces to the identification and removal of
outliers from each individual frame for percussive events, and
for each frequency slice to recover pitched instruments.

Fig. 1. Spectrogram of a drum and piano. The drum can be seen to form
stable vertical ridges, while the harmonics of the piano form stable horizontal
ridges in the spectrogram

To this end, it was proposed in [11] to use median filters
to remove these outliers, as median filters have been widely
used in image processing for the removal of speckle noise and
salt and pepper noise from images. These forms of noise can
also be regarded as outliers in an image [13]. Median filters
have proved better than moving average filters in removing
impulse noise because they are not dependent on values which

are outliers from the typical values in the area surrounding the
original sample. Median filters filter a signal by replacing a
given sample by the median of the signal values in a window
around the sample. Given an input vector x(n), then y(n) is
the output of a median filter of length l where l defines the
number of samples over which median filtering takes place.
Where l is odd, the median filter can be defined as:

y(n) = median {x(n− k : n + k), k = (l − 1)/2} (1)

Where l is even, the mean of the two values at the center of
the sorted list is used.

The effectiveness of median filtering in the suppression
of harmonic and percussive events in audio spectrograms is
demonstrated in the following figures. Figure 2(a) shows the
energy in a frequency bin across time (henceforth refered to
as a frequency slice) from the same mixture of instruments,
namely piano and snare drum, as shown in figure 1. The onset
of the snare drum can be seen as a large jump in energy in
the frequency slice, while the energy due to the piano note
harmonic is more constant across the slice. In comparison,
figure 2(b) shows the energy in the frequency slice subsequent
to median filtering. It can be seen that most of the energy due
to the drum onset has been eliminated by median filtering,
resulting in the suppression of the drum sound. Denoting the
input magnitude spectrogram S, the ith time frame as Si,
and the hth frequency slice as Sh, then a harmonic-enhanced
spectrogram frame Hh can be obtained from:

Hh =M{Sh, lharm} (2)

These individual frequency slices can then be combined to
yield H.

Fig. 2. Spectrogram frequency slice from a spectrogram containing a mixture
of snare drum and piano a) The original slice, b) the slice after median
filtering. It can be seen that a large amount of the energy of the snare has
been removed

Figure 3(a) then shows a spectrogram frame from the same
mixture as above. The harmonics due to the presence of the
piano are evident as large spikes in energy in the frame.
Figure 3(b) then shows the same frame after median filtering.
The harmonics have been removed by the median filtering,
leaving a frame in which percussive energy predominates. A



percussion-enhanced spectrogram frame Pi can be generated
by performing median filtering on Si:

Pi =M{Si, lperc} (3)

whereM indicates the median filtering operation, and lperc is
the length of the percussion-enhancing median filter. Repeating
this for each spectrogram frame will result in a percussion-
enhanced spectrogram P.

Fig. 3. Spectrogram time frame from a spectrogram containing a mixture
of snare drum and piano a) The original frame, b) the frame after median
filtering. It can be seen that a large amount of the energy of the harmonics
of the piano have been removed

The resulting harmonic and percussion suppressed spectro-
grams could then be inverted to the time domain by applying
the phase information from the original spectrogram before
performing an inverse short time fourier transform. However,
the use of median filtering introduces many artifacts into these
spectrogram, and a better strategy to ensure a high quality
resynthesis is to use H and P to generate masks which can
then be applied to the original spectrogram before inversion to
the time domain. Of particular interest in this case are masks
based on Wiener Filtering. These masks are defined as:

MHh,i =
H2
h,i

(H2
h,i + P2

h,i)
(4)

MPh,i =
P2
h,i

(H2
h,i + P2

h,i)
(5)

Complex spectrograms are then recovered for inversion
from:

Ĥ = Ŝ⊗MH (6)

and
P̂ = Ŝ⊗MP (7)

where ⊗ denotes elementwise mulitiplication and where Ŝ de-
notes the original complex valued spectrogram. These complex
spectrograms are then inverted to the time domain to yield the
separated harmonic and percussive waveforms respectively. A
further advantage of using this technique for resynthesis is
that the separated signals will sum together to give a perfect
reconstruction of the original signal. This is useful for the

purposes of remixing the audio, and for upmixing recordings
from mono to stereo. Good separations were typically obtained
from an STFT with FFT size of 4096 samples, and a hopsize
of 1024 samples, when CD quality audio with a sampling rate
of 44.1 kHz was used. In this case, lperc and lharm were set
to 17.

The above technique has been shown to be effective in
separating single channel mixtures of percussion and pitched
instruments. It should also be noted that for separation to
take place, the percussion instruments do not have to be
broadband in the sense that they have energy across the entire
spectrogram. Instead, if a percussion instrument is locally
broadband in a given portion of the spectrum, determined by
the length of the median filter, then the percussion source
can be recovered. Further, as will be described below, an
adaptation of the technique can also be used for the separation
of vocals from single channel mixtures of vocals with both
pitched and percussion instruments.

III. VOCAL SEPARATION USING MULTIPASS MEDIAN
FILTERING-BASED SEPARATION

In contrast to pitched instruments where the harmonics are
typically stable over the course of the entire note or notes
played by an instrument, the singing voice constantly varies
between voiced regions with a discernible pitch such as when
vowels are being sung, and unvoiced regions where consonants
and plosives occur. The singing voice moves smoothly back
and forth between such regions depending on the words being
sung, the duration of the individual voiced and unvoiced parts
of the words, and the characteristics of the vocalist. Even
in regions where a pitch is discernible, the voice is at best
pseudoharmonic, and has often been modeled as a broadband
excitation being filtered by formant filters.

When using the harmonic-percussive separation algorithm
described above to separate pitched and percussive instruments
in cases where singing voice was present, using the parameters
used above, it was noted that the voiced parts of the singing
tended to be separated with the pitched instruments, while the
unvoiced regions tended to be separated with the percussion
instruments. Further investigation of this revealed that the
proportion of voice which was separated with the pitched
instruments varied according to the frequency resolution of
the STFT used. At low frequency resolution, around an FFT
size of 512 samples, the majority of the voice tended to be
separated with the pitched instruments, while at high frequency
resolution, such as an FFT size of 16384 samples, the majority
of the voice tended to be separated with the percussion
instruments.

The reason for this phenomenon is that at low frequency
resolution, more and more of the voice energy is collected
within a single frequency bin, leading to the singing voice ap-
pearing as a harmonic instrument at low frequency resolution.
At high frequency resolution, the pseudoharmonic nature of
singing voice begins to dominate, and instead of the energy
of the various partials of the voice being concentrated within
a single frequency bin, the energy is spread out across a range
of frequency bins. This is in contrast to pitched instruments,



where, regardless of the frequency resolution used, the energy
of the harmonics of a source will occur in a very narrow
number of bins around the frequency of the harmonic.

Further, the high frequency resolution used means that
correspondingly, the time resolution is lower, and so there is a
much greater chance that unvoiced regions of singing will be
captured in the same time frame as voiced regions of singing,
resulting in further smearing of the singing voice energy across
several frequency bins, resulting in the singing voice appearing
as a percussion-like instrument from the point of view of the
median filtering algorithm. This can be leveraged as a means
of performing singing voice separation.

Having described above how the separation of singing voice
varies with frequency resolution when performing harmonic-
percussion separation, it is proposed to take advantage of
this to separate singing voice from mixtures of pitched and
percussive instruments by performing a multipass analysis of
the signal. There are two potential routes for separation of
the vocals from the other instruments. The first is to perform
harmonic-percussive separation at a high frequency resolution
to yield one signal containing percussion and vocals, and
another containing pitched instruments. Harmonic-percussive
separation can then be performed at a low frequency resolution
to separate the vocals from the percussion instruments. The
second route is to perform separation at low frequency reso-
lution intially to yield a pitched instrument and vocals signal,
which can then be processed at high frequency resolution
to separate the vocals from the pitched instruments. In both
these cases, the separated percussion and pitched instruments
can be recombined to yield the backing track with the vocals
removed.

Apart from the use of STFT-based spectrograms, it is also
proposed to investigate the use of a Constant Q spectrogram as
a substitute for the low frequency STFT in both of the routes
described above.

The Constant Q transform (CQT) is a log-frequency reso-
lution spectrogram [14] and has advantages for the analysis
of musical signals, as the frequency resolution can be set to
match that of the equal tempered scale used in western music,
where the frequencies are geometrically spaced, as opposed
to the linear spacing of the STFT. The frequency components
of the CQT have a constant ratio of center frequency to
resolution, as opposed to the constant frequency difference
and constant resolution of the DFT. This constant ratio results
in a constant pattern for the spectral components making up
notes played on a given instrument, and this has been used to
attempt sound source separation of pitched instruments from
both single channel and multi-channel mixtures of instruments
[15].

Given an inital minimum frequency f0 for the CQT, the
center frequencies for each band can be obtained from:

fk = f02
k
b (k = 0, 1, ...) (8)

where b is the number of bins per octave, and k indexes over
the frequency bins. The fixed ratio of center frequency to
bandwidth is then given by

Q =
(
2

1
b − 1

)−1

(9)

The desired bandwidth of each frequency band is then obtained
by choosing a window of length

Nk = Q
fs
fk

(10)

where fs is the sampling frequency. The CQT is defined as

X (k) =
1

Nk

Nk−1∑
n=0

WNk
(n) x (n) exp−j2πQn/Nk (11)

where x (n) is the time domain signal and WNk
is a window

function, such as the hanning window, of length Nk.
Until recently, the principal disadvantage of the CQT was

that there was no inverse transform. However, recent work by
Schoerkhuber and Klapuri has resulted in the developement
of an approximate inverse which enables a reasonable quality
reconstruction of the original signal, with around 55dB signal-
to-noise ratio, thereby allowing the more widespread use of the
CQT for the purposes of signal analysis and modification [16].

The use of a CQT results in a low frequency resolution
spectrogram, though with logarithmic frequency resolution and
so it can be substituted for the low frequency resolution pass in
either of the proposed algorithms above. This results in a total
of four ways of attempting to separate vocals from mixtures
of pitched and percussive instruments. These are outlined in
Figure 4, which shows flowcharts of the proposed algorithms,
where HP Median denotes Harmonic-Percussive Separation
using median filtering.

Fig. 4. Flowcharts showing the algorithms proposed for vocal separation,
where HP Median denotes Harmonic-Percussive Separation using median
filtering

In all four versions of the algorithm proposed, good sep-
aration of the vocals from the other instruments is possible,
though the performance does vary from version to version, as
well be seen later in the section on separation performance
evaluation. The proposed multipass technique has several



advantages over other algorithms previously proposed for
vocal separation from single channel mixtures. Firstly, the
algorithm is completely blind, it does not depend on any
predominant melody extraction techniques, or on having a
score of the melody line available. Secondly, it does not
require any pre-trained models of singing voice to function,
or models of the instrumental part to function. Thirdly, in
contrast to many of the previous algorithms, it is capable of
extracting all vocal parts. including harmony vocals, whereas
the majority of algorithms focus on solo singing voice. Finally,
the proposed algorithm is computationally efficient, and is
capable of separating the vocals in near real-time.

Despite this, the algorithm does have its disadvantages. In
particular, traces of the other instruments can be heard in the
separations, though at much reduced loudness. In particular,
traces of some of the percussion instruments can still be heard,
with elements of the kick drum often heard with the vocals.
This is because at low frequency resolution, the main energy of
the kick drum can sometimes be concentrated within a single
frequency bin which results in the algorithm perceiving the
kick drum as a pitched instrument.

This can be ameliorated to a certain extent through the use
of filtering during the masking stage when resynthesising the
separated sources. Setting all bins in the vocal mask which
have centre frequencies below a cutoff frequency to zero will
result in all the energy in those bins being removed from the
vocal signal, and restored to either the percussion or pitched
signal, as the case may be. In the majority of cases in popular
music, setting the threshold to 100 Hz is sufficient to preserve
the vocals, while removing some of the effects of the low
frequency percussion. This cutoff frequency can easily be
adjusted to give better results, if information about the vocal
range of the music is known.

Figure 5 shows an example of the separations obtained using
the multipass median filtering approach on an excerpt taken
from “Sloop John B” by the Beach Boys. In this case, both
the vocals and instrumental tracks were available separately
and then mixed to form the mixture signal. Figure 5(a) shows
the original mixture signal, while figures 5(b) and (c) show
the original vocal before mixing and the separated vocal
obtained from the algorithm respectively. This was obtained
using a CQT spectrogram for the low resolution separation
pass, with the low resolution pass performed first. The high-
pass filtering approach described above was also used during
the masking stage. Similarly 5(d) and (e) show the original
instrumental track and the separated instrumental track respec-
tively, obtained from the same method as for the vocals. It
can be seen that the vocals have been separated quite well,
with the vocal energy predominating in the separated vocal
spectrogram, though some artifacts are still present. Similarly,
it can be seen that the majority of the vocal energy has been
removed from the instrumental track, thereby demonstrating
the effectiveness of the proposed vocal separation technique.

While the use of frequency thresholding can remove some
of the low frequency percussion or noise from the separation,
it was decided to explore the use of alternative approaches to
source separation in order to attempt to further improve the
vocal separation quality of the algorithm. This is described in

Fig. 5. Spectrograms obtained from a) the original mixture signal, b) the
unmixed vocal track, c) the separated vocal track, d) the unmixed instrumental
track, e) the separated instrumental track.

the following section.

IV. POST-PROCESSING USING TENSOR FACTORISATION
TECHNIQUES

Tensor factorisation models have been used to attempt the
separation of percussion instruments from pitched or voiced
instruments [17], and as the principal artifacts in the vocal
separation are from percussion instruments, it was decided
to use this algorithm as a post processing stage. The tensor
factorisation algorithm was designed to work on multichannel
audio, but functions equally well on single channel mixtures,
and the signal model used is described below:

Given an r-channel mixture, magnitude spectrograms are
obtained for each channel, resulting in X , an r×n×m tensor
where n is the number of frequency bins and m is the number
of time frames. The tensor is then modelled as:

X ≈ X̂ =
K∑
k=1

G ◦ 〈〈〈FH〉{2,1}W〉{3,1}S〉{2,1}

+
L∑
l=1

M◦B ◦ C (12)

where X̂ is an approximation to X . The first right-hand
side term models pitched sources, and the second unpitched



or percussion sources. K denotes the number of pitched
sources and L denotes the number of unpitched sources.
Here, all tensors, regardless of the number of dimensions, are
signified by the use of caligraphic letters such as A. 〈AB〉{a,b}
denotes contracted tensor multiplication of A and B along the
dimensions a and b of A and B respectively. Outer product
multiplication is denoted by ◦. Further, as all parameters are
source specific, the subscript k is implicit in all parameters
within the summation.
G is a tensor of size r, containing the gains of a given

pitched source in each channel. F is of size n×n, where the
diagonal elements contain a filter which attempts to model the
formant structure of an instrument, thus allowing the timbre
of the instrument to alter with frequency. H is a tensor of size
n × zk × hk where zk and hk are respectively the number
of allowable notes and the number of harmonics used to
model the kth instrument, and where H (:, i, j) contains the
frequency spectrum of a sinusoid with frequency equal to
the jth harmonic of the ith note. W is a tensor of size hk
containing the harmonic weights for the kth source. S is a
tensor of size zk×m which contains the activations of the zk
notes associated with the kth source, and in effect contains
a transcription of the notes played by the source. For the
separation of signals containing pitched instruments only, best
results were obtained when the lowest note played by each
instrument was used as the lowest note in the source harmonic
dictionary H.

For unpitched instruments,M is a tensor of size r contain-
ing the gains of an unpitched source in each channel. B is of
size n and contains a frequency basis function which models
the timbre of the unpitched instrument. C is a tensor of size m
which contains the activations of the lth unpitched instrument.

It can be seen that to obtain an estimate of the pitched
sources only the first right hand side term of eqn 12 needs
to be recontructed, and for the unpitched sources, only the
second right hand side term needs to be used. The model can
also be collapsed to the single channel case by eliminating
both G and M from the model.

The generalised Kullback-Leibler divergence is used as a
cost function to measure reconstruction of the original data
as it has been shown to be effective for audio sound source
separation [20]:

D
(
X ‖ X̂

)
=
∑
X log

X
X̂
− X + X̂ (13)

where summation takes place over all dimensions of X̂ . Using
this measure, iterative multiplicative update equations can be
derived for each of the model variables. These are presented
in [17] and, due to space limitations, are not presented here.
From these, separation of pitched and unpitched instruments
can be attempted. It was noted in testing this approach that the
separation quality was better without the use of the gamma-
chain priors used in [17], and so all parameters related to
the gamma-chain priors have been set to zero, eliminating
them from the update equations. This is because the gamma-
chain priors favour continuity over time to capture pitched
instruments, and that this does not hold well for singing voice.

When used as a post-processing step for vocal separation,
it was noted that the lowest “source” of the separated pitched
part of the signal contained mainly noise related to the kick
drum and the bass guitar, and so this was not used when
reconstructing the voice signal, but was instead added back
to the instrumental track. With regards to the percussive part
separated by the algorithm it was found that some of the noise
or unpitched basis functions contained high frequency compo-
nents of the vocals while others contained actual percussive
events. If the high frequency vocal components were removed,
the recovered voice sounded much less brighter. Further, the
number of components required to capture the percussion
events was found to vary from signal to signal, and it would
require manual intervention to decide which noise components
contained vocal information. As a result, it was decided to
leave the noise part of the signal in the vocal separations,
though in some cases improved separation can be obtained
by manually eliminating percussive basis functions. As will
be seen later, the tensor factorisation stage can considerably
improve the separation of the vocals from the mixture signal.
However, the downside of using the tensor factorisation-based
approach lies in the fact that it is significantly more compu-
tationally intensive than the median filtering-based approach,
taking between 5-10 times real-time to run.

V. RE-SEPARATION USING NON-NEGATIVE MATRIX
PARTIAL COFACTORISATION

Another approach of potential interest as a post-processing
step to improve the separations is Non-negative matrix partial
cofactorisation. Non-negative matrix partial cofactorisation
was recently proposed as a means of separation of drum
sounds from polyphonic music signals containing both percus-
sion and pitched instruments [21]. This technique assumed that
there existed some prior examples of drums or percussion in-
struments available. These were then used to create a “drums-
only” spectrogram. The spectrogram of the mixture signal
and the “drums-only” spectrogram were then decomposed
simultaneously, while sharing some frequency basis functions
between the two spectrograms, to force some basis functions
to be associated with the drums only, thereby allowing the
separation of the drums from the polyphonic music signal.

This approach can be formalised as follows, given a poly-
phonic music mixture spectrogram X, and a “drums-only”
spectrogram Y then simultaneously decompose these matrices
as:

X ≈ X̂ = AHSH + APSP (14)

Y ≈ Ŷ = APSP1 (15)

where X̂ and Ŷ are approximations to X and Y respectively,
AH contains the frequency basis functions associated with
the harmonic or pitched instruments in the spectrogram and
SH contains the associated time activation basis functions.
AP contains the frequency basis functions associated with the
drums or percussion instruments, and which is common to the
factorisation of both matrices. SP contains the time activation
basis functions of the drums in the mixture signal, while SP1



contains the time activation basis functions in the “drums-
only” spectrogram. The pitched part of the spectrogram can
then be reconstructed as:

XH = AHSH (16)

and the percussive part of the signal as:

XP = APSP (17)

In this case, prior knowledge of drum sounds, though not
necessarily the exact drums in the mixture signal, was used
to guide the factorisation of the mixture signal. This partial
co-factorisation was carried out using the least-squares error
between the factorisations and the spectrograms as a cost
function, and gave separation results comparable with other
state of the art approaches for drum separation. However, a
potential problem lies in the possible mismatch in spectral
characteristics of the drums available as prior knowledge, and
the drums in the actual recording.

It can be seen that such a partial cofactorisation approach
could be adapted to deal with other sources, given prior knowl-
edge or examples of the other instruments to be separated. It
is proposed to take advantage of this inherent flexibility in
the partial cofactorisation approach in an attempt to further
improve the separation of the vocals from the instrumental
track. To this end, the existing separated vocal obtained from
the previously described algorithms will be used as prior
knowledge to drive the partial cofactorisation algorithm in
order to separate the vocals and the instrumental backing track
from the original mixture spectrogram. This is a novel use of
partial cofactorisation in that an existing separation is being
used as a guide to re-separate the original mixture.

As noted above, the partial cofactorisation approach de-
scribed above made use of a least-squares cost function. How-
ever, for musical signals in general, the generalised Kullback-
Liebler divergence has been found to give better separation
performance. To this end, we present an algorithm for non-
negative partial cofactorisation based on this divergence:

D =
∑(

Xlog
X

X̂
−X + X̂

)
+
∑(

Ylog
Y

Ŷ
−Y + Ŷ

)
(18)

with
X̂ = ATST + AV SV (19)

and
Ŷ = AV SV 1 (20)

where X is the mixture spectrogram, Y is the separated vocal
spectrogram, AT and ST contain the frequency and time
basis functions for the instrumental track and AV contains
the common frequency basis functions between the two input
matrices associated with the vocals. SV and SV 1 contain the
time basis functions for the vocal frequency basis functions
for matrices X and Y respectively. Further, the summations
take place elementwise over all entries.

Iterative multiplicative update equations can be derived for
each of the model variables in a manner simliar to that of

standard NMF [22]. These update equations take the form

R = R⊗
5−R,D
5+

R,D

(21)

where R represents a given variable in the model to be up-
dated, D denotes the generalised Kullback-Liebler divergence,
and where 5−R,D and 5+

R,D represent the negative part and
the positive part respectively of the partial derivative of the
reconstruction metric with respect to R.

The update equations for each of the parameters are now
given below:

AT = AT ⊗
PS

′

T

OXS′
T

(22)

ST = ST ⊗
A

′

TP
A′
TOX

(23)

AV = AV ⊗
PS

′

V + QS
′

V 1

OXS′
V + OY S′

V 1

(24)

SV = SV ⊗
A

′

VP
A′
VOX

(25)

SV 1 = SV 1 ⊗
A

′

VQ
A′
VOY

(26)

where ⊗ indicates elementwise multiplication and ′ indicates
matrix transpose. P = X/X̂, Q = Y/Ŷ, OX is an all-ones
matrix with the same dimensions as X, and OY is an all-ones
matrix with the same dimensions as Y.

The re-separated vocal spectrogram can then be obtained
from:

XV = AV SV (27)

and the instrumental spectrogram obtained from:

XT = ATST (28)

Rather than resynthesise directly from these spectrograms,
the spectrograms are used to generate masks in the manner
described earlier in the paper, as this leads to better quality
resynthesis of the re-separated sources.

The motivation for using the previously separated vocal to
re-separate the vocals using partial co-factorisation is that,
despite the good quality separations obtained using the algo-
rithms presented in the previous sections, there will still be
artifacts from the other instruments in the vocal separation.
However, these artifacts will be low in volume in comparison
to the vocal in the separated signal. Therefore, when the
algorithm attempts partial cofactorisation, these low volume
artifacts should end up being captured in the basis functions
that belong to the instrumental track as opposed to the vocal
basis functions, thereby reducing artifacts in the re-separated
vocal, and improving the quality of the re-separated instru-
mental track.

The validity of this argument is evinced by the improved
quality separation results obtained, as will be seen in the next
section. However, as with the use of tensor factorisation, the
downside of using partial cofactorisation lies in the increased
computational demand and time taken to perform the cofac-
torisation.



VI. SEPARATION PERFORMANCE

A. Test Materials

In order to test the effectiveness of the algorithm, a set of
test signals is required. To this end, pieces of music where
the vocals and instrumental track are available separately are
required. Fortunately, within the back catalogue of the Beach
Boys, such a set of recordings is available. In particular, a
number of Beach Boys tracks are available as split stereo
recordings where all the vocals are in one channel and the
instrumental track in the other channel [18]. Further, there are
a number of tracks for which the vocals and the instrumental
tracks are available separately [19]. These were manually
resynchronised in a digital audio editor to allow the creation
of mono mixes from these source materials.

In total, 30 mono signals of approximately 45 seconds du-
ration were created from excerpts from 10 Beach Boys tracks.
This length was chosen due to the memory and computational
constraints of some of the algorithms used. Three different
scenarios were considered, firstly the case where the vocals
and instrumental tracks were mixed as they were, these are
refered to as the 0dB mixes and secondly, where the amplitude
of the vocals was raised by 6dB relative to the instrumental
track, these are refered to as the 6dB mixes. Finally another
set of mixes were prepared where the amplitude of the vocals
was dropped by 6dB relative to the instrumental track, refered
to as the -6dB mixes. The use of these mixes will allow the
performance of the algorithms to be measured in a range of
different conditions, thereby giving a better idea of the overall
performance of the algorithms.

B. Algorithms and Parameters

As already noted in Section III there are four proposed
ways to perform multipass median filtering-based separation
(MMFS), depending on whether the high resolution pass is
performed first or second, and on whether a linear spectrogram
or a Constant Q spectrogram is used for the low frequency
resolution pass is used. Further, for each of these four ways,
the performance was measured for four different algorithms,
the first is the basic MMFS algorithm. In all four ways to
perform MMFS, the high frequency resolution FFT size was
16384 samples, with a hopsize of 2048 samples, with median
filters of length 17 frames and 17 frequency bins were used for
both the harmonic and percussive filters respectively. The low
frequency resolution was 1024 samples with a hopsize of 256
samples, with median filters of length 17 again being used.
For the CQT spectrogram, a resolution of 24 bins per octave
was used, and median filters of length 7 frequency bins and
17 frames were used for the percussive and harmonic median
filters respectively. Here, 7 frames were used for the percussive
filter due to the low frequency resolution of the CQT.

The second algorithm considers is MMFS with high pass
filtering during the masking stage, with a cutoff of 100Hz
(MMFS+H). Next, MMFS in conjunction with a tensor fac-
torisation approach was considered (MMFS+T). Here an FFT
of 4096 samples and a hopsize of 1024 samples was used.
The tensor factorisation approach divided the frequency range
of the signal into four overlapping bands covering different

pitched notes, the first covering an octave from 55 Hz, the
second covering two octaves from 110 Hz, the third another
two octaves from 220 Hz, while the fourth covered two octaves
from 880 Hz, with 10 harmonics used to approximate the
timbre of each note within each band. Three noise-based basis
functions were also used.

Finally, the separated vocal from MMFS+T was fed to the
partial co-factorisation algorithm (MMFS+T+CF). Here, better
results were obtained with an FFT size of 16384 and a hopsize
of 2048. 250 basis functions each were used to approximate
the vocal and instrumental tracks.

These four algorithms in conjunction with the four ways
to perform MMFS result in 16 different methods to perform
vocal separation. Each of these methods are then tested for
the three mixing scenarios described above.

C. Evaluation metrics
In order to quantitatively measure the quality of the separa-

tions obtained, a set of separation performance metrics must
be used. A commonly used set of metrics are those defined
by Vincent et al [23]. Here the recovered time domain signal
is decomposed into the sum of three terms, with reference to
the original unmixed source signal:

srec = star + eint + eart (29)

where srec is the recovered source signal, star is the portion
of the recovered signal that relates to the original or target
source, eint is the portion that relates to interference from
other sources, and eart is the portion that relates to artifacts
generated by the separation technique and/or the resynthesis
method. Based on this decomposition, source separation met-
rics were then defined.

The first of these, Signal to Distortion ratio (SDR), provides
a measure of the overall quality of the sound source separation:

SDR = 10log10
‖star‖2

‖eint + eart‖2
(30)

The Signal to Interference ratio (SIR) provides a measure of
the presence of other sources in the separated source:

SIR = 10log10
‖star‖2

‖eint‖2
(31)

Finally, the Signal to Artifacts ratio (SAR) provides a measure
of the artifacts present in the signal due to separation and/or
resynthesis:

SAR = 10log10
‖star + eint‖2

‖eart‖2
(32)

These metrics are invariant to scaling factors and were calcu-
lated using the BSS EVAL toolbox available at [24].

However, a shortcoming of these metrics is that they do
not necessarily correlate well with the perceptual quality of
the separated signals. Nevertheless, SIR in particular provides
a good measure of the rejection of the other sources in
comparison to the other sources present.

In the context of vocal separation and suppression, these
metrics are used to measure individually the separation quality
of the isolated vocal, and the instrumental track with the vocal
suppressed.



D. Test Results

The separation performance results for the separation of the
vocals from polyphonic audio are presented in Table I. It can
be seen that, as expected, the algorithm performs worse for
the -6dB mixes, which represent a “worst-case” scenario where
the vocals are very low in the instrumental mix. It can be seen
that the baseline MMFS algorithm is capable of some degree
of separation, even in this case, particularly when using the
CQT for the low-res pass, where with improvements of SIR of
around 3dB possible. The use of high pass filtering improves
the SIR results by a further 2dB, while MMFS+T results in
a 5dB increase in SIR over that of MMFS+H. The use of
cofactorisation improves this result by on average 2.5 dB,
resulting in a maximum SIR of 13.25 dB for the -6dB mixes.
This is a very good level of rejection considering the adverse
mixing conditions presented to the algorithms. In all cases the
SAR and SDR scores are quite low, this is to be expected
due to the low level of the vocals in the mixture signals,
which can make it difficult to isolate the vocals without the
presence of artifacts. Also to be noted is that there is a
trade-off between improving SIR and reducing SAR. As SIR
performance increases, it results in increasing artifacts due to
the separation algorithm, thereby reducing SAR and SDR.

On listening to the separations obtained from the 0dB mixes,
the principal artifacts in the vocal separation are due to the
presence of percussion instruments, with some traces of the
pitched instruments in the separated vocals. Nonetheless, it
can be clearly heard that the algorithms have still managed
to separate the vocals to some degree, even under adverse
separation conditions, with the vocals still predominant in the
separated sources.

As expected, it can be seen that there is a large jump in
separation performance across all metrics for the 0dB mixes.
Again, as the complexity of the algorithms increases, so does
the separation quality obtained. Further, the methods using
the CQT again outperform those using a linear spectrogram
for the low resolution pass. In the 0dB mixes, it should
be noted that both MMFS and MMFS+H are capable of
obtaining very good separation of the vocal tracks, obtaining
an average SIR of 11.44 dB for MMFS+H when using a
CQT with the low resolution pass performed before the high
resolution pass. This shows that these simple algorithms with
low computational load are capable of giving good separation
results without recourse to the computationally intensive tensor
and matrix factorisation separation stages. Nevertheless, when
these additional stages are used, there is a large jump in
performance with the SIR metric improving by a further 10-12
dB. Again the trade-off between improved SIR and reduced
SAR and SDR can be noted. On listening to the separated
vocals it can be noted that there is a notable improvement in
sound quality of the separated vocals, and that the presence
of artifacts due to drums has been considerably reduced.

Finally, the separation performance again improves when
the 6dB mixes are presented to the algorithm. Of interest here
is the fact that for the first time, when using MMFS+T, the
use of a linear low-res spectrogram outperforms the use of
a CQT, and that the cofactorisation stage does not improve

performance. This suggests that under ideal conditions where
the vocals are very high in the mix, there is no requirement for
the cofactorisation stage when separating the vocals. However,
as will be seen later, the use of cofactorisation in this case does
improve the separation of the instrumental track.

Table II shows the separation performance for the instru-
mental tracks. It can be seen that, as would be expected,
the separation performance is worst for the 6dB mixes and
improves as the level of the instrumental track rises. It can also
be observed that as the algorithms increase in complexity, the
separation performance of the instrumental track consistently
improves in terms of SIR, though not to the same extent as the
vocal separation. It can be seen that SIR is consistently lower
for the separated instrumental tracks than for the separated
vocals, with consistently more of the vocals found in the sepa-
rated instrumental tracks than vice-versa. Unlike the separated
vocal tracks, there is no trade-off between improved separation
and increasing amount of artifacts, with both SAR and SDR
improving along with SIR. Also of note is the fact that the use
of a linear spectrogram for the low-resolution pass consistently
outperforms that of the CQT for separating the instrumental
tracks. On listening to the separated tracks, traces of the vocals
can be heard in the separated instrumental track, though the
level of the vocals is clearly reduced in all cases. In particular,
the use of cofactorisation results in a noticeable improvement
in the separation of the instrumental tracks, in general reducing
the amount of the vocals heard in the separated tracks.

Overall, the presented set of algorithms are capable of
extracting the vocal tracks well from polyphonic music. In
general, the use of the CQT results in improved performance
for the separation of vocal tracks, while the use of the linear
low-res pass improves that of the instrumental tracks. Further,
the results are slightly better for the case where the low
resolution pass is performed before the high resolution pass.
It can be seen that the low complexity algorithms (MMFS
and MMFS+H) are capable of good vocal separation results,
and so could find application as a lightweight separation
algorithm for use as preprocessing for other tasks, such
as predominant melody estimation. However, for remixing
purposes the use of both the tensor factorisation and partial
cofactorisation stages result in improved separation quality.
This is most noticeable in the quality of the separated in-
strumental tracks, where the use of partial cofactorisation
results in much better separation quality and reduced artifacts.
Audio examples of vocal separations obtained from real-world
recordings can be found at http://eleceng.dit.ie/
derryfitzgerald/index.php?uid=489&menu_id=
46.

VII. CONCLUSIONS AND FUTURE WORK

Previous methods for the separation of singing voice from
single-channel recordings of polyphonic music have been
discussed and problems with existing methods highlighted. In
particular, many of the existing approaches require use of prior
knowledge about the signal or sources to be separated. Many
algorithms require either knowledge of the vocal melody to
aid the separation, or attempt to estimate this knowledge from

http://eleceng.dit.ie/derryfitzgerald/index.php?uid=489&menu_id=46
http://eleceng.dit.ie/derryfitzgerald/index.php?uid=489&menu_id=46
http://eleceng.dit.ie/derryfitzgerald/index.php?uid=489&menu_id=46


MMFS MMFS+H MMFS+T MMFS+T+CF
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

-6dB

CLH -2.30 3.46 1.76 -1.87 5.16 1.42 -1.23 10.5 0.30 -1.40 12.99 -0.32
CHL -2.51 2.88 1.88 -2.02 4.67 1.50 -0.87 10.84 0.46 -1.00 13.25 -0.06
LLH -3.88 1.10 1.31 -2.99 3.38 0.99 -1.48 8.71 0.88 -1.38 10.41 0.74
LHL -3.80 1.32 1.24 -2.93 3.60 0.92 -1.25 9.94 0.41 -1.14 11.35 0.29

0dB

CLH 1.14 9.71 2.84 1.34 11.44 2.70 1.10 20.03 1.52 0.88 22.30 1.18
CHL 1.04 9.04 2.93 1.28 10.86 2.76 1.17 21.22 1.62 1.10 22.29 1.39
LLH 0.28 7.48 2.56 0.75 9.75 2.42 1.54 18.98 2.29 1.56 19.28 2.30
LHL 0.25 7.59 2.47 0.71 9.86 2.34 1.49 18.24 1.88 1.83 19.81 2.12

6dB

CLH 2.74 15.96 3.30 2.80 17.88 3.24 1.58 23.69 1.73 1.09 23.89 1.20
CHL 2.75 15.22 3.38 2.83 17.17 3.31 1.72 25.12 1.88 0.97 23.97 1.08
LLH 2.40 13.81 3.16 2.55 16.14 3.10 1.89 25.85 2.03 1.54 24.27 1.66
LHL 2.33 13.83 3.08 2.48 16.14 3.03 2.07 23.97 2.18 1.88 24.12 1.97

TABLE I
VOCAL SEPARATION PERFORMANCE FOR THE VARIOUS ALGORITHMS PROPOSED IN THIS PAPER. HERE -6DB,0DB AND 6DB INDICATE THE AVERAGE

RESULTS OBTAINED FOR THE -6DB,0DB AND 6DB MIXES RESPECTIVELY. CLH INDICATES THE USE OF A CQT SPECTROGRAM WITH THE LOW FREQ.
RESOLUTION PASS PERFORMED BEFORE THE HIGH FREQ. PASS, LLH INDICATES THE SAME CONFIGURATION EXCEPT WITH A LINEAR SPECTROGRAM

FOR THE LOW FREQ. PASS. CHL INDICATES THE USE OF A CQT SPECTROGRAM, WITH THE HIGH FREQ. RESOLUTION PASS FIRST, AND CLH INDICATES

THE USE OF A CQT, WITH THE LOW FREQ. RESOLUTION PASS PERFORMED FIRST. MMFS INDICATES MULTIPASS MEDIAN FILTER-BASED SEPARATION,
MMFS+H INDICATES THE ADDITION OF A HIGH PASS FILTER TO MMFS, MMFS+T INDICATES MMFS IN CONJUNCTION WITH A TENSOR

FACTORIZATION-BASED SEPARATION PASS, AND MMFS+T+CF INDICATES THE ADDITION OF A PARTIAL COFACTORISATION PASS TO THE PREVIOUS

METHOD.

MMFS MMFS+H MMFS+T MMFS+T+CF
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

-6dB

CLH 6.71 8.24 12.78 6.91 8.46 12.94 7.37 8.74 13.84 7.24 11.25 9.86
CHL 6.54 8.16 12.43 6.81 8.41 12.70 7.47 8.88 13.82 7.42 11.50 9.99
LLH 5.70 8.67 9.46 6.22 9.14 9.99 7.11 9.75 11.18 6.71 11.48 8.86
LHL 5.77 7.99 10.54 6.34 8.41 11.27 7.42 9.05 13.21 7.09 11.79 9.30

0dB

CLH 1.65 2.61 10.78 1.85 2.82 10.88 2.15 3.04 11.45 2.62 5.61 6.96
CHL 1.52 2.50 10.63 1.77 2.74 10.79 2.18 3.08 11.39 2.78 5.83 6.93
LLH 1.19 2.84 8.23 1.65 3.30 8.54 2.50 4.04 9.38 2.75 6.14 6.55
LHL 1.13 2.45 9.11 1.57 2.85 9.52 2.47 3.57 10.78 3.19 6.59 6.89

6dB

CLH -3.84 -3.02 8.83 -3.64 -2.82 8.88 -3.53 -2.75 9.15 -3.08 -0.58 3.99
CHL -3.96 -3.15 8.84 -3.72 -2.91 8.91 -3.57 -2.83 9.31 -3.18 -0.93 4.42
LLH -4.26 -2.98 6.67 -3.82 -2.55 6.82 -3.31 -2.11 7.30 -2.86 -0.30 4.03
LHL -4.18 -3.11 7.50 -3.78 -2.72 7.67 -3.09 -2.11 8.29 -2.57 0.16 3.88

TABLE II
INSTRUMENTAL TRACK SEPARATION PERFORMANCE FOR THE VARIOUS ALGORITHMS PROPOSED IN THIS PAPER. ALL ABBREVIATIONS ARE AS IN

TABLE VI-D

the signal, which can lead to erroneous results where the pitch
is not detected properly. Further, many methods also require
techniques that can distinguish regions containing vocals from
regions without vocals in order for separation to proceed.
Other methods require training data, such as a large amount
of previously recorded vocal excerpts to generate models of
the singing voice. The problem with such a model lies in the
wide varity of timbres that vocalists can produce, making it
difficult for the training data to adequately capture a given
voice, particularly if the vocal timbre is not similar to an
example in the training database. Further, all of the above
methods are designed to work with solo voice or singing and
are not designed to deal with vocal harmony.

Following on from this, a simple but effective median
filtering-based harmonic-percussive separation algorithm was
described, and it was shown that the performance of this
algorithm in the presence of singing voice varied with the
frequency resolution of the spectrogram used. High frequency
resolution led to the separation of the voice with the percussion

instruments, while low frequency resolution resulted in the
vocal being separated with the pitched instruments.

It was then proposed to take advantage of this fact to
perform single channel voice separation by using a novel mul-
tipass version of the harmonic-percussive separation algorithm.
Four versions of this algorithm were proposed, depending on
whether the high frequency resolution pass was performed
first or second, and on whether a CQT or a low frequency
linear spectrogram was used for the low resolution pass. All
four versions were found to peform well in the separation of
vocals, with the use of a CQT giving better results for vocal
extraction, but a linear spectrogram performing better for the
separation of the instrumental track.

However, there are still artifacts, principally due to the
percussion instruments, present in the separations. These can
be ameliorated to some extent through the use of high pass fil-
tering, but improved results were obtained through the addtion
of a tensor factorisation-based separation algorithm, which
considerably reduced the artifacts obtained in the separation.



Finally a novel use of non-negative partial cofactorisation
was proposed in order to re-separate the vocals from the
original polyphonic music mixture. Here, the vocal separation
obtained from the previous algorithm was used as a guide
when factorising the original signal into vocal parts and
instrumental parts, with the vocal part of the original mixture
and the existing separation sharing a common set of frequency
basis functions. This resulted in further improvements in
separation performance, particularly in the case of separating
the instrumental track from the vocals.

The proposed algorithms were tested on a real-world dataset
and found to give good separation of vocals, including vocal
harmonies, which represents an advance over existing research
on single channel singing voice separation. It was noted
that the inital multipass median-filtering based algorithms are
computationally efficient and simple to implement while still
capable of giving good separation, making them suitable as
a preprocessing stage for other tasks such as predominant
melody estimation. The factorisation-based extensions are
considerably more computationally intensive than the median
filter based algorithms, but do result in considerably improved
separation, and can be used where better quality is required.

Future work will concentrate on the use of this algorithm
in the context of upmixing old single channels from mono
to stereo or to 5.1 surround sound, as well as investigating
other ways of improving the separation quality obtained from
the vocal extraction algorithms. For example, the system
as currently implemented makes no attempt to distinguish
between regions where vocals are present, and where vocals
are not. The incorporation of such information should further
improve the vocal separation capabilities of the algorithms
in this paper. Also, the ability to automatically detect which
noise basis functions belong to drum sounds in the tensor
factorisation stage would further improve results.
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