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Power Weighted Divergences for Relative
Attenuation and Delay Estimation
*Ruairı́ de Fréin, Member, IEEE, Scott T. Rickard, Senior Member, IEEE,

Abstract—Power Weighted estimators have recently been pro-
posed for relative attenuation and delay estimation in Blind
Source Separation. Their provenance lies in the observation that
speech is approximately Windowed-Disjoint Orthogonal (WDO)
in the Time-Frequency (TF) domain; it has been reported that
using WDO, derived from TF representations of speech, improves
mixing parameter estimation. We show that Power Weighted
relative attenuation and delay estimators can be derived from
a particular case of a Weighted Bregman Divergence. We then
propose a wider class of estimators, which we tune to give better
parameter estimates for speech.

Index Terms—Bregman divergence, Kullback Leibler, Itakura-
Saito, relative attenuation estimation, relative delay estimation.

I. INTRODUCTION

Consider a stereo an-echoic de-mixing problem which
consists of M sources, s1(t), . . . sM (t) and two mixtures
x1(t) =

P
M

j=1 sj(t) and x2(t) =
P

M

j=1 ajsj(t� �

j

), where t

is continuous time. The second mixture, x2(t), is the sum of
attenuated (by ↵

j

) and delayed (by �

j

) versions of the source
signals, s

j

(t), observed by x1(t). The DUET algorithm has
been successfully applied to the task of separating-out each
source given the two observation signals x1(t) and x2(t) –it
relies on the fact that speech sources are naturally partitioned
in the Time-Frequency (TF) lattice [1]. It uses these partitions
to separate sources. The partitions are constructed by using
the spatial signature (↵

j

, �

j

) of each source. Using a linear
transform that promotes separation in TF is crucial. DUET
describes a special case of the more general echoic convolutive
BSS mixing procedure [2], [3]. It attempts to emulate the
sophistication of the human auditory system by solving the
“cocktail party problem” [4].

The linear transform of choice is the discrete Short-Time
Fourier Transform (STFT) [5], which is denoted T : s

j

[i] 2
I 7! ŝ

j

[!, ⌧ ] 2 C where i,!, ⌧ are the discrete time,
discrete frequency and the window position, and the collection
of square integrable functions is denoted I. The number of
frequency bins used is F and the analysis window is shifted
by F

2 here. The STFT is invertable T

�1
(Ts) = s; it is

approximately true that the common support of two (or more)
speech sources is the empty set (of TF bins (!, ⌧)). This
property is evaluated versus the number of sources and the
TF analysis parameters in [1]. It is called WDO; it states that
for all pairs of source signals

ŝ

j

[!, ⌧ ]ŝ

k

[!, ⌧ ] = 0, 8⌧,!, j, k, and j 6= k. (1)
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An estimate of the j-th source signal can be obtained by
constructing an indicator function, a binary mask, from a
source’s support set, ⇤

j

: (1) by setting 1

j

[!, ⌧ ] = 1 if
(!, ⌧) 2 ⇤

j

and 1

j

[!, ⌧ ] = 0 otherwise, and (2) by inverting
the product of the j-th binary mask times one of the mixture
signals. This yields the estimate s

j

[i] = T

�1
(1

j

Tx1[i]).
The challenge of determining the support set ⇤

j

is addressed
by appealing to the properties of the STFT [5]. Instantaneous
estimates of the relative attenuation and delay of the sources
(cf. [1]) observed by x1[i] and x2[i], are obtained from

↵[!, ⌧ ] =

����
x̂2[!, ⌧ ]

x̂1[!, ⌧ ]

���� and �[!, ⌧ ] = � F

2⇡!

\ x̂2[!, ⌧ ]

x̂1[!, ⌧ ]
. (2)

The support sets ⇤

j

, 1  j  M are determined by clustering
the pairs of instantaneous estimates (↵[!, ⌧ ], �[!, ⌧ ]) and as-
signing each TF bin, (!, ⌧), to the nearest of the M centroids,
for example, using the Squared Euclidean Distance (SED). The
cardinality of the support set is denoted N = |⇤

j

|; the source
index is clear from the context. The problem of learning the
optimal spatial signature ↵

?

j

and �

?

j

for the j-th source, is that
of estimating the centre of the point-cloud of instantaneous
parameter estimates corresponding to each source, which have
been identified by a clustering procedure. To estimate the j-
th source’s spatial signature the authors of [1] simplified the
stereo an-echoic mixing model in the TF bins ⇤

j

for the j-th
source by treating it as a linear observations in noise model,
where W = e

�j

2⇡
F :

x̂2[!, ⌧ ] =ŝ

j

[!, ⌧ ]↵

j

W

!�j
+ n̂2[!, ⌧ ],

x̂1[!, ⌧ ] =ŝ

j

[!, ⌧ ] + n̂1[!, ⌧ ], 8(!, ⌧) 2 ⇤

j

, (3)

where n̂1 and n̂2 are iid white complex Gaussian noise
signals with zero mean and variance �

2, which represent the
contribution of the other source signals in the support set of
the target source. The Maximum Likelihood Estimators (MLE)
derived in [1] minimized a scaled version of the log-likelihood

X

(!,⌧)2⇤j

|n̂1[!, ⌧ ]|2 + |x̂2[!, ⌧ ]� ↵

j

W

!�j
ŝ

j

[!, ⌧ ]|2. (4)

The resulting estimators performed poorly. This objective
(Eqn. 4) neglects to account for the approximate WDO as-
sumption which gave rise to DUET [1]. All TF bins, no matter
how much they are corrupted by interfering signals, are given
an equal weighting in the MLEs. In this paper we show that
the family of weighted element-wise Bregman divergences
produces better power weighted estimators.

II. BREGMAN DIVERGENCES

Divergences are distance-like functions that are non-
negative and separable; however, they do not satisfy the
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triangle equality and the symmetry axiom of a distance [6].
Some examples of divergences include the Kullback-Liebler
Divergence (KLD), Itakura-Saito Divergence (ISD) [7] and
SED, which we include as they are of particular historical
relevance to speech. The Bregman divergence encompasses
the SED, the KLD and the ISD [8]; we present our ideas
using this divergence. We consider a generalized form of the
KLD; its arguments are not restricted to points on the simplex.

Let S be a set. A divergence on S is a function D : S⇥S 7!
R+ satisfying 8(p, q) 2 S ⇥ S

D(p||q) � 0, D(p||q) = 0 iff p = q. (5)

The Bregman divergence is defined as follows: let S be a
convex subset of a Hilbert space and � : S 7! R a contin-
uously differentiable strictly convex function. The Bregman
divergence D� : S ⇥ S 7! R+, where R+ is the set of non-
negative real numbers, is defined as

D�(x||y) = �(x)� �(y)� hx� y,r�(y)i (6)

where r�(y) is the gradient of � defined at y and h·, ·i is
the Hermitian dot product. A divergence on S is called an
element-wise divergence if there exists a divergence d on S
such that 8x = [x1, . . . , xN

]

T

, and 8y = [y1, . . . , yN ]

T

D(x||y) =
NX

n=1

d(x

n

|y
n

). (7)

An example of such a divergence is the element-wise Bregman
divergence. It is a subclass of Bregman divergences for which
� is the sum of N scalar, continuously differentiable and
strictly convex element-wise functions, e.g.

8x = [x1, . . . , xN

]

T 2 S, �(x) =

NX

n=1

�(x

n

). (8)

Defining D�(x||y) =
P

N

n=1 d�(xn

|y
n

) where d

�

= �(x) �
�(y)��

0
(y)(x�y) it is clear the divergence is element-wise.

Examples: The SED can be composed as a Bregman diver-
gence by selecting �(x) = x

2 and then d

�

= �(x) � �(y) �
�

0
(y)(x�y) = x

2
+y

2�2xy. The KLD can be composed by
selecting �(x) = x log x. It follows that d

�

= x log

x

y

�x+y.
The ISD can be composed by selecting �(x) = � log x+x�1,
and thus, d

�

= � log

x

y

+

x

y

� 1.

III. WEIGHTED ELEMENT-WISE BREGMAN DIVERGENCE

We focus on weighted element-wise divergences, which are
a subclass of the Bregman family of divergences. This family
is characterized by the fact that � is the sum of N scalar
continuously differentiable and strictly convex element-wise
functions and the arguments of �(x) are weighted by the
elements of w = [w1, . . . , wN

]

T 2 RN

+ , e.g.

8x = [x1, . . . , xN

]

T 2 S, �

w

(x) =

NX

n=1

�(w

n

x

n

). (9)

Then D�w(x||y) =
P

N

n=1 d�w(xn

|y
n

) where d

�w = �(wx)�
�(wy)� �

0
(wy)(x� y).

Examples: The weighted SED can be composed as an
element-wise weighted Bregman divergence by selecting

�(wx) = (wx)

2 and then d

�

= (wx)

2
+(wy)

2�2xyw

2. Sim-
ilarly, the weighted KLD is written as �(wx) = (wx) log(wx)

and then d

�

= wx log

wx

wy

� wx + wy. And finally, the
weighted ISD is written as �(wx) = � log(wx) + wx � 1

and then d

�

= � log

x

y

+

x

y

� 1. Using weighted element-wise
Bregman divergences opens up the possibility of (1) extending
traditional clustering/estimation algorithms to data which is
better modelled using an arbitrary member of the family of
exponential distributions [8] and (2) encoding domain specific
weights into the divergence.
Weighted estimators: Consider the case where we have a
set of N instantaneous estimates of some parameter, for
example, the instantaneous relative attenuation or delay es-
timates used by DUET. We arrange them in vector form
x = vec1nN

(x

n

) = [x1, . . . , xN

] 2 RN . We desire the
centre of this point cloud of parameters, e.g. a scalar c

? 2 R
with respect to an (a)symmetric divergence and the vector of
weights w = [w1, . . . wN

] 2 R+, which encodes domain
specific information about the reliability of the associated
instantaneous parameter estimates x. Using the notation � to
denote element-wise multiplication, we consider the solutions
to this problem by minimizing a number of divergences,

c

?

= min

c

D�w(w � x||cw) = min

c

NX

n=1

d(w

n

x

n

|cw
n

). (10)

Thm 1: Given the weighted SED form of the element-wise
weighted Bregman divergence, where �(w

n

x

n

) = (w

n

x

n

)

2,

D�w(w� x||cw) =

NX

n=1

(w

n

x

n

)

2
+ (w

n

c)

2 � 2x

n

cw

2
n

; (11)

the unique, optimum solution is c

?

SED =

PN
n=1 w

2
nxnPN

n=1 w

2
n

.
Thm 2: Given the weighted KLD form of the element-
wise weighted Bregman divergence, where �(w

n

x

n

) =

w

n

x

n

logw

n

x

n

, and

D�w(w�x||cw) =

NX

n=1

w

n

x

n

log

w

n

x

n

w

n

c

�w

n

x

n

+w

n

c; (12)

the unique, optimum solution is c

?

KLD =

PN
n=1 wnxnPN
n=1 wn

.
Thm 3: Given the weighted ISD form of the element-
wise weighted Bregman divergence, e.g. where �(w

n

x

n

) =

� logw

n

x

n

+ w

n

x

n

� 1

D�w(w � x||cw) =

NX

n=1

� log

x

n

c

+

x

n

c

� 1, (13)

the unique, optimum solution is c?ISD =

PN
n=1 xn

N

. We can gen-
eralize the weighted SED, KLD and ISD cases by appealing
to the weighted �-divergence, which gives rise to a family of
power weighted estimators.
Thm 4: Given the �-divergence [9] form of the element-wise
weighted Bregman divergence, �(w

n

x

n

) =

(wnxn)
�

�(��1) � wnxn
��1 +

1
�

, for � 2 R \ {0, 1}, and

D�w(w � x||cw) =

NX

n=1

(w

n

x

n

)

�

+ (� � 1)(w

n

c)

� � �w

�

n

x

n

c

��1

�(� � 1)

; (14)
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ŝ1[!, ⌧ ]ŝ1[!, ⌧ ]

n̂[!, ⌧ ]ŝ1[!, ⌧ ] n̂[!, ⌧ ]n̂[!, ⌧ ]

ŝ1[!, ⌧ ]n̂[!, ⌧ ]

x̂1[!, ⌧ ]

x̂

2
[
!
,
⌧
]

(a): excellent weight

(b): de-emphasized

(c): de-emphasized

(d): undesireable weight

0

5

10

15

20

0 5 10 15 20
f
(
�
)

�

� < �1 � > �1

�1

Fig. 1. WDO Quadrant: (a) when the source has high power the associated
instantaneous estimate is heavily weighted; when the noise is present in one
channel and is uncorrelated with the source ((b) and (c)), the corresponding
instantaneous estimate has a small weight; (d) when the noise is dominant in
both channels it generally has a much lower power than case (a).
Selecting �: The MSWE is the weighted sum of decreasing exponentials.
The tangent line to the MSWE with slope �1 is illustrated. The MSWE and
its tangent intersect at � = �1.

the unique, optimum solution is c?
�

=

PN
n=1 w

�
nxnPN

n=1 w

�
n

. We continue
by demonstrating that the widely used DUET Blind Source
Separation algorithm [1] is a special case of the weighted �-
divergence family of estimators.

IV. WEIGHTING FUNCTION: ORTHOGONALITY IN TF

The WDO property (in Eqn. 1), which was proposed in [1],
suggests the following weighting scheme for measuring the
orthogonality of the target source with the other interfering
sources, in the observed mixtures x̂1 and x̂2, in the disjoint
source support set ⇤

j

for the j-th source signal:

w

j

[!, ⌧ ] = |x̂1[!, ⌧ ]x̂2[!, ⌧ ]| 8(!, ⌧) 2 ⇤

j

. (15)

When x̂1[!, ⌧ ] and x̂2[!, ⌧ ] are dominated by the target source,
ŝ

j

[!, ⌧ ] then w

j

[!, ⌧ ] ⇡ |ŝ
j

[!, ⌧ ]ŝ

j

[!, ⌧ ]|, which is large when
the power of the source is large in that TF bin. When x̂1[!, ⌧ ]

is dominated by the target source and x̂2[!, ⌧ ] is dominated
by noise, if the source and the noise are uncorrelated, the
associated weight is small w

j

[!, ⌧ ] ⇡ |ŝ
j

[!, ⌧ ]n̂2[!, ⌧ ]|. When
both channels are dominated by noise, then w

j

[!, ⌧ ] ⇡
|n̂1[!, ⌧ ]n̂2[!, ⌧ ]|. In this case, if the noise signals on both
channels are uncorrelated, w

j

[!, ⌧ ] is small. If there is sig-
nificant correlation in the noise, we rely on the disjointness

assumption; only the target source is active in ⇤

j

, and thus
the power of the noise is generally much smaller than the
power of the target source. Consequently, the corresponding
weight is relatively small. Fig. 1 summarizes this argument.
Thm 5: DUET Power Weighted Estimators [1] minimize
the weighted �-divergence, D�w(w � x||cw), between the
instantaneous parameter estimates x = vec(!,⌧)2⇤j

(↵[!, ⌧ ])

and x = vec(!,⌧)2⇤j
(�[!, ⌧ ]), and the centre of the point-

cloud of parameter estimates, c = ↵

?

j

and c = �

?

j

, where each
estimate is weighted by its WDO, Eqn. 15.
Interpretation: When � ! 1 the DUET estimators minimize
an objective that tends to the weighted generalized KLD.
When � = 2 the DUET estimators minimize the weighted
SED. When � ! 0 the DUET estimators minimize an

objective that tends to the weighted ISD. Remark: Using
element-wise weighted Bregman divergences has a number of
advantages. (1) We have directly encoded WDO into the esti-
mation problem. This produces estimators that directly weight
the instantaneous estimates by a measure of orthogonality. The
MLEs in [1] do not consider orthogonality but do consider the
disjointness property (in the summation index). (2) The DUET
power weighted estimators, e.g. � =

1
2 , 1, 2, are now derived

in a straightforward way. (3) We can motivate the use of a
range of new estimators for different statistical distributions
and new application domains [10], by choosing an appropriate
weighted divergence and weighting function [8], e.g. when
� = 2, 1, 0 the distribution corresponds to a Normal, Poisson
and Gamma distribution respectively. (4) We can empirically
evaluate the correct estimators to use with speech by evaluating
the performance of the estimators associated with a wide range
of parametrized divergences.
Selecting the Weighting Function: Consider K typical rel-
ative delays (or attenuations) that a source can experience
in a certain environment {c

k

}K
k=1. What � for the set of

weighting functions, {{w
n,k

}N
n=1}K

k=1 minimizes the Mean
Squared Weighted Error (MSWE) between the N instanta-
neous parameter estimates, x

n,k

for the k-th relative delay, and
the true parameter c

k

, for all k? If the error is ✏
n,k

= c

k

�x
n,k

and the weighted error is f

n,k

= w

�

n,k

✏

n,k

, the MSWE is

f =

1

NK

X

n,k

f

2
n,k

, for � > 0. (16)

We normalize the weights so that they are bounded above by
one, 0 < w

n,k

< 1, by setting w

n,k

 wn,k

ak
, where a

k

=

maxw

n,k

. Normalization has no effect on the estimators. The
squared deviation ✏

2
n,k

is nonnegative. At least one error term
is positive,

P
n

✏

2
n,k

> 0.
Analysis: As � increases, w

�

n,k

, 8n, k decreases, but never
to zero. We cannot solve @f

@�

= 0 for �. When � is large
the MSWE emphasizes the largest weight to the extent that
one weight may dominate the error, f ⇡ max f

n,k

. A trivial
minimization strategy for Eqn. 16 is to set � to be a large
positive value. This approach uses the instantaneous estimate
corresponding to the largest weight as the estimate. This
estimate may be incorrect. We trade-off (1) the number of
significantly active weights w

�

n,k

, the relative influence of the
errors ✏

n,k

on our estimate, with (2) using � to prioritize large
weights, e.g. estimates x

n,k

which we posit are more likely to
be accurate because the source is relatively more dominant in
that TF bin. We choose � by solving

f

0
=

����
@f

@�

���� =

������
2

NK

X

n,k

✏

2
n,k

✓
w

n,k

a

k

◆2�

log

w

n,k

a

k

������
= ✓. (17)

The slope of the MSWE is �✓ at �
✓

. The magnitude of the
derivative, f

0, decreases as � increases. When � < �1 the
rate of minimization of the MSWE is fast because f

0
> 1.

When � > �1 the rate of minimization of the MSWE is slow
because f

0
< 1. The trade-off between these two regimes of

f as a function of �, that achieves parity between the rate
of improvement of the MSWE and the participation of the
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Fig. 2. The LHS illustrates the average relative delay estimates, �est obtained
by using the KLD, SED, ISD and � = {.5, 3, 4} for true relative delays, �t, in
the range, 0  �t  5. The RHS illustrates, �t��est, for the best performing
estimators, the SED and � = {3, 4} in the range �5  �t  5.
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Fig. 3. The LHS illustrates the average relative attenuation estimates, aest
obtained by using the KLD, SED, ISD and � = {.5, 3, 4} for true relative
attenuations, ↵t in the range 0  ↵t  .15. The RHS illustrates, ↵t�|↵est|,
for the best performing estimators, the SED and � = {3, 4} in the range,
�.15  ↵t  .15.

weights is illustrated in Fig. 1 (RHS). We examine the case
where the ✓ = ✏, an arbitrarily small value. Choosing � > �

✏

has limited pay-off in terms of MSWE reduction, but it limits
the contribution of small weights.

V. NUMERICAL EVALUATION

We experimentally evaluate the element-wise weighted
Bregman divergence estimators using speakers from the
TIMIT database, which are sampled at 16kHz. We compute the
STFT using a window of length 1024 samples. We examine the
best divergence for each speaker using the approach in App. B
of [1]. We generate mixtures using the source-interferer mixing
model in Eqn. 3. This model is valid for the dominant TF
points of one source according to [1]. We add iid Gaussian
white noise to the dominant TF points of the target source on
both channels. We adjust the noise energy to 9.87dB to model
the effect of 4 interfering sources. In effect, we fix the number
of sources as 5 and find the best �. We use the 0dB mask [1] to
determine the set of dominant TF points ⇤

j

. This approach has
the advantage that the results do not depend on any particular
choice of interfering sources or mixing parameters, and we
can compare the estimates with the ground-truth parameters.
An evaluation of the MLEs was presented in [1].

The LHS of Fig. 2 illustrates the true relative delay, in the
range 0  �

t

 5 samples, when ↵ = 1 (Fig. 3 illustrates the
true relative attenuation, 0  ↵

t

 .15, when �

t

= 0 samples)
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(2) Large weights dominate � ⇡ 2
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Fig. 4. Selecting �: The MSWE for �j and ↵j (LHS) are illustrated. The
derivatives of the MSWEs, illustrated on the RHS, increase rapidly in the
range � < 2. They flatten rapidly when � > 2 which suggests that � > 2 is
suitable for speech. Three regimes (1), (2) and (3) are indicated with text.

versus the average estimated relative delay �

est

for each of
these true relative delays (and attenuations ↵

est

respectively).
Each figure plots the average estimate from 100 independently
generated mixtures. The RHS panel in each figure zooms in on
the three best estimators and plots the difference between the
true and the estimated parameter. Fig. 4 illustrates the MSWE
(Eqn. 16) for one TIMIT speaker for relative attenuation and
delay estimation, by averaging the MSWE over 0  �

t

 5

and 0  ↵

t

 .15 respectively. We plot @f

@�

for each estimator
beside this figure to illustrate the best trade-off for �. The
� = .5, the KLD and ISD estimators perform poorly for both
relative attenuation and delay estimation. These divergences
correspond to a MSWE slope magnitude of ✓ ⇡ 1. The
best estimator for relative delay estimation (cf. Fig. 2) is
parametrized by 2 < � < 3, which corresponds to ✓ ⇡ 10

�12

in Fig. 4. The most accurate relative attenuation estimates
lie in the range � > 4, which corresponds to ✓ < 10

�12.
The slight difference in the range of best � trade-offs is due
to the fact that the weights themselves are functions of the
true parameters, which are slightly different for the relative
delay and attenuation estimation. In summary, the role of �

is highly influential in accuracy of these relative parameter
estimators the range � < 2 for speech. The magnitude of the
MSWE slope rapidly goes to zero above � > 2, irrespective
of the normalization factor of the weights. The sensitivity of
an estimator to values of � > 2 depends on the WDO of the
source. We have demonstrated that 2  � < 4 gives good
parameter estimates. This contradicts the suggested default
choice by the authors of [1], e.g. � = 1.

VI. CONCLUSION

We have provided a justification for the form of the param-
eter estimators used by the DUET algorithm, by stating the
optimization problem that gave rise to them. Our mathematical
formalism is naturally extendable to other distributions. We
demonstrated that selecting 2  �  4 gave a good trade-off
between estimation accuracy and the relative influence of the
instantaneous estimates used.
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