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We performed an experiment in which human participants interacted through a natural language dia-
logue interface with a simulated robot to fulfil a series of object manipulation tasks. We introduced errors
into the robot’s perception, and observed the resulting problems in the dialogues and their resolutions.
We then introduced different methods for the user to request information about the robot’s understand-
ing of the environment. We quantify the impact of perception errors on the dialogues, and investigate
resolution attempts by users at a structural level and at the level of referring expressions.

Keywords: Dialogue Systems; Human-Robot Interaction; Perception Errors; Dialogue

1. Introduction

Robots that interact with a human user through natural language in a spatial environment present
a case of situated dialogue. The distinctive characteristic of a situated dialogue is that each
participant has a specific perceptual perspective on a shared spatio-temporal context. Consequently,
participants in a situated dialogue can not only make references that are evoking (i.e., denoting
entities in the interlocutors’ conceptual knowledge) and anaphoric (i.e, denoting entities that have
previously been mentioned in the dialogue), but can also make exophoric references (i.e., references
denoting objects in the shared context of the dialogue). Therefore, in order to participate in a
situated dialogue, robots must be able to perceive their environment and to communicate with
the user about what they encounter in the world [18]. If the user’s perception of the world and
the robot’s perception diverge (e.g. due to problems in the object recognition software used by the
robot [25], or mismatches in the user’s and the robot’s understanding of spatial relations [4, 17]),
misunderstandings may arise in the dialogue. In this paper, we investigate the effect of perception-
based errors on human-robot dialogue, and how misunderstandings that arise from such errors are
resolved.

Misunderstandings are frequent in human-human dialogue and humans use different strategies
to establish a shared understanding or common ground [8]. The experiment reported in [14] is
of relevance to our work because the experiment examined the adjustments made (in terms of
gestures accompanying a reference) by a speaker in formulating repeated references in the context
of negative feedback from the hearer to an initial reference. The differences between [14] and our
work is that we focus on human-robot dialogues and on the adjustments made by speakers to the
linguistic content (as distinct from the accompanying gestures) of repeated references. Furthermore,
we are particularly interested in situations where the misunderstanding is caused by perceptual
differences between the human and the robot. There are empirical studies that explore the effect of
mismatched perception on dialogue; e.g., [2, 27, 38]. However, similar to [14], these studies target
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human-human dialogues.
Previously, the problem of misunderstandings in human-computer dialogue has mostly been

addressed from the point of view of misunderstandings arising from difficulties in speech recognition
or language understanding (e.g. [1, 26, 29, 41]). There has, however, been some prior research on
problems arising from perceptual differences in natural language generation. For example, the
problem of producing referring expressions when it is not certain that the other participant shares
the same perception and understanding of the scene has been addressed by [15] and [35]. Another
example of research investigating language misunderstanding based on perceptual errors is [43]
which examines the effect of perceptual deviation on spatial language. However, [43] deals with
robot-robot dialogues and the evolution of spatial term semantics in robot populations.

In this paper, we report on an experiment we recently completed: the Toy Block experiment.
In the Toy Block experiment, participants interacted with a simulated robot through a dialogue
system and fulfilled a series of tasks by instructing the robot to manipulate a set of objects. The
experiment consists of five phases. In the first phase, the robot performs at its normal capacity. In
the second phase, artificial errors are introduced into the robot’s perception. In the third, fourth
and fifth phases, the participants are offered different options to request information about the
robot’s perception of the scene. In this paper we analyse two major aspects. In the first step, we
investigate the effect the introduction of perception errors had on the dialogue, and the effectiveness
of different information request options in resolving problems in the dialogues. In the second step,
we identify instances in the dialogues, where perception errors lead to problems in the tasks, and
investigate what strategies the participants used to resolve the arising problems. We focus on two
sub-aspects of this problem:

• At a dialogue structure level we investigate what sequences of actions the participants per-
formed in order to resolve the problems.

• At a referring expression level we investigate how participants modified the attributes in
referring expressions after a reference had failed, and what influence the different information
request options had on this choice.

This paper is structured as follows: In Section 2 we describe the experiment system that was
used to perform the experiment. In Section 3 we describe the setup of the experiment and the
different tasks and perception problems the participants were faced with. In Section 4 we provide an
overview of the data recorded during the experiment and the effect of perception errors. In Section
5 we describe the process of identifying perception based problems and the following resolution
attempts in the recorded dialogues and report on the collected data. In Section 6 we describe
structures identified in the recorded sequences, and in Section 7 we discuss the choice of attributes
in referring expressions in unsuccessful references and in problem resolution attempts. In Section
8 we conclude the paper and discuss possible future work.

2. The Toy Block System

The Toy Block system enables users to interact through a dialogue system with a robot that can
manipulate objects in a simulated world, similar to the SHRDLU system [46]. The world contains
a set of objects that are intended to represent pieces from a toy building block set. The robot itself
is abstract, and not physically represented in the simulation.

Users interact with the system through the user interface shown in Figure 1. The interface
consists of two elements:

• The simulation window shows a real-time rendering of the simulation world.
• The interaction window provides access to a text based chat interface that the users use

to interact with the simulated robot.

2
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(a) The interaction window. (b) The simulation window.

Figure 1. The user interface.

When the user sends an instruction to the robot, it analyses the instruction and attempts to
perform the requested actions in the simulation world. If the robot cannot perform the instruction,
it replies through the user interface and explains its problem.

The robot’s perception is provided by a simulated computer vision system. In general its per-
ception is correct, but sensor errors can be introduced. For example, it can be specified that the
robot perceives entire objects or some of their properties incorrectly.

2.1. Natural Language Processing and Spatial Reasoning

The basic natural language processing pipeline of the Toy Block system involves: (1) parsing the user
input (using the NLTK parser [30]); (2) analysing the resulting parse structure to populate a data
frame designed to handle spatial descriptions (similar to the Spatial Description Clause structures
in [44]); (3) grounding the referring expressions in the input against the context model of the
robot; and (4), if the grounding succeeds executing the action. If the system is not able to perform
an action, e.g. because it cannot find a unique referent for a referring expression, it generates an
appropriate response. Referring expressions may involve simple attributes such as colour and type.
Referring expressions can also involve spatial descriptions such as relational referring expressions
that describe the target object in relation to one or more landmark objects (e.g., “Pick up the red
ball that is between the green box and the yellow box”), and directional descriptions that describe
the general position of an object in the scene without reference to a landmark (e.g., “Pick up the
ball on the right”). In the rest of this section we will focus on describing the computational models
the Toy Block system uses to ground the semantics of spatial terms against the context model.

Psychological studies have identified a large number of phenomena that affect the semantics of
spatial descriptions, including: the extent and shape of the spatial template associated with the

3
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Figure 2. A partitioning of the scene for spatial references relative to the scene frame.

spatial term [28]; the impact of the functional relationship between the objects and the goals of the
agents [11]; the impact of other objects in the scene [9]; attentional factors [5, 33]; and perceptual
phenomena, such as object occlusion [21], the speaker’s perspective on the landmark [20, 36], and
the orientation of the objects [6]. This list can be extended further for composite directional spatial
descriptions (e.g.“on the right of ”,“at the front of ”) where frame of reference and frame of reference
ambiguity must be considered [7, 16, 37, 39], and the contribution of the topological term (e.g., at,
on, in) to the overall semantics of the description is also a factor [19].

Given this array of factors it is not surprising that there is a spectrum of approaches to creating
computational models of spatial language semantics, each motived by different considerations. For
example, integrating world-knowledge [32] and/or linguistic ontological knowledge [3]; integrating
spatial semantics into a compositional/attentional accounts of reference [23, 24, 31]; learning spatial
semantics directly from sensor data using machine learning techniques [12, 34]; modelling the
functional aspects of spatial semantics in terms of predicting the dynamics of objects in the scene
[10, 42]; capturing the vagueness and gradation of spatial semantics [17, 22, 43]; and leveraging
analogical reasoning mechanisms to enable agents to apply spatial semantics to new environments
[13].

Compared to many of these previous models the approach to spatial semantics we took in
this work is relatively simple. There are a number of simplifying factors within the design of the
experiment that allowed this. For example, the objects in the world were simple shapes and all were
of a similar size. As a result, the objects had no functional relationships between each other, nor
did they have intrinsic frames of references associated with them. Also, all the objects appeared
on a chequerboard patterned background, and the user’s view of the world was fixed.

In order to interpret spatial descriptions that located objects relative to the scene frame (e.g.,“the
ball on the right”) we simply partitioned the chequerboard up into a grid of 3 rows and 3 columns,
and associated different spatial words with each of the regions. Figure 2 illustrates how the board
the objects appeared on was split into regions. The user could refer to the area at the back of the
board using terms such as back, top, or far, e.g. “Pick up the red ball at the back”). The regions
denoted by other terms (such as middle, left, or near) are also shown. If the user input contained a
description that combined spatial terms then the intersection of the regions was used. The image
at the right in Figure 2 illustrates some of the possible labels for region intersections.

The system could also handle relative descriptions. If the description involved a projective spatial
term (e.g. to right of X, to left of X, behind X, or in front of X ) the system considered the spatial
description to cover a region covering four times the bounding box of the landmark object X along
the appropriate axis (see Figure 3). The use of 4 bounding boxes to define the region was chosen
based on trial-and-error, and worked well for our experimental setup. The region described by
near X was also defined in terms of the bounding box of landmark object X—in this instance 2
bounding boxes in any direction (see Figure 4). Finally, the region described by between X and
Y was taken to encompass the region along the axis going from one landmark’s centroid to the
second landmark’s centroid (see Figure 5).

4
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Figure 3. The definition of the spatial template for directional spatial terms: right, left, front, behind.

Figure 4. The spatial template for near.

Figure 5. The spatial template for between.

3. The Toy Block experiment

In each run of the experiment, the participants were presented with a set of 20 scenes. The scenes
were presented in random order except for two simple introductory scenes which were intended as
tutorial scenes, and that were always presented as the first and second scene. Each scene consisted
of a start scene and a target scene. The start scene determined how the objects in the simu-
lation world were arranged at the beginning of the scene. The target scene was presented to the
participants as an image in the interaction window. The participants’ task was to interact with
the robot to recreate the target scene in the simulation world. After a participant had successfully
recreated the target scene, the system automatically advanced to the next scene.

All utterances by the participant and the system are transcribed and annotated with their se-
mantic interpretation. The system also records task success and dialogue cost measures as described
in [45].

3.1. The scenes

In total there were 20 scenes. The scenes were designed to encourage participants to use specific
strategies and expressions to complete them. For example, in order to encourage participants to use
specific attributes or to use specific landmark-based expressions, we introduced distractor objects
whose presence made referring expressions without these attributes ambiguous.

For 14 of the 20 scenes we designed perception errors that participants were likely to encounter
when they attempted to solve the scenes. There were three types of errors: the missing object
error, where the system failed to detect an object; the wrong colour error, where the system

5
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(a) The start scene. (b) The target scene. (c) The start scene as perceived by the

robot.

Figure 6. A scene that is affected by a perception error.

incorrectly recognized the colour of an object; and the wrong type error, where the system
misclassified the type of object. Errors could either directly affect objects that participants were
required to move to complete a scene, or they could affect objects that participants were likely to
use as landmarks in relational referring expressions.

The start and the target scene of a typical scene are shown in Figure 6(a) and Figure 6(b). For
this scene an error was introduced into the robot’s perception. The robot perceived the object that
is shown as a green box in the bottom left of the scene (in Figure6(a)) as a green ball. Figure 6(c)
shows the start scene as it appeared to the robot.

3.2. Experiment phases

The experiment consisted of five phases:

(1) The No Error Phase: The robot performed the instructions it was given to its best capa-
bilities. The robot’s perception of the world were error-free. This phase represents a baseline
condition for the performance of the system.

(2) The Error Phase: Errors were introduced into the robot’s perception. The purpose of this
phase was to determine the effect of the perception errors on interactions.

(3) The Description Phase: Errors were introduced into the robot’s perception. Participants
were able to ask the system to generate a description of the scene as it was perceived by
the robot. The following is an example of a description the system produced for the scene in
Figure 6:

“There is a blue box on the top left. There is a red ball on the left. There
is a green ball on the bottom left. There is a place named place 1 on the
top right. There is a place named place 2 on the right. There is a place
named place 3 on the bottom right.”

Note that the scene description reflects the fact that the robot perceives the green box as a
green ball due to a perception error. This phase represents a uni-directional language-based
information option.

(4) The Markup Phase: Errors were introduced into the robot’s perception. In this phase the
participants were able to ask the system to mark up the robot’s understanding of the scene in
the simulation window. Figure 7 contains an example of the simulation window with active
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Figure 7. A scene with activated markup.

U: Do you see a red ball?
S: Yes, I see a red ball.
U: Do you see two boxes?
S: I see 1 box.
U: Do you see a green box on the bottom left?
S: Sorry, I don’t see any green boxes that fit your description.
U: Do you see a blue box?
S: Yes, I see a blue box.

Figure 8. Some example questions for the Querying Phase.

markup. Again, the markup contains the information that the robot perceives the green box
as a green ball. This phase represents a uni-directional visual information option.

(5) The Querying Phase: Errors were introduced into the robot’s perception. In this phase,
the participants were able to ask the system simple questions about whether or not the
robot perceived an object of a given description. Figure 8 contains example questions and
responses for the scene presented in Figure 6. This phase represents a dialogue based approach
to requesting information.

3.3. Instructions

The participants were provided with an instruction manual that described the experiment, intro-
duced the user interface and provided example interactions. In the phases in which errors were
introduced, it mentioned the possibility that the robot’s perception might be problematic. After
reading the instructions, the participants were shown a video recording of some example inter-
actions with the system. This was done to prime the participants towards using language and
concepts that were covered by the system. No time limit was set for experiment. There was no
penalty or reward associated with the participants’ performance in the experiments.

7
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Table 1. Overview of the recorded data.

Phase Number of participants Scenes attempted Total length

No Error Phase 10 200 04:16:08
Error Phase 17 338 09:03:36
Description Phase 11 220 08:08:03
Markup Phase 11 220 06:13:01
Querying Phase 11 220 06:12:38

Phase Abandon rate Reference problem rate Average number of actions SD Average completion time (s) SD

No Error Phase 5.05% 7.82% 5.18 2.83 108.64 94.12
Error Phase 19.16% 29.23% 7.57 5.74 140.28 146.89
Description Phase 12.08% 18.86% 7.3 5.08 201.47 256.41
Markup Phase 9.13% 16.37% 6.69 4.33 149.39 164.83
Querying Phase 9.72% 15.55% 6.2 3.69 150.14 133.1

Table 2. Measure values for the different phases.

4. Experimental Results

Table 1 contains an overview of the data recorded in the experiment, including the number of
participants that took part in each phase and the total length of the dialogues recorded. Table 2
contains an overview of the dialogue measures that were recorded in each phase. The abandon
rate is the most general indicator of problems in the interactions. It reports which proportion
of the attempted the scenes the participants were not able to finish in each phase. We observe
that all phases in which perception errors are present exhibit a higher abandon rate than the
baseline condition. There is a marked increase between the No Error Phase and the Error Phase,
which indicates that the presence of perception errors made the task more difficult. On the other
hand, the phases in which the participants could request information about the robot’s perception
of the world (the Description Phase, the Markup Phase and the Querying Phase) show a clear
improvement over the Error Phase. They, however, do not reduce the task abandon rate back to
the level of the baseline condition. The reference problem rate denotes the proportion of the
instructions that the participants made in each phase that the robot could not perform because it
encountered a reference resolution problem (e.g. if the participant gave the instruction “Pick up
the red ball”, but the robot perceived two red balls). The reference problem rate in the No Error
Phase represents a baseline for reference problems and is due to the general reference resolution
capabilities of the system. The Error Phase shows a much higher reference problem rate than the
No Error Phase. This indicates that the introduction of perception errors lead to an increase of
reference resolution problems in the dialogues, which consequently lead to problems in the task
as indicated by the scene abandon rate. We can observe that in the following phases in which
the participants could request information about the robot’s perception of the world the reference
problem rate is much lower than in the Error Phase. This indicates that participants were able to
use the information they received through the information requests to minimize reference problems.

The average number of actions denotes the number of actions a participant needed on average to
complete a scene1, while the average completion time denotes the average number of seconds par-
ticipants needed to complete a scene. These figure indicate how much effort and time participants
had to expend to complete a scene. The average number of actions displays a pattern similar to
the reference problem rate. The lowest value is recorded for the No Error Phase. The Error Phase
shows a strong increase while the remaining phases show values that lie in between these extremes.

The values for the average completion time however, are not consistent with this pattern. The
highest value is recorded for the Description Phase, while the values for the Markup Phase and the

1We count every instruction the participant sent to the system as an action
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Success Abandon Other Total
Phase Prop. Count Prop. Count Prop. Count Count

Error Phase 64.1% 82 29.7% 38 6.3% 8 128
Description Phase 80.5% 70 13.8% 12 5.7% 5 87
Markup Phase 69% 40 15.5% 9 15.5% 9 58
Querying Phase 74.3% 55 20.3% 15 5.4% 4 74

Table 3. The number of resolution sequences found in each phase and the percentage of their

outcomes.

Querying Phase are similar to the one for the Error Phase. We believe that this may be explained
by the fact that descriptions could get lengthy for more complex scenes and took more time for
the system to present and for the participants to take in and process.

Since we have established that perception errors lead to problems in the dialogues, and that
participants were able to resolve these problems through interaction with the system, we investigate
in the following sections in more detail how they these problem resolutions were performed. In
particular, we focus on problem resolution sequences as the sequences of actions the participants
performed between the instance where a perception error occurred in the dialogue, and the instance
where the problem was resolved.

5. Problem Resolution Sequences

We detected all instances where a participant instructed the robot to pick up an object that was
affected by a perception error, causing the robot to encounter a perception problem (i.e. the robot
was either not able to resolve the referring expression used in the instruction, or was not able to
resolve it unambiguously). We then collected all subsequent actions until the participants either
successfully managed to get the robot to pick up the intended object, or until they abandoned
the current scene. We call the problematic reference in the action that triggered the resolution
sequence the initial reference. We call the successful reference in the action that ended the
resolution sequence the final reference. We call the sequence of actions from the initial to the
final reference the resolution sequence. Figure 9 and Figure 10 contain two example resolution
sequences that were extracted from the data.

Table 3 contains an overview of the number of resolution sequences that were recorded in each
phase. Success denotes sequences that ended when the participant managed to successfully get the
robot to pick up the object that they had intended it to pick up in the initial unsuccessful reference.
Abandon denotes sequences that ended when the participant abandoned the scene when they felt
they would not be able to successfully complete it. Other refers to sequences which ended when
the participant created a scene that technically satisfied the completion conditions for the target
scenes, but that avoided resolving the reference based problem.2

We analyse the resolution sequences under two aspects. In the first step we investigate the
sequences in terms of the dialogue structures that are formed by the sequences of actions in order
to discover how the participants typically approach the problem (Section 6). In the second step we
investigate what attributes the participants used in the unsuccessful references and what attributes
they used in successful references that concluded the resolution sequences in order to investigate
the choice of attributes (Section 7). This is done in order to see how the participants modified their

2In a few scenes the participants could, due to oversights in the completion conditions, complete scenes using objects that were
not affected by perception errors instead of the objects they were intended to use.

9



January 31, 2017 Advanced Robotics article

U: Pick up the red ball near the yellow ball
S: Sorry, I can’t find any red balls that fit your de-

scription.
U: (requests a description)
S: There is a red ball to the left of a blue box on

the bottom right. There is a red ball to the left
of a yellow box on the top right. There is a place
named place 1 on the left centre.

U: pick up the red ball near the yellow box.
S: Okay, I will pick it up.

Figure 9. A resolution sequence that involves a description request.

U: pick up the red ball near the yellow ball
S: Sorry, I can’t find any red balls that fit your de-

scription.
U: pick up the right most red ball
S: Okay, I will pick it up

Figure 10. A resolution sequence that involves a no information request.

references, and to determine what effect the available information has on this choice.

6. Resolution Sequence Structures

We analysed the resolution sequences in terms of the actions the participants performed between
encountering the problem and the end of the resolution sequence. In order to be able to recognize
common structures between the sequences, we investigated them at a dialogue act level [40]. We
annotated each action with one of the following dialogue act tags:

• pickup: The participant successfully instructs the system to pick up an object.
• move: The participant instructs the system to move an object the robot is holding to a given

location.
• put: The participant instructs the system to put down an object the robot is holding.
• description: The participant requests a description of the scene (this was only possible in

the Description Phase).
• markupon: The participant turns the markup information on (this was only possible in the

Markup Phase).
• markupoff: The participant turns the markup off (this was also only possible in the Markup

Phase).
• query: The participant makes a query (this was only possibly in the Querying Phase).
• pause: The user clicks on the pause button.

We furthermore introduced the following tags to represent the beginning and conclusions of
dialogue act sequences.

10
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Figure 11. The dialogue act sequence for the sequence from Figure 9.

• init: This refers to the action that initializes the resolution sequence (i.e. an attempt to pick
up an object that is affected by a perception error and that fails due to reference resolution
problem).

• success: This denotes a pickup instruction that successfully completes the resolution se-
quence.

• abandon: The participant abandones the scene.
• other: The participant finishes the scene with an invalid solution (as discussed earlier).

In order to capture whether or not the robot could perform a requested instruction, we appended
the following tags to each move, pickup or put instruction:

• ok: The system successfully performed the instruction.
• not ok: The system was not able to successfully complete the instruction (e.g. because it

was not able to resolve one of the references in the instruction).

For example pickup ok represents a pickup instruction the system was able to perform, while
pickup not ok represents a pickup instruction the system was not able to perform.

We then created for each resolution sequence a sequence of dialogue acts. For example, Figure
11 show the dialogue act sequence that was created for the resolution sequence shown in Figure 9.
We selected the five most frequent resolution sequences in each phase and unified them into one
graph to create a summary of the most frequent resolution strategies. Figure 12 to Figure 15 show
the resulting graphs. Each graph can be read from the top to the bottom. The graphs begin at
the init node which represents the initial unsuccessful instruction. Sequences of actions then form
paths towards terminating nodes. Each arc in the paths is annotated with the number of times
this particular arc was observed in the data set. Additionally, the thickness of arcs represents the
relative frequency of each arc.

Figure 12 contains an overview of the five most frequent sequences in the Error Phase.
In this phase the participants did not have the opportunity to request information about the
robot’s perception of the scene. The paths involving unsuccessful instructions (represented by the
pickup not ok nodes) can therefore be interpreted as trial-and-error attempts by the participants
to find a working description for the intended object. The rightmost path is interesting in that it
represents sequences in which the participants picked up an object other than the one they had
intended originally, put it down somewhere (either at a target location to fulfil some other part of
the task, or they simply released it in the same place without moving it) and then resolved the
problem eventually. In personal discussions with the participants after the experiment, some of
them reported picking up objects that they did not need to move to complete the task in order to
test out how the robot would interpret a given expression. This strategy therefore represents an

11
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Figure 12. The sequence graph for the five most frequent sequences in the Error Phase.

approach towards querying the robot’s understanding of the scene when no explicit information
request options are available.

Figure 13 contains an overview of the five most frequent sequences in the Description Phase.
We observe that the most prominent path leads from the init node to the SUCCESS node through
a description node. This indicates that participants often resolved the problem by requesting a
description, and were then able to pick up the intended object using the information obtained
through the description. The other paths represent cases where the participants attempted to solve
the problem by trial-and-error without requesting information.

Figure 14 contains an overview of the five most frequent sequences in the Markup Phase. The
structures are similar to the graph for the Description Phase in that the most frequent path is the
one that contains an information request in the form of a query, while the other paths represent
trial-and-error attempts.

Figure 15 contains an overview of the five most frequent sequences in the Querying Phase.
It is similar to the graphs from the Description Phase and the Markup Phase in that the most
frequent path contains a query. It is noticeable however that, apart from the trial-and-error path,
another path exists that represents series of multiple queries. This indicates that the participants
frequently had to ask multiple queries to incrementally accumulate information before they were
able to successfully resolve the problem.

6.1. Discussion and Analysis

Overall we find that in all phases the most frequent paths involve obtaining information. In the
graphs for the Description Phase, the Markup Phase and the Querying Phase, information is
chiefly obtained through explicit information requests (in the Querying Phase also through series’
of queries). In the Error Phase information could not be requested explicitly. Participants therefore
had to fall back on a trial-and-error strategy or the indirect pick-up based querying.

12
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Figure 13. The sequence graph for the five most frequent sequences in the Description Phase.

Figure 14. The sequence graph for the five most frequent sequences in the Markup Phase.

7. Attributes in Resolution Sequences

Apart from the sequences of actions the participants performed, we also investigated what at-
tributes the participants used in their attempts to resolve the problems in the dialogues. We
determined for each successful resolution sequence the set of attributes the participants used in the
referring expression in their initial (unsuccessful) reference and in the final (successful) reference.
For each expression we determined the following attributes:

• Type: The expression contained a specific type attribute such as “ball” or “cube”. If the
expression contained a general type such as “object” or “thing”, it was not counted.
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Figure 15. The sequence graph for the five most frequent sequences in the Querying Phase.

• Colour: The expression contained a colour attribute such as “green” or “red”.
• Landmark reference: The expression contained a reference to a landmark object (such as

in “the ball near the green box” or “the green box between the red ball and the yellow ball”.
• Directional description: The expression contained a directional expression that described

the location of the target object in the world without reference to a landmark object (e.g.
“the box on the left”, “the green box in the centre”).

We split the set of successful resolution sequences into four subsets depending on whether or not
(and what type of) information was requested during each resolution sequence. The uninformed
set contains sequences during which no information was requested (the sequence from Figure
10 is an example of such a sequence). The description set contains sequences during which a
description was requested (the sequence from Figure 9 is an example), the markup set contains
sequences during which markup was requested, and the querying set contains sequences during
which at least one query was made.
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Table 4 contains an overview of the attributes included in the initial references. Table 5 contains
an overview of the attributes in the final references. For easier comparison, Table 6 contains the
differences between the proportions in the initial and the final references.

7.1. Discussion and Analysis

We find that almost all initial referring expressions contain a specific type attribute. Most of the
initial referring expressions also contain a colour attribute. Overall, the proportion of expressions
that contained a type attribute and the proportion of expressions that contained a colour attribute
are lowest in the uninformed category. About half of the expressions in each category contain
a landmark reference. It is remarkable that none of the observed initial expressions contained a
directional description.

For the final references we observe that in all categories the proportion of expressions that
contained a type attribute or a colour attribute is lower than in the initial references. We believe that
this observation indicates that participants realized that the type attribute and the colour attribute
were unreliable and therefore decided to use expressions that avoided values for these attributes
(e.g. instead of referring to an object as “the blue box” they referred to it as “the box” (thereby
removing the colour attribute from the expression) or “the blue object” (thereby removing the type
attribute)). We also notice that the participants tended to include fewer landmark references in
the final set. The drop-off is most pronounced for the uninformed category and for the querying
category.

It is interesting that while the initial references did not include any directional descriptions, the
final references frequently did. We believe that this is a consequence of the presence of perception
errors. The type and colour of objects could be affected by perception errors, making it more difficult
to produce successful references to the affected objects. Likewise, the type and colour of objects that
were used as landmarks in referring expressions could be affected by perception errors. Direction
based descriptions on the other hand did not rely on attributes that could be affected by perception
errors. We therefore believe that participants removed attributes that, in their experience, were
potentially unreliable, and, to compensate for the loss of descriptive potential, instead substituted
them with directional descriptions, which were robust against perception errors.

We noted earlier that the drop-off in the use of the type and colour attribute was most strongly
pronounced in the uninformed and the querying category, while it was not as strong in the descrip-
tion and the markup category. We believe that this may be explained by the type of information
that these options provided. The description option and the markup option provided a complete
description of how the scene appeared to the robot. Although the description of a scene did not
explicitly state what the perception errors were that affected the robot’s perception of the scene,
the participants were able to compare the information provided by the system with their own
perception of the world and figure out the divergence. They therefore had the option to align their
own model of the world (temporarily for the purpose of producing a reference) to robot’s flawed
model of the world. This means that they did not necessarily have to abandon using unreliable
attributes, but were able to use attribute values that were valid in the robot’s understanding of
the world.

In contrast to this, in the uninformed condition and the querying condition, the system did not
provide an explicit description of how the robot perceived the world. In the querying condition,
the participants could ask the system whether or not it perceived an object of a given description.
In the uninformed condition, they did not request any information, and therefore had no model of
the robot’s understanding to align to. Instead they reached a successful reference by trial-and-error
and were therefore less likely to align their model of the scene to the robot’s model, and more likely
to use more general terms and directional descriptions.

Another interesting observation is that the proportion of references that included a directional
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Table 4. Attributes included in the initial references.

Type Colour Landmark Reference Directional description

Condition Proportion Count Proportion Count Proportion Count Proportion Count

Uninformed 96.34% 79 86.59% 71 45.12% 37 0.00% 0
Description 98.57% 69 87.14% 61 51.43% 36 0.00% 0
Markup 100.00% 40 92.50% 37 45.00% 18 0.00% 0
Querying 100.00% 55 94.55% 52 49.09% 27 0.00% 0

Table 5. Attributes included in the final references.

Type Colour Landmark Reference Directional description

Condition Proportion Count Proportion Count Proportion Count Proportion Count
Uninformed 84.15% 69 58.54% 48 30.49% 25 17.07% 14
Description 98.57% 69 77.14% 54 34.29% 24 34.29% 24
Markup 95.00% 38 95.00% 38 37.50% 15 17.50% 7
Querying 94.55% 52 65.45% 36 32.73% 18 25.45% 14

Table 6. The differences between the proportions in the initial and the final references.

Condition Type Colour Landmark reference Directional description

Uninformed -12.20 -28.05 -14.63 17.07
Description 0.00 -10.00 -17.14 34.29
Markup -5.00 2.50 -7.50 17.50
Querying -5.45 -29.09 -16.36 25.45

description is highest for the description condition. This may be related to the fact that the
descriptions themselves also contained directional descriptions. It is therefore possible that the
participants aligned their expressions to the descriptions provided by the system. The extent to
which this occurred is a matter for further research.

8. Summary

We performed an experiment in which we artificially induced problems in a dialogue based human-
robot interaction and observed how the problems were resolved. We showed that if errors are
present in the perception of the robot, this leads to an increase of problems in the interactions
and makes successfully completing the tasks more difficult. On the other hand, giving the human
dialogue partners access to information about the robot’s understanding of the scene allows them
to reduce problems and complete the task more efficiently.

Furthermore we investigated references that failed due to perception errors and how the result-
ing problems were resolved by the participants. We found that participants resolved such problems
either through a trial-and-error strategy, or, when information about the robot’s perception was
available, by requesting information and using it in their problem resolution attempts. We then
investigated the choice of attributes in referring expressions that triggered perception based prob-
lems, the expressions that the participants produced to resolve the problems. In terms of the content
of the referring expressions, we found that participants tended to include different attributes in
the expressions in their final reference compared to their initial reference. The choice of which
attributes to include or not to include appears to be related to the type of information available
about the robot’s perception. If information about the robot’s understanding of the scene is di-
rectly available, participants tend to align their referring expressions to the robot’s understanding.
The sequence shown in Figure 9 is an example of this effect. The participant discovers through the
description that the robot sees a yellow box as a yellow ball, and repeats the initial instruction
modified to suit this understanding. If this type of information is not available, participants tend
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to use strategies where they combine expressions that avoid unreliable attributes with robust direc-
tional descriptions. The sequence shown in Figure 10 shows a case where the participant removed
a landmark based description and replaced it with a directional description.

In conclusion, perception based errors may occur in human-robot dialogues. One approach to
address this problem is to improve robot perception. Our work, however, indicates that another
useful strategy could be to provide the human user access to the robot’s perceptual model of
the world. As our results show, users do request information about the robot’s perception if it is
available, and they are able to evaluate and relate it to their own understanding. They can then use
it to either align their understanding of the world to the robot’s understanding, or use it to avoid
unreliable attributes and substitute them with reliable ones. An interesting implication of this is
that there is potential for robot systems to use the adjustments that users make in their references
to provide the robot vision system with information about possible weaknesses in its recognition
mechanism. This information may be used by the robot to trigger a self-repair mechanism of its
perception. We will explore this in future work.
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