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Abstract

Consider a bank which wishes to decide whether a credit applicant
will obtain credit or not. The bank has to assess if the applicant will
be able to redeem the credit. This is done by estimating the probabil-
ity that the applicant will default prior to the maturity of the credit.
To estimate this probability of default it is first necessary to identify
criteria which separate the “good” from the “bad” creditors, such as
loan amount and age or factors concerning the income of the appli-
cant. The question then arises of how a bank identifies a sufficient
number of selective criteria that posses the necessary discriminatory
power. As a solution, many traditional binary classification methods
have been proposed with varying degrees of success. However, a par-
ticular problem with credit scoring is that defaults are only observed
for a small subsample of applicants. An imbalance exists between the
ratio of non-defaulters to defaulters. This has an adverse effect on
the aforementioned binary classification methods. Recently one-class
classification approaches have been proposed to address the imbal-
ance problem. The purpose of this literature review is threefold: (i)
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Present the reader with an overview of credit scoring; (ii) Review ex-
isting binary classification approaches; and (iii) introduce and examine
one-class classification approaches.
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1 Introduction

This section provides an introduction to the literature review and describes
the framework used to conduct the review. Section 1.1 discusses the purpose
of the literature review from a general perspective and then more specifi-
cally from our problem domain, One-Class Classification (OCC) perspective.
Section 1.2 provides an overview of the topics covered in the literature re-
view. Section 1.3 supplies a brief explanation of the research methodology
employed developing this review. Finally, Section 1.4 describes the structure
and organisation of this review.

1.1 Purpose of Literature Review

The overall aim of this literature review is to provide an analysis of the
present state of research on the application of OCC techniques in the financial
domain, predominantly through the use of credit risk scorecards. Before
attempting to review this subject area, it is necessary to discuss the purpose
of a literature review in a wider context.

Hart (1998, pg.13) defined a literature review as:

“The selection of available documents (both published and un-
published) on the topic, which contain information, ideas, data
and evidence written from a particular standpoint to fulfil certain
aims or express certain points of views on the nature of the topic
and how it is to be investigated, and the effective evaluation of
these documents in relation to the research being proposed.”

The inclusion of the term unpublished is interesting. The standard prac-
tice of many researchers is to consider only peer reviewed publications. For
instance Taylor and Procter (1998) define a literature review as:

“A literature review is an account of what has been published
on a topic by accredited scholars and researchers.”

Hart’s (1998) definition encourages a broad-based approach to the litera-
ture review. By this definition a full investigation from the origins of theories
and ideas to their publication is promoted. From this definition it can be
asserted that a literature review comprises of the identification, evaluation
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and interpretation of work produced by researchers, scholars and practition-
ers involved in the chosen field of research. In contrast, Taylor and Procter
(1998) advocate a refined or constricted approach that focuses on published
material by recognised researchers. While such an approach offers safeguards
against unsubstantiated statements it can promote the endorsement of estab-
lished research which can lead to a one-sidedness or biasness. Furthermore,
it can act as a hindrance for topics that receive little research attention.

Under the principles of identification, evaluation and interpretation this
Hart’s (1998) definition can be used to establish a number of goals or purposes
that a literature review serves. Bourner (1996, p.8), Hart (1998, p.27) and
Neuman (2003, p.96) provide a number of reasons for conducting a literature
review which can be grouped as:

1. Identification

• Detect “gaps” in the literature: By conducting a literature review,
areas of on-going, current interest and, possibly, areas of relative
neglect should become apparent. The literature review can assist
the researcher in distinguishing between completed work and, to
date, sparsely researched areas of the topic.

• Proceed from where others have already reached: A literature re-
view allows the researcher to build on the platform of existing
knowledge and ideas. A review of the literature can identify sem-
inal works in the researcher’s area. Avoid unnecessary repetition
of existing work (avoid making the same mistakes as others).

• Identify the main methodologies and research techniques that have
been used.

• Identify other researchers working in the same fields. A researcher
network is a valuable resource.

• Identify opposing views

2. Evaluation

• An aim of the literature review is to provide the intellectual con-
text for the researcher’s work, enabling the researcher to position
their project relative to other work. Thus allowing the researcher
to put their work into perspective.

6



• A literature review provides an understanding of the structure of
the subject and helps establish the context of the topic or problem.

• Increases the breadth of the researcher’s knowledge in the subject
area and acquire/enhance their subject vocabulary.

3. Interpretation

• Establish creditability by demonstrating access to previous work
in an area. From this, place the research in a historical context to
show familiarity with state-of-the-art developments.

• A literature review can identify information and ideas that may
be relevant to the project. Discover important variables relevant
to the topic.

• Identify relationships between ideas and practise. Relating ideas
and theories to applications.

Using this context, the overall achievement of this literature review from
an academic viewpoint is to produce a body of knowledge beneficial to the
Dublin Institute of Technology, Kevin Street, Artificial Intelligence Group
(AIG). It is intended as a broad overview of OCC within the financial sector
and to provide a basis for future research. For the author, the high level aims
of the exercise are to:

• Develop a familiarity with OCC and credit risk scorecards.

• Accumulate a body of knowledge on the topic in order to commence
the establishment of an authority and credibility within the field of
research.

• Show the development of prior research and place the current literature
review in context to it.

• Integrate and summarise what is known in an area.

• Learn from others and stimulate new ideas (methodologies used, “blind
alleys” to avoid).
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1.2 Overview of the Literature Review

Classification means to identify whether an object is contained in a class or
not (Stephan, 2001). In most classification problems, training data is avail-
able for all classes of instances that can occur at prediction time (Hempstalk
et al., 2008). In this case, the learning algorithm can use the training data
for the different classes to determine decision boundaries that discriminate
between these classes (Hempstalk et al., 2008).

Classification models are used by financial institutions for classifying an
applicant for credit into classes according to their likely loan repayment be-
haviour (e.g. “default” or “not default”) (Hand & Henley, 1997). The term
used to describe the estimate or classification of this repayment behaviour is
called the probability of default (PD).

Credit scoring (also known as credit risk scoring) is the term used to
describe the process of estimating the PD. Classification models in the form of
scorecards, use predictor variables (or characteristics) from credit application
forms and other sources to yield estimates of the probability of defaulting
(Hand & Henley, 1997).

Estimating the PD of an asset group is the responsibility of a financial
institution’s risk manager. The PD estimate is required both for internal
risk control procedures and for regulatory compliance (Kiefer, 2008). Under
the Basel II framework (Basel Committee on Banking Supervision, 2004) for
capital standards, provisions are made for financial institutions to use models
to assess risks and determine minimum capital requirements (Kiefer, 2008).
The Basel II framework places a strong emphasis on data and relies heavily
on the use of empirically derived techniques to evaluate risk (Phipps et al.,
2004).

Questions and concerns from the financial industry were raised in regard
to Basel II and low-default portfolios (BIS, 2005). Low default portfolios
can be defined as portfolios where the bank has no, or a very low, level of
defaults and is therefore unable to estimate and validate the PD on the basis
of a proven statistical significance (Sabato, 2006). There are a significant
number of business types where sufficient default information is not available
(Phipps et al., 2004). These can be relatively new businesses, but they can
also be mature portfolios where the firm has wide experience but very few,
if any default observations (Phipps et al., 2004). Examples include (Phipps
et al., 2004):

• Sovereign debt
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• Banks (particularly in developed countries)

• Large corporate businesses

• Repossession-style business

• Niche counterparties, such as train operating companies, housing asso-
ciations, local authorities etc.

• Private banking exposures

• Residential mortgage portfolios

Financial institutions refer to this as the low default portfolio problem,
but more generally in machine learning literature it is referred to as single-
sided (or OCC). Low default portfolios can present a significant obstacle in
developing credit risk models (Sabato, 2006). This project will investigate
techniques for addressing the low default portfolio problem. The project will
begin by examining the state-of-the-art in single-sided classification and from
this, developing algorithms to address the unique features of the low default
portfolio problem faced by financial institutions.

1.3 Research Methodology

This section details the methodology used during the lifetime of the literature
review project. The main methodology used in the research of this review
involved secondary research. According to Hart (1998, p.32) planning a
literature search comprises of the following steps:

1. Topic Definition

2. Scope of Topic

3. Planned Outcomes

4. Organisation of Sources

5. Searched Sources

6. Listed Sources
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1.3.1 Topic Definition

This stage involved some general reading in order to gain familiarity with
the topic. As an introduction the books “Introduction to Machine Learning”
(Alpaydin, 2004) and “Learning from Data” (Cherkassky & Mulier, 2007)
were consulted. From these sources concepts used and cited authors were
noted. The end result was an initial list of terms for further searching.

1.3.2 Scope of Topic

The search time frame was established and relevant subject areas were iden-
tified. Next the leading authors and researchers in the area were identified
and noted. From this the search vocabulary was defined:

• Single-sided Classification

• One-sided Classification

• Novelty Detection

• Outlier Detection

• Credit Risk Scorecards

• Credit Risk

• Scorecards

• The works of leading gurus in the field

1.3.3 Planned Outcomes

As stated previously in Section 1.1 the purpose of this literature review is
to provide an analysis of the present state of research on the application of
OCC in the financial domain through the use of credit risk scorecards. This
involves the identification, interpretation and evaluation of literature within
the defined scope of the topic.
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1.3.4 Organisation of Sources

A simple numbering system was used to track all sources. An Excel spread-
sheet recorded each source number, name and location. In future, the spread-
sheet will be expanded to track of cross-referencing between the sources. A
reference management software tool, Zotero, was employed to manage bibli-
ographies and references. Zotero is a free open source extension for Mozilla
Firefox browser that enables users to collect, manage and cite research from
all types of sources from the browser.

1.3.5 Searched Sources

A list of likely relevant sources of information to be searched was created.
This list included:

• Anthologies

• Conference papers

• Journals

• Lectures

• Reports

• Textbooks

• Theses

1.3.6 Listed Sources

Working through the searched sources listed above, the following segments
were searched:

• Abstracts

• Bibliographies

• Dictionaries

• Indexes
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The search started with general sources and then moved to more specific
sources such as Indexes. Notes on ideas and concepts to follow up were
recorded. The above terms were used with Google Scholar and hard copies.
All of this research was conducted primarily in Dublin and made extensive
use of library facilities at the Dublin Institute of Technology, and Trinity
College Dublin.

1.4 Organisation of the Review

The remaining sections of this literature review are organized as follows:
Section 2 introduces the proposed OCC application domain of the re-

search, credit risk scorecards. Credit risk is examined in Section 2.1. The
concept of risk and the ability to measure it is essential to many problems in
business and economics. Section 2.2 establishes credit scoring as a form of
measuring credit risk. Section 2.3 offers a distinction between consumer and
corporate credit risk scoring. In Section 2.4 existing approaches to credit risk
scoring are examined. Section 2.6 outlines the impact of recent regulation,
Basel 2, and the increased importance of credit risk measurement.

Before reviewing OCC it is necessary to consider classification. Section 3
begins by defining classification in the context of machine learning. Section
3.2 offers an example of the traditional classification task. Following this
the theory and theoretical framework of classification is discussed in Section
3.3 and Section 3.4. The evaluation techniques of classification algorithms
are covered in Section 3.5. Classification methods used in the credit scoring
domain are highlighted in Section 3.6. The notion of unbalanced data and
its consequences to classification are explored in Section 3.7.

An overview of OCC is presented in Section 4. The question of whether or
not the training of one-class classifiers is strictly confined to one class is posed
and discussed in Section 4.1. The additional problems and challenges faced
by One-class classifiers are reviewed in Section 4.2. Section 4.3 examines
the common characteristics and goals of one-class classifiers. An overview of
current OCC methods is offered in Section 4.4.

Finally, Section 5 offers a conclusion to the literature review including
proposals for future research. A full bibliography is included at the end of
the literature review.
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1.5 Conclusion

This Section described the framework used for the literature review project.
Section 1.1 discussed the purpose of the literature review from a general per-
spective and then more specifically from our problem domain, OCC, perspec-
tive. A definition and reasons (identification, evaluation and interpretation)
for conducting a literature review were furnished. Section 1.2 provided an
overview of the topics covered in the literature review and the low default
portfolio problem was formally introduced. Section 1.3 supplied a brief ex-
planation of the research methodology employed developing this review. The
scope of the topic and the organisation of research sources were recorded. Fi-
nally, Section 1.4 described the structure and organisation of the literature
review.
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2 Credit Risk Scorecards

The purpose of this Section is to provide the reader with a broad understand-
ing of credit risk scorecards. Section 2.1 examines credit risk and touches
on its importance to society. Section 2.2 reviews credit scoring by offering
a definition of the term and outlining its history. The types of credit scor-
ing (Application and Behavioural scoring) are distinguished. The industry
practice of reject inference is also highlighted. Section 2.3 offers a distinction
between consumer and corporate credit risk scoring. The effects of legislative
requirements such as the Basel accords are outlined in Section 2.4.

2.1 Credit Risk

As of December 24th 2008, the value of bank loans secured on real estate in
the US stood at $3,760.4 billion (Federal Reserve, 2008). On the same date,
consumer loans in the personal sector totaled $882 billion. In total these
two figures accounted for 65% of the total loans and leases ($7123.1 billion)
estimated to be held by commercial banks in the United States (Federal
Reserve, 2008).1

As of November 2008, financial institutions in the Eurozone had outstand-
ing loans to households, non-financial corporations and government totaling
e18,295.5 billion (ECB, 2008).2 Lending for house purchases in the Eurozone
stood at e3,523.2 billion (ECB, 2008) or 20% of the former figure. Lending
for house purchases in Ireland accounted for e116.5 billion or 0.64% of this
total figure (ECB, 2008).3 These figures clearly illustrate our dependence on
credit and the importance played by credit suppliers. In order to ensure con-
tinued functioning and viability of these financial institutions, and arguably
present day society, it is necessary to ensure proper safeguards are in place
to limit the exposure to known risks. Financial institutions label this type
of risk as Credit Risk. Regrdless of the size and nature of its operations, the
most significant threat faced by a business is counterparts’ credit risk (Wang
et al., 2005). Particularly for credit-granting institutions, such as mortgage

1Data from the Federal Reserve Board, H8, Assets and Liabilaties of Commercial Banks
in the United States.

2Data from the European Central Bank, Aggregated balance sheet of euro area monetary
financial institutions, excluding the Eurosystem.

3Data from the European Central Bank, Aggregated balance sheet of euro area monetary
financial institutions, excluding the Eurosystem: ire/Ireland.
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lenders and some retailers, the ability to discriminate faithful customers from
bad ones is crucial (Wang et al., 2005). Exposure to credit risk is the leading
source of problems in banks throughout the world (BIS, 1999).

The Bank of International Settlements (BIS) provide a definition of the
term credit risk:

“Credit risk is most simply defined as the potential that a bank
borrower or counterparty will fail to meet its obligations in accor-
dance with agreed terms.” (BIS, 2000)

The credit risk presented by a counterparty is assessed by a lender through
both the lender’s and the borrower’s circumstances and the lender’s view
of the likely future economic scenarios (Thomas et al., 2002). In 2008, year
end, the United Kingdom (UK) Council of Mortgage Lenders (CML) estimate
that 1.8% (or 210,000) of all UK mortgages are in arrears of three months or
more.4 For 2009 this figure is forecasted to rise to 4.41% (or 500,000). In to-
tal, CML expects 75,000 home repossessions for 2009. The long-term success
of any financial institution is dependent on its ability to effectively manage
credit risk as part of an overall approach to risk management (BIS, 2000).
The credit risk inherent in the entire portfolio as well as the risk in individual
credits or transactions must be managed not just by legal constraints but also
as a basic operational requirement (BIS, 2000). Financial institutions are re-
quired to identify, measure, monitor, and control credit risk. Furthermore
it is necessary to determine that a financial institution holds adequate cap-
ital against these risks and that they are adequately compensated for risks
incurred (BIS, 2000). For most financial institutions, loans are traditionally
considered the largest and most obvious source of credit risk (BIS, 2000).
Additional sources of credit risk increasingly faced by financial institutions
in various financial instruments other than loans include acceptances, inter-
bank transactions, trade financing, foreign exchange transactions, financial
futures, swaps, bonds, equities, options, the extension of commitments and
guarantees, and the settlement of transactions (BIS, 2000). According to the
BIS (2000) one of the main causes of “serious banking problems continues to
be directly related to lax credit standards for borrowers and counterparties,
poor portfolio risk management”. From this statement it is clear that there
is a need for interpretable, consistent and accurate credit risk scoring.

4Figures supplied by CML Market Commentry accessed at
http://www.cml.org.uk/cml/publications/marketcommentary/109
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2.2 Credit Scoring

Thomas et al. (2002) define credit scoring as:

“...the set of decision models and their underlying techniques
that aid lenders in the granting of consumer credit”.

The basic premise of credit scoring is the determination of how likely appli-
cants are to default with their loan repayments. Typically, this is achieved
through the application of predictive statistical models. A financial institu-
tion maintains a record of customers to whom it has granted credit. Each
customer has certain attributes or characteristics such as: income, employ-
ment status, outstanding loans. Credit scoring models are developed to cat-
egorise applicants for credit as either accept or reject with respect to the
applicant’s characteristics such as age, income and marital condition (Huang
et al., 2007). An objective of a credit scoring model is to perform a sys-
tematic analysis of this data and identify behavioural patterns and credit
characteristics. A credit scoring model captures the relationship between
historical information and future credit performance of customers and new
customers (Zhang et al., 2007). Effective credit risk assessment is now recog-
nised as a crucial factor to gaining a competitive advantage which can help
financial institutions to grant credit to credit worthy customers and reject
non-creditworthy customers.

In order to identify potential loan defaulters, a default must first be de-
fined. A default definition is set either by company policy or regulation. One
such definition is provided in the Basel II accord (BIS, 2006). This accord
contains recommendations on banking laws and regulations issued by the
Basel Committee on Banking Supervision and is examined in greater detail
in Section 2.4.1. Basel II (section 452 BIS, 2006) states that a default is
considered to have occurred when:

• “The bank considers that the obligor is unlikely to pay its credit obli-
gations to the banking group in full, without recourse by the bank to
actions such as realising security (if held)”.

• “The obligor is past due more than 90 days on any material credit
obligation to the banking group. Overdrafts will be considered as being
past due once the customer has breached an advised limit or been advised
of a limit smaller than current outstandings”.
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Under a current-status definition, a case tests positive only if the condition
holds true at the end of a period, whereas a worst-ever definition, tests
positive if the condition holds true at any point over the period. Basel II
requires that banks use a worst-ever definition, covering a one-year period.
Basel II does not distinguish between low-default or non-low-default banking
portfolios. Rather, there is a continuum between these two extremes. A
portfolio is closer to the low-default portfolio end of this continuum when
a banks internal data systems include fewer loss events (Basel Committee
Newsletter No. 6, September 2005).

2.2.1 History of Credit Scoring

Fisher (1936) introduced the concept of discriminating between groups of
a population in statistics. His work was on the use of a technique called
linear discriminant analysis to classify different species of irises. Although
Fisher’s work focused on the sciences, it provided the basis for the predictive
statistics used in a multitude of other disciplines. It is generally regarded
that the history of credit scoring began in 1941 when Durand (1941), using
linear discriminant analysis, published a study that distinguished between
good loans and bad loans made by 37 firms (Crook et al., 2007). In the same
decade (1940s), banks granted credit or mail order firms sent merchandise
based on a judgemental decision performed by a credit analyst (Thomas,
2000). Typically the decision of the credit analyst was evaluated on the
basis of the 5Cs:

1. Character (reputation of the person or family)

2. Capital (leverage - what amount is being requested)

3. Collateral (security)

4. Capacity (earnings volatility)

5. Cycle conditions (macroeconomic or market conditions)

Traditional expert systems specify no weighting scheme and are incon-
sistent and subjective in their assessments. Over time a set of rules were
developed and from this it was possible to develop statistically derived mod-
els for making lending decisions (Thomas, 2000). In the early 1950s Bill
Fair and Earl Issac formed the first consultancy dealing with finance house
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retailers and mail order firms and in 1958 they developed their first applica-
tion risk scorecards for American Investments. Due to entrenched attitudes
within the banking industry the initial take-up of credit scoring was slow,
however, before long many financial institutions began to realise the poten-
tial, and adopted credit scoring as part of the decision process (Lewis, 1992;
Anderson, 2007). The usefulness of credit scoring was enhanced when fi-
nancial institutions used credit scoring models in the late 1960s with the
introduction of the credit card (Thomas, 2000). Due to the high level of ap-
plications it was necessary to automate the lending decision (Thomas, 2000).
Furthermore, many of the banks to which the credit cards were licensed were
experiencing large losses. Through the use of credit scoring banks found de-
fault rates dropped by as much as 50% when compared to the judgemental
scheme (Thomas, 2000). Despite this success, some people remained un-
convinced about the total reliance on statistical models, which removed any
human element from the decision process (Anderson, 2007). The first fully
automated implementation of credit scoring was performed in 1972 by Fair
Isaac for Wells Fargo (Anderson, 2007).

In the 1980s after the success of credit scoring with credit cards banks be-
gan using credit scoring for other products like personal loans, and later with
home loans and small business loans (Thomas, 2000). Today, practically all
major banks use credit scoring in partnership with specialised consultancies
that provide credit scoring services and powerful software to score appli-
cants, monitor their performance and help manage their accounts (Crook et
al., 2007). Figure 1 illustrates the idea of a very basic credit risk scorecard.
Each characteristic (e.g. age) has one or more attributes (e.g. 18 - 24, 25 -
40 etc.) and each attribute is assigned a score. If the sum of the scores ex-
ceeds the cut-off threshold, an application for credit is accepted otherwise it
is rejected. In some instances when the score is close to the cut-off threshold
it is referred to an expert. There are a number of ways of selecting a cutoff,
refer to Beranek and Taylor (1976) for an overview.

Legislative events have also served to act as a catalyst for credit scoring
growth. The first such legislation was passed in the US in 1975. The Equal
Credit Opportunity Acts outlaws discrimination on the basis of:

“race, colour, religion, national origin, sex or marital status,
or age (provided the applicant has the capacity to contract); all
or part of the applicant’s income derives from any public assis-
tance program; the applicant has in good faith exercised any right
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under the Consumer Credit Protection Act” (Federal Trade Com-
mission, 1998).

Under this act the refusal to grant credit had to be made by empirical
derivation and a statistical basis. The act ensures that “all consumers are
given an equal chance to obtain credit” (Federal Trade Commission, 1998).
Other such ground breaking legislative acts include the Basel Accords which
are examined later.

Figure 1: Credit Risk Scorecard

Credit scores come under a variety of different labels, that are dependent
on: (i) the information source; (ii) the task being performed; or (iii) what is
being measured (Anderson, 2007). The most common labels are: Applica-
tion scoring, Behavioural scoring, Collections scoring, Customer scoring and
Bureau scoring. Collections scoring predicts the probability of a loan that re-
cently fell into arrears will remain so until a specified default period (usually
30-90 days). Customer scoring are scorecards that have been developed us-
ing the customer’s characteristics on all lenders products in order to estimate
the probability of default on all or some of the loans (Thomas et al., 2001).
Bureau scoring is a score provided by a credit bureau, usually a bankruptcy
predictor that summarises the data held by them (Anderson, 2007). Ap-
plication scoring and Behavioural scoring are the two most common scoring
techniques and are described in detail in the following sections.
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2.2.2 Application Scoring

Using information obtained from the credit applicant, application scoring
generates one overall score measuring the creditworthiness of the applicant.
The application scores provide a key indicator in deciding whether new credit
should be granted or not. The information that forms the basis for these
scoring techniques includes both the applicant’s application form details and
the information held by a credit reference agency on the applicant (Thomas,
2000). There is also in most cases a mine of information on previous ap-
plicants - their application form details and their subsequent performance
(Thomas, 2000). Robust and accurate classification models can be built on
this available data. Classification accuracy is of benefit both to the creditor
(increased profit or reduced loss) and to the applicant (avoid over commit-
ment) (Hand & Henley, 1997).

2.2.3 Behavioural Scoring

Behavioural scoring, uses the current and most recent performance of the con-
sumer as a way of updating the assessment of consumer credit risk (Thomas
et al., 2001). This replaces the first snapshot used in Application scoring
with a description of the dynamics of the consumer’s recent performance,
but the second snapshot still remains (Thomas et al., 2001).

A sample of customers is chosen so that data is available on their per-
formance either side of an arbitrarily chosen observation point. The period
prior to the observation time is called the performance or observation period
and is usually 6 to 12 months in length (Thomas et al., 2001). Typical per-
formance data would be average, maximum and minimum levels of balance,
credit turnover, and debit turnover. Some of the characteristics are indicators
of delinquent behaviour; number of missed payments, times over overdraft
or credit limit. Others characteristics may reflect difficulty in money man-
agement such as the number of cash advances using a credit card (Thomas
et al., 2002).

The period after the observation point is the outcome period, which is
usually taken as 12 months, and the customer, is classified as a good or a
bad depending on their status at the end of this outcome period (Thomas et
al., 2001). A common definition is to classify a bad to be someone who is 90
days overdue at this point.

One of the disadvantages of behavioural scoring is the need for two years
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worth of history to build a scorecard. Consequently the population that the
scorecard is then applied to may be quite different from that it was built on.
One way used to reduce this is to take a shorter observation period and/or
performance period of six months.

2.2.4 Reject Inference

A financial institution possesses the application form details on those cus-
tomers it rejected for credit but no knowledge on how they would have pre-
formed (Thomas, 2000). Credit risk scorecard models constructed on the
known performance of customer characteristics are referred to as the “known
Good/Bad sample” (Siddiqi, 2005). Application scorecards developed to pre-
dict the behaviour of all applicants, using a model based on only previously
approved applicants can be inaccurate (Siddiqi, 2005). The accept popula-
tion is biased and not representative of the reject population (Thomas, 2000).
Reject inference is a process whereby the performance of previously rejected
applicants is analysed to estimate their behaviour (i.e. assign a class). Crook
and Banasik (2004) define reject inferences as:

“Reject inference techniques attempt to incorporate charac-
teristics of rejected applicants into the process of calibrating a
scorecard based primarily on the repayment behaviour of accepted
applicants.”

Reject inference enables accurate and realistic performance forecasts for
all applicants. The concept of “reject inference” has been widely adopted
by the industry. Reject inference involves predicting the unknown and will
always carry a degree of uncertainty. Attempting to impute whether rejected
customers will be good or bad has been the subject of considerable debate
(Thomas, 2000). Hand and Henley (1993) conclude that the question of
whether it is possible to impute if a customer will be “good” or “bad” cannot
be overcome, unless particular relationships are assumed between the distri-
butions of the goods and bads which holds true for both the accepted and
rejected population. One solution is to accept all applicants for a short period
of time and to use that group as a training sample (Thomas, 2000). However,
financial institutions are constrained by the cost of default and cannot accept
all applicants, and so use versions of reject inference (Thomas, 2000). Hand
and Henley (1993,1994) and Reichert et al. (1983) conclude that reject infer-
ence cannot work unless additional assumptions about the data were made,
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i.e. assuming particular forms for the distribution of the good and bad risks.
Crook and Banasik (2004) offer a review of reject inference techniques.

2.3 Corporate Credit Ratings and Consumer Credit
Scoring

This literature review is concerned with methods used to predict the proba-
bility of default for individuals, namely consumer credit risk. For clarity, it is
worthwhile to consider the corporate sector and the corporate credit rating.
Many of the under-lying techniques used in consumer credit risk can also be
employed in corporate credit ratings.

Corporate credit ratings are used extensively by bond investors, debt
issuers, and government officials as a “surrogate measure of riskiness of the
companies and bonds” (Huang et al., 2004). They are important guides of risk
premiums and directly affect the marketability of bonds (Huang et al., 2004).
Two basic types of corporate credit ratings exist. The first, more frequently
studied, is often referred to as “bond rating” or “issue credit rating”. These
ratings attempt to inform the public of the probability of an investor being
paid the promised principal and interest payments associated with a bond
issue (Huang et al., 2004). The second corporate credit rating is referred to
as “counter party credit rating”, “default rating” or “issuer credit rating”. It
is an evaluation of current opinion of an issuer’s overall capacity to pay its
financial obligations (Huang et al., 2004). It focuses on the issuer’s ability
and willingness to meet its financial commitments on a timely basis (Huang
et al., 2004).

A credit rating agency offers an opinion as to the credit worthiness of
lending to large quoted companies. This evaluation is typically indicated by
an alphabetic ordinal scale, for example AAA, AA,...,CCC labels. Higher
ratings mean less risk and lower ratings imply more risk in the opinion of the
credit rating agency.

The details of the methods used to construct a scale are proprietary
(Crook et al., 2007). Typically, the company requesting a credit rating sub-
mits a package containing information such as: annual reports, latest quar-
terly profits, balance sheets and other such specialised information in order
to perform quantitative analysis. The rating agency then assigns financial
analysts to conduct research on the competitive environment, regulations
and internal factors such as managerial quality and strategies (Crook et al.,
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2007). Prior to making a rating public, senior management of the rated firm
are consulted and the proposed rating is discussed.

Ratings however, are by far the most common reference on individual
credit risk in the industry, for practical and regulatory reasons. In general,
the corporate credit rating process involves a subjective assessment of quanti-
tative and qualitative factors (fundamental analysis) of a particular company
as well as market level variables (Huang et al., 2004). In contrast, consumer
credit scoring is based largely on a statistical-based approach such as dis-
criminant analysis which classifies a population into clearly distinguishable
groups (e.g. “good” and “bad”). Consumer credit scores are actual estimates
of the probability of default of an applicant for credit. The usefulness of
consumer credit score depends in part on the sample size, the proportions
of good and bad debtors it contains, and the classification model used to
distinguish between them.

2.4 Basel Capital Accords

In 1988, prompted by several international bank failures that highlighted the
need for a common way to manage risk across countries, The Basel I Capital
Accord (Basel I) was published. It was the work of the Basel Committee on
Banking Supervision, appointed by the Bank for International Settlements.
The purpose of Basel I was to improve the soundness and stability of the
international banking system and provide a “level playing field” for lenders
from different countries. This was done, in part, by standardising and in-
creasing capital reserves held for credit risk. Basel I set minimum capital
requirements, or capital-adequacy ratios, for banks by using a very simplis-
tic approach. Prior to Basel I capital-adequacy ratios were initially set as
flat percentages of banks’ assets, typically somewhere between 4% and 10%
(Anderson, 2007). However, this failed to recognise the riskiness of banks’
assets, which varied according to the nature of their portfolios (Anderson,
2007). Basel I requires banks to assign adequacy-ratios or risk-weights to
their exposures into four broad classes: (i) 0% - sovereign debt of OECD
countries (S); (ii) 20% - other banks and public sector institutions in OECD
countries (O); (iii) 50% - resedential loans (R); and (iv) 100% - all other
loans (U). The risk-weighted assets (RWA) is obtained by adding the total
lending in each class:

RWA = (0% ∗ S) + (20% ∗O) + (50% ∗R) + (100% ∗ U) (1)

23



Basel-I requires banks to keep their capital ratios above 8%, where the
capital ratio is defined as:

Capital Ratio =
Total Capital

RWA
(2)

For instance, a bank that only has exposures to corporate loans (class
iv) will be allowed to issue loans for a maximum of 12.5 times its total
capital. Basel I was originally intended for internationally active banks in
G10 countries, however it was adopted as a global standard by over 120
countries. Clementi(2000) observed that Basel I increased financial stability
by providing: (i) a framework for determining the riskiness of assets; (ii) a
definition of capital-weighted assets; and (iii) a minimum capital-adequacy
ratio. Although Basel I had the desired effect of stabilising the declining
trend in banks’ solvency ratios by increasing capital reserves, one of it’s
main shortcomings was that it did not provide any further risk differentiation
within its defined broad asset categories. Refer to Stephanou & Mendoza
(2005, p3-4) for further details on shortcomings of Basel I.

2.4.1 Basel II

Following the publication of three consultative papers (CP1,CP2 and CP3)
between 1999 and 2003, the Basel Committee members agreed in June 2004
on a revised capital adequacy framework (Basel II). In the European Union
(EU) all deposit takers had to implement Basel II no later than January
2008. The US delayed this date to January 2009 due to concerns about how
it will impact the competitiveness of smaller banks. Basel II consists of three
pillars: (i) minimum capital requirement; (ii) supervisory review process and
the role of bank supervisours; and (iii) market discipline through enhanced
disclosure.

Aside from credit risk two other types of risk have been introduced: mar-
ket risk and operational risk. Equation (2) can now be expanded to:

Capital Ratio =
Total Capital

RWA+Market Risk +Operational Risk
(3)

Pillar 1 requires lenders to assess their market and operational risk and pro-
vide capital to cover such risk. Operational risk is defined as “the risk of loss
resulting from inadequate or failed processes,people, and systems, or from ex-
ternal events” (Basel II). Market risk refers to the risk of adverse movement
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in prices of traded securities (Anderson, 2007). Regarding credit risk, Pillar
1 provides for the calculation of risk weights used to determine a basic min-
imum capital figure. There are two approaches to calculate this figure. The
simplest is the standardised approach, which provides set risk weights for 11
asset classes (e.g. sovereign and central banks, private-sector banks, residen-
tial property, etc.) and requires the weight on others to be determined by the
public credit rating assigned to the particular asset by the rating agencies
(e.g. Standard & Poor’s, Moody’s Corporation, etc.). Lenders can choose
the more sophisticated internal ratings based (IRB) approach. There are two
approaches within this model; foundation and advanced. These approaches
allow lenders to develop their own risk models to determine appropriate min-
imum capital. Credit risk is estimated using four parameters: probability-
of-default (PD); loss-given-default (LGD); exposure-at-default (EAD); and
maturity (M).

The estimated loss (EL) is the amount that the lender expects to lose,
based upon available data (Anderson, 2007). The EL can be calculated using
the following:

$EL = PD% ∗ $EAD ∗ LGD% ∗ f(M) (4)

PD% is a borrower risk rating or the probability that a borrower will
default in the horizon of one year. This figure is related to individual eco-
nomic and environmental circumstances. $EAD is a monetary value related
to the outstanding balance, agreed loan limit, the lender’s target limits, and
loan product characteristics. It is the expected total exposure or outstanding
loans to the borrower at the time of default. LGD% is the proportion of the
EAD that the lender expects to lose in the event of default, which is heavily
influenced by collateral and other security. The expected percentage of the
exposure which the bank will be unable to recover. f (M) is an adjustment
that is a function of the remaining loan term or repayment schedule.

Banks operating under the advanced variant of the IRB approach will be
responsible for providing all four of these parameters themselves, based on
their own internal models. Banks operating under the foundation variant of
the IRB approach will be responsible only for providing the PD parameter,
with the other three parameters to be set externally, by the Basel committee.

Under Pillar 2, lenders are required to assess risks to their business not
captured in Pillar 1, for which additional capital may be required. Pillar 3
requires lenders to publish information on their approach to risk management
and is designed to raise standards through greater transparency.
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Basel II poses significant challenges, and requires substantial investments
in information technology and risk-assessment capabilities, both for initial
compliance and ongoing improvements thereafter (Anderson, 2007). Some
of the requirements under Pillars 2 (e.g. legal mandate to impose higher
capital requirements) and 3 (e.g. confidentiality rules) are currently beyond
the working parameters of many supervisory authorities and require changes
to a country’s legal and judicial framework (Stephanou & Mendoza, 2005).

Credit scoring’s first significant boost came from the Equal Credit Op-
portunity Act in 1975 and is now receiving another boost from Basel II
(Anderson, 2007). Basel II provides the basis for internal ratings for retail
banking. Part of the initial attraction with Basel II was the potential of
lower capital requirements due to improved risk assessment, however many
financial organistations view compliance as a type of market-legitimacy that
facilitates lower borrowing costs in international finance markets (Anderson,
2007).

2.5 Conclusion

This Section offered a brief snapshot of credit risk. Section 2.1 examined
credit risk and part of its importance to society. Section 2.2 reviewed credit
scoring by offering a definition of the term and how it has evolved from the
late 1930’s. The biasing practise of reject inference was introduced. Appli-
cation scoring and behavioural scoring were also discussed. The emphasis of
future research will be with regard to Application scoring. Section 2.3 distin-
guished between consumer and corporate credit risk scoring. The legislative
requirements of the Basel capital accords were explained in Section 2.4. The
next Section, Classification, examines the mechanics of credit scoring and
offers an overview of popular credit scoring algorithms along with measures
used to assess their usefulness.
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3 Classification

This section will examine classification. First, in Section 3.1, the term is
defined. In Section 3.2 the theoretical requirements of a classifier are dis-
cussed. Following on from this, Section 3.3 discusses the theory behind the
workings of a classifier. Section 3.4 looks at evaluation techniques used for
assessing the usefulness of a classifier. Credit scoring methods that are used
throughout industry are reviewed in Section 3.5. Section 3.6 discusses class
imbalance and maps out the approach to OCC.

Throughout this section two-class classification is considered the tradi-
tional or conventional form of classification, as a multi-class problem (i.e.
more than two categories of output exist) can be treated as a two-class prob-
lem by isolating one class as the target class and combining the other classes
as the non-target class. Another point to establish about this review is that
classification is a form of supervised learning. Supervised learning is a learn-
ing by examples approach. Classification models are developed based on
training examples which consist of input and output vectors. Unsupervised
learning involves inferring patterns based on the input when no specific out-
put values are supplied. In this scenario, historical data on customer loans
would not contain information on whether or not the loan was repaid. This is
outside the scope of this review. However semi-supervised learning, a mixture
of supervised and unsupervised learning, is briefly discussed.

3.1 Definitions

A rather simple yet precise definition of classification is supplied by Russell
& Norvig (2002, p.353):

“Classification - checking whether an object belongs to a cate-
gory.”

Batista et al.,(2000) expand on this by stating:

“Supervised learning is the process of automatically creating
a classification model from a set of instances, called a training
set, which belong to a set of classes. Once a model is created, it
can be used to automatically predict the class of other unclassified
instance.”

This definition highlights the function and the means of operation of a
classifier. The following section looks at the theory of classification.
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3.2 Theoretical Framework

The problem of predictive learning involves estimating an unknown depen-
dency from known observations (or training samples) (Cherkassky & Mulier,
1999). Estimating this dependency is the key to predicting future or unseen
data. At present, there is no one widely accepted theoretical framework for
predictive learning (Cherkassky & Mulier, 1999). Furthermore, the termi-
nology used to describe the approaches to predictive learning varies. For
instance the following terms cover the same topic; statistical learning, pre-
dictive learning, empirical learning. Part of this stems from the fact that
the use of classification encompasses a number of fields of study; statistics,
engineering, signal processing, biological developments and computer science.

The lack of semantic cohesion extends to efforts to distinguish between
approaches for estimating learning models from data. At present we consider
the Cherkassky & Mulier, (1999) differentiation of three main approaches as
follows:

1. Classical (Parametric) Statistical Estimation: Using this approach the
parametric form of the dependency is known (up to the value of its pa-
rameters). The parameter values are then estimated using the training
data. This approach assumes a strong a priori knowledge about the
unknown dependency. In practice it is difficult to extend the paramet-
ric approach to high-dimensional settings as a large number of training
examples are necessary for accurate estimation.

2. Empirical Nonlinear Method: Examples of this type of method include
artificial neural networks and flexible statistical methods that were de-
veloped in the 1980’s to address the shortcomings of the parametric
approach. These methods use nonlinear models based on the avail-
able data, without relying on strong assumptions about the unknown
dependency. These models lack an underlying unified mathematical
theory.

3. Statistical Learning Theory: This approach was developed in the late
1960’s (Vapnik & Chervonenkis, 1968). “It is a theory for nonpara-
metric (distribution free) dependency estimation with finite data. The
theory is based on the theoretical analysis of the empirical risk minimi-
sation (ERM) inductive principle” (Cherkassky & Mulier, 1999).
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Another more general approach to differentiation worth considering is to
divide learning models into parametric and non-parametric categories. The
parametric category consists of classification techniques that use a verification-
based approach, in which the user makes assumptions or hypothesises about
the underlying data and then employs tools to verify these assumptions. The
non-parametric approach is a discovery-based approach in which learning al-
gorithms expose patterns in the data. These methods do not assume a certain
form of the underlying data. The methods employ computational power to
search and iterate through the data until the model achieves a good fit to
the data. The non-parametric approach is best suited to learning problems
where there is little knowledge about the statistical properties of the data.

3.3 Theory

According to Dietterich (2000): A standard two-class classification program
is given training examples of the form: {(x1, y1) ... (xi, yi)} for an unknown
function y = f(x).

The training examples, xi, are typically described by vectors in the form
〈xi1, xi2, ...xin〉 whose components are a set of discrete- or real-valued features
such as income, savings, existing loans etc. These are also called the features
of xi.

For classification, the y values are drawn from a discrete set of values, in
the case of two-class classification: yi ∈ {−1,+1}

Instances for which f(x) = 1 are called positive members or members of
the target concept. Conversely, instances for which f(x) = -1 are called neg-
ative examples or non-target members of the concept (Mitchell et al., 1990,
p.23). Given a set X tr of training examples the learner must hypothesise,
or estimate, f. Generally, classification algorithms search a very large space
of possible hypotheses to determine a hypothesis that best fits the observed
data and any prior knowledge held by the learner (Mithchell et al., 1990,
p.14). The symbol H is used to denote the set of all possible hypotheses
that the learner considers for identifying the target concept (Mitchell et al.,
1990, p.23). This is also known as the hypothesis class or version space. H
is determined by the user’s model selection, represented by f(.). The model
is usually preselected; examples of learning models include linear classifiers,
nave Bayes, k-nearest neighbour, neural networks or support vector classi-
fiers. Each hypothesis, h, in the hypothesis class, H, is instantiated by f(x;w)
where f(.) is the model, x is the input and w are the parameters (Alpaydin,
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2004). A learning algorithm finds the optimal values of the parameters or
weights based on the training set. The goal of the learning algorithm is to find
a particular model such that f(x;w) = f(x) for all of x in X tr. This process
is called Model Selection which Hastie et al. (2001) define as “Estimating
the performance of different models in order to choose the (approximate) best
one”. Poggio (1990) also described this as a representation problem.

A specific hypothesis found to estimate the target function well over a
large training set is also expected to perform similarly over other unseen in-
stances. This selected hypothesis is called the inductive learning hypothesis,
or inductive learner for short. Many forms of classification are ill-posed, due
to a lack of knowledge about the underlying dependency and the finiteness
of available data (Mulier, 1990; Cherkassky & Mulier, 1999). The available
data is not sufficient to find a unique solution (Alpaydin, 2004). It is nec-
essary to make assumptions about the underlying data in order to create
a unique solution. These assumptions are called the inductive bias of the
learning algorithm.

Theoretically, the best approach for both the Model Selection and As-
sessment processes is to split the dataset into three parts: a training set, a
validation set, and a test set. The training set is used to fit the models, the
validation set is used to estimate prediction error for model selection. The
test set is used for assessment of the generalisation error of the inductive
learner. The test set should be a hold-out set which is unused during the
training and validation process. A typical split is 50% for training, and 25%
each for validation and testing (Hastie et al., 2001). Following the Model
Selection process it is necessary to estimate the prediction error, or generali-
sation error, of the inductive learner (Hastie et al., 2001). This is also known
as the Model Assessment process (Hastie et al., 2001).

Generalisation describes how well a model trained on training data pre-
dicts the correct output for previously unseen instances. The complexity of
the hypothesis should match the complexity of the function underlying the
data. According to Mitchell et al. (1993), a hypothesis overfits the training
set if there exists some other hypothesis that fits the training set less well
but performs better over the entire distribution of instances. Conversely,
underfitting occurs when the hypothesis is too simple for the function of the
underlying data. This is known as the bias/variance dilemma or decom-
position. As bias decreases, the model becomes more flexible and variance
increases. The hypothesis overfits the data and risks learning any associ-
ated noise. Noise can be defined as “any unwanted anomaly in the data”
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(Alpaydin, 2004). Noise can be introduced in a number of ways:

• Imprecision in recording the input attributes

• Teacher noise - incorrect labelling of data

• Hidden/latent attributes - unobserved or unaccounted for attributes
that affect the label of an instance.

Most learning algorithms handle noise by fitting the maximum likelihood
or least squares error of noisy data (Kulkarni, 1995; Rasmussen, 1996). Ac-
cording to Dietterich (2003) in all supervised learning algorithms there is a
triple-trade off between:

• Classifier complexity

• Amount of training data available

• Classifier accuracy on new instances (generalisation)

Figure 2: Model Complexity (Hastie et al., p. 38)

Dietterich (2003) observed that as the number of training instances in-
creased, the generalisation error decreased. As model complexity increased,
the generalisation error decreased at first but subsequently began to increase.
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This phenomenon is referred to the curse of dimensionality (Bellman, 1961).
Hastie et al., (2001) graphed the typical behaviour of the test and training
error as model complexity varies. This is shown in Figure 2. The train-
ing error decreases as the variance increases, due to a closer fit to the data.
However, if the model adapts too closely to the training data the test error
increases. If the model is not complex enough, it will underfit and result in
poor generalisation.

3.3.1 The Loss Function

In general, more than one model, f(.), can fit a given training set X tr. To
find the best fitting model it is necessary to define a merit function that
measures the agreement between the data and the model (Liano, 1996). A
loss function L(.), also known as an error function, or approximation error,
is the sum of losses over the individual instances (Alpaydin, 2004). The loss
function, L(f, w, X tr) defines the optimal parameters w for the function f
on a given training set X tr (Tax, 2001, p4).

Different definitions of the loss function can be employed. A straight
forward approach is to employ the 0-1-loss. This counts the number of in-
correctly classified objects. The most common error for real valued functions
f(xi;w) ∈ [-1,1] are the mean squared error (MSE) (Thomas, 2000; Tax 2001):

εMSE(f (xi;w), yi) = (f (xi;w)− yi)2 (5)

and the cross entropy (where labels should be rescaled to positive values
yi = 0,1):

εce(f (xi;w), yi) = f (xi;w)yi(1− f(xi;w))1−yi (6)

By minimising the error ε on the training set, an optimal set of parameters
w is specified. This in turn translates to a good classification for the training
set. However, an acceptable training error does not necessarily translate to
an acceptable test error. The optimal parameters w* of the function f are the
parameters that result in the smallest average error over all possible samples
(Tax, 2001; Huang et al., 2007):

w* = argminwεtrue(f,w,X) (7)

Where the true error, εtrue, is defined as (Tax, 2001):

εtrue(f,w,X) =
∫
ε(f(x;w), y)p(x, y)dxdy (8)

p(x,y) represents the true data distribution.
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One of the main concerns is the connection between the training and test
set instances. A key assumption is the assumption of stationarity; the train-
ing and test instances are selected randomly and independently from the
same population of instances with the same probability distribution (Russell
& Norvig, 2002). However, the cumulative distribution of f(x) is unknown
and the only available information about this distribution is in the finite
training sample X tr (Cherkassky & Mulier, 2007). It is necessary to adopt
an induction principle to approximate the true error (Vapnik, 1995). εtrue is
often approximated by the empirical error on the training set:

εemp(f, w,X
tr) =

1

N
Σε(f(xi;w), yi) (9)

This error gives an approximation of the true error, which is accurate when
the distribution of the training data mirrors the true data distribution and
the sample size is very large (Tax, 2001).

Cherkassky and Mulier (2007) summarise that in order to form a model
from data, any learning process requires the following:

1. A wide and flexible set of approximating functions f(x;w).

2. A priori knowledge used to impose constraints on a potential of a func-
tion from the class (1) to be a solution. Generally, such a priori knowl-
edge provides, implicitly or explicitly, ordering of the functions accord-
ing to some measure of their flexibility to fit the data.

3. An inductive principle to act as a general prescription for combining a
priori knowledge (2) with available training data in order to produce an
estimate of (unknown) true dependency. Empirical Risk Minimisation
(ERM) is an example of an inductive principle.

4. A learning method that constructs a (computational) implementation
of an inductive principle for a given class of approximating functions.
An important issue for learning methods is an optimisation procedure
used for estimating the optimal parameters w*.
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3.4 Evaluation Techniques

Once a classification model has been built, it is necessary to measure its
performance. In this subsection different measures for assessing the quality
of learning algorithms are presented. Validation of an classification model
involves assessing its discriminatory power, which is the ability to separate
the distributions of observed goods and bads over the characteristics. When
0-1-loss is used, all errors are equally graded; this allows the use of a confusion
matrix, also known as a misclassification matrix or a 2x2 contingency table.
Table 1 presents a confusion matrix which classifies all possible situations of
classifying an object in two-class classification.

Table 1: Confusion Matrix, EI = Error Type I, EII = Error Type II

- Object classed as 1 Object classed as -1

Object from 1 True Positive (TP) False Negative (FN) EI

Object from -1 False Positive (FP), EII True Negative (TN)

In credit scoring a confusion matrix is created by: (i) choosing a cut-off
score; (ii) marking all accounts below the cut-off score as expected bad, and
all those above as expected good. The correctly classified cases are the true
positives and true negatives. If labels do not correspond they are labelled
false positive and false negative. In credit scoring, the cost of the two types
of error are very different. Classifying a good as bad (Error Type I) results in
a loss of profit, L. Whereas classifying a bad as good (Error Type II) means
an expected default, D which is often considerably higher than L (Thomas
et al., 2002).

In credit scoring, the following measurements are used as statistical mea-
sures of classifier predictiveness. In practice most of the measures are for
comparative purposes and are used in conjunction with strategic considera-
tions when selecting the final preferred classifier (Siddiqi, 2005).

3.4.1 Common Measures

Accuracy is a widely used measure, suitable only for balanced data sets.
This measure is unsuitable for imbalanced data sets for a number of reasons:
(i) The measure assumes equal misclassification costs for false positive and
false negative predictions, i.e. D = L; (ii) Another implicit assumption of the
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use of Accuracy is that the class distribution among examples is presumed
constant over time and relatively balanced (Provost et al, 1999. P43:19).
Accuracy is measured as:

‖TP‖+ ‖TN‖
‖TP‖+ ‖FN‖+ ‖FP‖+ ‖TN‖

(10)

Recall or Sensitivity or the True Positive Rate is the portion of actual
good matches that have been classified correctly. It is measured as:

‖TP‖
‖TP‖+ ‖FN‖

(11)

Specificity or the True Negative Rate is the portion of actual bads
classified as bads and is measured as:

‖TN‖
‖TN‖+ ‖FP‖

(12)

Average Class Accuracy is the average of the individual class accuracy.
It is measured as:

Sensitivity + Specificity

2
(13)

Precision is the number of true positives divided by the total number of
instances labelled as positive. It is measured as:

‖TP‖
‖TP‖+ ‖FP‖

(14)

False Positive Rate is measured as (1 - Specificity):

‖FP‖
‖TN‖+ ‖FP‖

(15)

F-Measure combines both Precision and Recall and is measured as:

2 ∗ (Precision ∗Recall)
(Precision+Recall)

(16)
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3.4.2 Receiver Operating Characteristic Curve

A Receiver Operating Characteristic (ROC) curve is method for visualising,
ranking and selecting classifiers based on their performance (Fawcett, 2004).
A ROC curve is a 2-dimensional graphical illustration of the sensitivity (True
Positive Rate) on the Y-axis versus 1-specitivity (False Positive Rate) on the
X-axis for various values of the classification threshold. A ROC curve illus-
trates the behaviour of a classifier without regard to class distribution or error
cost. In a credit scoring context, the X-axis depicts the percentage of bads
predicated to be good (or alternatively, the percentage of goods predicted as
bad) whereas the Y-axis displays the percentage of goods predicted as good
(or alternatively, the percentage of bads predicted as bad). A ROC curve
has properties that make them useful for domains with skewed class distri-
bution and unequal classification error costs (Fawcett, 2004). Consider the
confusion matrix in Table 1. The class distribution - the proportion of good
instances to bad instances - is the relationship of the left column (goods) to
the right column (bads). As with Accuracy - any performance metric that
uses values from both columns will be inherently sensitive to class skews
(Fawcett, 2004). As a class distribution changes measures such as accuracy
will change as well, even if the fundamental classifier performance does not
(Fawcett, 2004). ROC graphs do not depend on class distributions as they
are based upon the True Positive Rate and False Positive Rate, in which each
metric is a strict columnar ratio.

Broadly speaking, a classifier yields an instance probability or score that
represents the degree to which an instance is a member of a class. Such a
classifier can be used with a threshold or cutoff point to produce a discrete
(binary) classifier: if the classifier output is above the cutoff the classifier
produces a 0(good), else a 1(bad) (Fawcett, 2004). Using the true positive
rate and false positive rate for each cutoff/threshold value, a different point
on the ROC graph is produced. Combining these points results in the ROC
curve.

Figure 3 provides an example of 3 ROC curves. The lower left point
(0,0) represents the strategy of never issuing a positive classification; such
a classifier commits no false positive errors but also gains no true positives
(Fawcett, 2004). The upper right point (1,1) represents the opposite strategy
of unconditionally issuing positive classifications (Fawcett, 2004). The point
(0,1) represents the perfect classification. Each ROC curve passes through

36



the points (0,0) and (1,1). Curve A , the ratio of goods to bads is the same
for all score ranges. This is no better than classifying randomly given the
known ratio of good to bads in the entire population (Thomas et al., 2002).
The further from the diagonal curve ((0,0) to (1,1)) the ROC curve is, the
better the scorecard. ROC curve C is always further from the diagonal than
ROC curve B and is therefore considered a better classifier at all cut off
scores. Lowering this threshold corresponds to moving from the conservative
to the liberal area of the graph.

Figure 3: The receiver operating characteristic curve (ROC)

Informally, classification points on the left handside of the graph can be
thought of as “conservative”: they make positive classifications only with
strong evidence and therefore make few false positive errors, but they have
low true positive rates as well (Fawcett, 2004). Classification points on the
upper right handside of the ROC graph are considered “liberal”: they make
positive classifications with weak evidence so they classify nearly all positives
correctly, but they often have a high false positive rate (Fawcett, 2004). In
credit scoring, the ROC curve is also known as the Lorenz curve.

3.4.3 Area Under the Curve

ROC curves of different classifiers may however intersect making a perfor-
mance comparison less obvious (Baesen, 2002). This problem can be ad-
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dressed by calculating the area under the ROC curve (AUC). According to
Baesen (2002) “The AUC provides a simple figure-of-merit for the perfor-
mance of the constructed classifier”. Many methods have been suggested to
compute the AUC (Baesens - 64,111). The AUC of a classifier is equivalent
to the probability that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance (Fawcett, 2004).
This is equivalent to the Wilcoxon test of ranks (Hanley & McNeil, 1982).
The AUC is closely related to the Gini coefficient (Breiman et al., 1984),
which is:

Gini+ 1 = 2 ∗ AUC (17)

Fawcett (2004) cautions that when making conclusions about classifier
superiority care should be taken when averaging the output of multiple ROC
curves. A measure of variance is required to compare multiple classifiers.
Vertical averaging takes vertical samples of the ROC curves for fixed FP
Rates and averages the corresponding TP Rates. Sometimes when the FP
Rate is not under the direct control of the researcher it may be preferable to
average the ROC scores by controlling the threshold variable. This is known
as Threshold averaging.

3.4.4 Other Measures

Kolmogorov-Smirnov (KS) is commonly used statistic in credit scoring (An-
derson, 2007). It measures the maximum deviation between the cumulative
distribution of target and non-target data. Separation is measured at one
point only, and not on the entire score range. A KS curve (also known as
fish-eye graph) is a data visualisation tool used to illustrate scorecard effec-
tiveness (Anderson, 2007).

The following methods are used to assess scorecard strength.

Lift/Concentration Curve is calculated by (positive predicted value) /
(% of positives in the sample). A lift curve can be plotted if the classifier
prediction can be expressed in the form of ranking based on the predicted
class probability. The lift curve then plots cumulative true positive coverage
(y-axis) against the rank-ordered examples (x-axis) (Ye, 2004). A random
ranking results in a straight diagonal line on this line. A lift curve of a model
is usually above this line, the higher the better.
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Cost Ratio is the ratio of the cost of misclassifying non-target data as
target data to the cost of misclassifying target data as non-target data. Al-
ternatively it can be expressed as the ratio of the cost of false negative to
false positive.

Hand (2005 p10) questions the merit of any measure of scorecard perfor-
mance which uses the distributions of scores. For instance the aim of an
application model is to divide applicants into those accepted and the rest.
In this scenario, it is only the numbers of cases above and below the cut-off
that is relevant. The distance between the score and the cut-off point is not.

3.5 Credit Scoring Classification Algorithms

Dinh and Kleimeier (2007) refer to the process of selecting an appropriate
classification algorithm for credit scoring as the estimation method and state:
“The development of the CSM [credit scoring model] starts with the deci-
sion about the basic form of the model, i.e. its estimation method via decision
trees, linear probability models, logit or probit regression models, or multiple
discriminant analyses”. The basic model can take one of a number of forms.
The most popular of which are discussed below.

3.5.1 Statistical Methods

Statistical methods can be divided into two approaches: parametric and non-
parametric. For the parametric approach, an assumption is made that the
sample is drawn from some distribution that obeys a known model, such as
Gaussian, and that this model is valid over the entire input space (Alpaydin,
2004). There are at a minimum four parametric approaches to developing
multivariate credit-scoring systems (Altman & Saunders, 1998); linear re-
gression, discriminant analysis, logistic regression and the probit model. In
non-parametric estimation the sole assumption is that similar inputs have
similar outputs (Alpaydin, 2004). Popular non-parametric approaches in-
clude; decision trees, linear programming, neural networks and k-nearest
neighbours. A limited discussion on the non-parametric approaches is in-
cluded. At a further date this will be expanded. For the present however,
the common parametric approaches are discussed below.
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3.5.2 Linear Regression

The purpose of regression is to write the numeric output (the dependent
variable) as a function of the input (the independent variable) (Alpaydin,
2004). Assume a vector of inputs x = (x1, x2, . . . , xp) and a real valued
output y to predict. The linear regression model has the form:

f(x) = β0 +
p∑
j=1

xjβj (18)

The linear model either assumes that the regression function E(y |x) is
linear, or that the linear model is a reasonable approximation (Hastie, 2002).
βj’s are unknown parameters that are estimated from a set of training data
(x1, y1 . . . xN , yN). Each xi = (xi1, xi2, . . . xip)

T is a vector of feature measure-
ments for the ith case or instance. The most common estimation method in
which to estimate the coefficients β = (β0, β1, . . . , βp)T is the least squares :

N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

(19)

The biggest problem associated with linear regression is the number of
assumptions that it makes (Anderson, 2007). Some of these assumptions
include:

• Linearity. x and the mean of y are related in a straight-line fashion.

• Equal Variance. The variability of y around its mean is the same at
every x.

• Normality. Usually it is assumed that the distribution of the error term
εi is normal.

• Independence. Usually it is assumed that εi and εi′ are independent for
i 6= i′. That is, the residuals for two different observations on y do not
“travel together” once their corresponding x‘s are taken into account.

In credit scoring, where there is a discrete output, linear regression is
referred to as linear probability modelling (LPM). Ordinary linear regression
has been used in credit scoring. Orgler (1970) used regression analysis in
a model for commercial loans and Orgler (1971) used regression analysis to
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construct a score card for evaluating outstanding loans, behavioural scoring
(Hand & Henley, 1995). He found that the behavioural characteristics were
more predictive of future loan quality than are the application characteristics
(Hand & Henley, 1995).

3.5.3 Logistic Regression

From a credit scoring point-of-view linear regression has one obvious flaw,
the right hand side of the equation can take any value from -∞ to +∞. In
credit scoring only target or non-target is required (1 or 0). Logistic regres-
sion is a commonly used algorithm for developing credit risk scorecards. The
dependent variable can be reduced to a binary outcome (target/non-target).
Linear regression is used in cases where the dependent variable is continuous.
Logistic regression uses a set of predictor variables to predict the probabil-
ity of an outcome. This is done using a process called maximum likelihood
estimation (MLE), which: (i) transforms the dependent variable into a log
function, (ii) estimates the coefficients β; and (iii) determines changes to the
coefficients to maximise the log likelihood. The end result is a regression
formula of the form:

In

(
pi

1− pi

)
= β0 + β1x1 + . . . βkxk + ε (20)

Where pi is the probability that case or instance i is good. This implies
that the probability of case i being a good is:

pi =
ez

1 + ez
(21)

where, from (17):
z = β0 + β1x1 + . . . βkxk + ε (22)

Traditionally the predictor variables for each individual were used to pre-
dict a value for pi which is compared with some critical cut off value or
threshold and a decision is made (Crook et al., 2007). pi can be used in
other ways. For example, pi can be used to determine the number of cheques
in a cheque book, the interest rate for a loan product or a salary multiple for
a credit limit.

Logistic regression does not require linear relationships between the in-
dependent factor or covariates and the dependent, as does OLS regression,
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but it does assume a linear relationship between the independents and the
log odds (logit) of the dependent variable. The dependent variable is a cat-
egorical target variable that has exactly two categories (i.e., a binary or
dichotomous variable) or a continuous target variable that has values in the
range 0.0 to 1.0 representing probability values or proportions.

Previously, the primary disadvantage associated with Logistic regression
was its computational intensiveness (Anderson, 2007). One way to reduce
this computational intensiveness is to control how variable are entered into
the model. Variable can be entered in the order specified by the researcher or
logistic regression can test the fit of the model after each coefficient is added
or deleted, called stepwise regression. There are three types of stepwise
logistic regression techniques that can be used to reduce the computational
intensity of model selection (Siddiqi, 2005):

1. Forward Selection selects the best fitting one feature based on the in-
dividual predictive power of each feature. It then incrementally adds
features until no remaining feature have a probability score less than
some significant value.

2. Backward Elimination is the opposite to Forward Selection. Features
that are considered least significant are sequentially eliminated until all
remaining features have a probability score under some value.

3. Stepwise is a combination of the two above techniques. Features are
added and removed dynamically until a best combination is achieved.

Improvements in computer hardware have made the problem of computa-
tional intensiveness less of an issue. Wiginton (1980) was one of the earliest
authors to describe the results of using logistic regression in credit scoring.
Though Wiginton (1980) was not overly impressed with its performance lo-
gistic regression is now the main approach used for developing credit-scoring
models (Thomas, 2000; Anderson, 2007). This is in part due to the fairly ro-
bust estimate of the actual probability provided by logistic regression based
on the available information. Lawrence et al. (1992) use the logit model to
predict the probability of default on mobile home loans. They found that
payment history is by far the most important predictor of default (Altman
& Saunders, 1997).
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3.5.4 Discriminant Analysis

Using Discriminant Analysis, Fisher (1936) sought to identify which lin-
ear combination of variables best separates the two groups to be classified
(Thomas, 2000). Discriminant analysis in its simplest form requires an anal-
ysis of a set of variables to maximise the variance between classes while
minimising the variance within the class among these variables (Altman &
Saunders, 1997). Discriminant analysis uses Bayes’ theorem to compute the
posterior probability:

p(xy) =
p(x |y)p(y)

p(x)
(23)

Two popular forms of discriminant analysis include:

1. Linear Discriminant Analysis (LDA)

2. Quadratic Discriminant Analysis (QDA)

If the distributions of the probabilities p(x|y) = 1 and p(x|y) = 0 are
multivariate normal with a common covariance matrix then LDA is used.
If the covariance matrices of the populations of the goods and the bads are
different then the analysis results in a quadratic discriminant function. The
Bartlett test and Levene test calculate the equality of the covariance matrices.

LDA and QDA are popular classification techniques that have been suc-
cessfully applied in various settings (Baesens, 2003). In a majority of the
cases reported in the literature LDA appears more robust than QDA (Tit-
terington, 1992). A major reason attributed to this is that in QDA it is
necessary to estimate more parameters from the same sample and these es-
timates may be poor for small data sets with many inputs (Beasens, 2003)

3.5.5 Mathematical Programming

Linear programming is a well known form of Mathematical programming.
Mangasarian (1965) first identified linear programming as a means of solv-
ing classification problems comprising of two groups separable by separating
hyperplane. Baesens (2003, p.14) states:

“Linear programming (LP) is probably one of the most com-
monly used techniques for credit scoring in the industry nowa-
days”.
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Typically a pre-specified cut-off point of threshold is used to separate in-
stances which are assigned a score using weights. To take into account mis-
classifications, a positive slack variable is entered. A popular linear program-
ming formulation can be represented as (Baesen, 2002):

minw,ξ
N∑
i=1

ξi (24)

subject to 
wTxi ≥ c− ξi, yi = +1
wTxi ≤ c+ ξi, yi = −1
ξi ≥ 0, i = 1 . . . , N,

(25)

Where ξ represents the vector of ξi values. The first set of inequalities at-
tempt to separate the goods from the bads by assigning them a score wTxi
which is higher than the prespecified cut-off c. Similarly the second set of
inequalities attempt to separate the bads from the goods by assigning them a
score wTxi which is lower than the prespecified cut-off c. In order to account
for misclassifications, the positive slack variables ξi are entered. The aim is
then to minimize the misclassifications by minimizing the sum of the slack
variables ξi. Linear programming methods can model domain knowledge on
a priori bias by including additional constraints (Baesans, 2003). This allows
linear programming to easily include a selected bias into scorecard develop-
ment. For example, X1 is the binary variable of being under 30 years of age
or not and X2 is the binary variable of being over 65 years of age or not.
If one know a piori that the under 30s have a larger impact on the score
than over 65s then for the score for under 30s to be higher than over 65s the
constraint w1 ≥ w2 is simply added to equation (25). LP methods have been
shown to empirically underperform statistical regression models.

3.5.6 Neural Networks

A neural network (or an artificial neural network, ANN) (Haykin, 1999) is
an information processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information (Tsai & Wu, 2008).
ANNs can be used to simulate the non-linear relationship in complicated
data (Zhang et al., 2007). The information processing system of an ANN
is composed of a large number of highly interconnected processing elements
(neurones) working in unison to solve specific problems (Tsai & Wu, 2008).
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Neural networks learn by examples. That is, neural networks learn by expe-
rience and generalise from previous experiences to new ones which in turn
facilitates decision making.

ANNs have been successfully applied to bankruptcy prediction (Min &
Lee, 2005). The multilayer perceptron (MLP) is the most common type of
ANN (Tsai & Wu, 2008). In credit scoring MLP is the most frequently used
neural network architecture (West, 2000). A MLP consists of three layers of
of units or neurones: input layer, hidden layers and output layers. As shown
in Figure 4, a layer of input units is connected to a layer of hidden units
which is then connected to a layer of output units. The activity of the input
layer represents the raw information that is fed into the network (Tsai & Wu,
2008). The activity of each hidden unit is determined by the activities of the
input units and the weights on the connections between the input and the
hidden units (Tsai & Wu, 2008). The behaviour of the output units depends
on the activity of the hidden units and the weights between the hidden and
output units (Tsai & Wu, 2008). Backpropagation is an algorithm used to
identify appropriate weights for the connections between the layers in the
network (Witten & Frank, 2005). The backpropagation algorithm is the
most popular learning algorithm, is adopted to perform steepest descent on
the total mean squared error (MSE) (Zhang et al., 2007). Given an initial
weights and threshold, a set of inputs consisting of historical repayment data
and loan default data are presented to a network. The MSE determines the
error between the output pattern and the target pattern and adjustment to
weights and threshold (Zhang et al., 2007). Structural matches are found
that coincide with defaulting firms and then used to determine a weighting
scheme to forecast PD.

In general, ANNs has a difficulty in explaining the prediction results due
to a lack of explanatory power and also suffers from difficulties with gener-
alisation because of overfitting (Hao, 2006). This hampers its deployment in
countries where it is necessary, by legislation, to provide a rejected candidate
with a reason for rejection. In addition, comparable to other classification
techniques, ANNs require greater time and effort to construct the optimal
architecture. Desai et al. (1996) investigated neural networks, linear discrim-
inant analysis and logistic regression for scoring credit decision. Their study
concluded that neural networks outperformed linear discriminant analysis
in classifying loan applicants into good and bad credits. Logistic regression
performed comparatively to neural networks.
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Figure 4: The three-layer neural network

3.5.7 Support Vector Machines

A support vector machine (SVM) is a machine learning technique based on
Vapnik’s Statistical Learning Theory (SLT) (Vapnik, 1995). SLT provides
SVMs with a strong theoretical foundation and SVMs have achieved strong
empirical success within the research community. A two-class SVM distin-
guishes between two classes in a given data set by fitting a hyperplane that
maximally divides both classes (Senf et al., 2002). All objects lying on one
side of this optimal separating hyperplane are labelled as -1, and all objects
lying on the other side are labelled as +1. The objects that lie closest to the
optimal separating hyperplane are called support vectors.

This works well for data sets that are linearly separable (Senf et al., 2002).
In situations where the data is not linearly separable, a linear SVM may still
be used when it allows for a certain amount of errors. For objects that are
not easily separable even with the provision for a certain amount of errors,
the objects can be projected onto a higher dimensional feature space using
kernels (Senf et al., 2002). This is done by introducing a slack variable, ξ,
and an upper bound C for the number of errors (Senf et al., 2002). The
formula to be minimised takes on the commonly used form:

J(w, b, ξ) =
1

2
(w ∗ w) + C

n∑
i=1

ξi (26)

46



subject to:
yi [w ∗ xi + b] ≥ 1− ξi, ξ ≥ 0 (27)

Figure 5 illustrates the use of the slack variable and the use of a kernel
function to identify the optimal separating hyperplane. According to Vap-
nik’s (1995) original formulation, w represents the weight vector and b the
bias. The slack variable ξ is also known as the soft margin. A kernel is a func-
tion that takes the original instances and several parameters, and increases
their dimensionality (Senf et al., 2002). A good choice of kernel function
and corresponding parameters will allow the data to then be separable by
a hyperplane. Examples of kernel functions include polynomial, radial ba-
sis function (RBF) and sigmoid. The choice of kernel function is largely
application-dependent and is the most important factor in SVM applications
(Huang et al., 2004).

Figure 5: Two Class Support Vector Machine

Recently the SVM approach has been introduced to several financial ap-
plications such as credit rating, time series prediction, bankruptcy prediction
and insurance claim fraud detection (Fan & Palaniswami, 2000; Gestel et al.,
2001; Tay & Cao, 2001; Viaene et al., 2002; Kim, 2003; Huang, Chen et
al., 2004; Min & Lee, 2005). In these studies it was reported that SVMs
performed comparatively to and in some cases outperformed other classi-
fiers including Artificial Neural Networks, Case-based Reasoning, multiple
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discriminant analysis and logistic regression in terms of generalisation per-
formance.

3.6 Non-target Data - Class Imbalance

Many conventional classifiers rely on a more or less equal balance of both
labelled positive and negative examples to build a classifier (Japkowicz et
al., 1995; Li & Liu, 2005). As previously discussed, relatively few negative
examples exist in low default portfolios. In machine learning terminology the
low default portfolio problem is described as class imbalance. A class imbal-
ance problem occurs when the difference between the number of instances
belonging to each class is so large that the classifier experiences difficulties
with learning the concept related to the minority class.

Barandela et al. (2003) describe class imbalance as:

“A set of examples or training set (TS) is said to be imbal-
anced if one of the classes is represented by a very small number
of cases compared to the other classes”.

However, class imbalance raises a number of issues. There is no clear
consensus on what constitutes a class imbalance. Chawla (2003) states:

“A data set is imbalanced if the classes are not approximately
equally represented”.

This differs sharply from Barandela et al. (2003):

“a very small number of cases compared to the other classes”.

In general however, we will rely on Wang & Japkowicz (2008):

“A data set is imbalanced if the number of instances in one
class greatly outnumbers the number of instances in the other
class”.

Learning from unbalanced training sets is one of the problems in super-
vised learning (Batista et al., 2000). Often the classifier has respectable clas-
sification accuracy for the majority class, but its accuracy for the minority
class is poor. The performance of the algorithm used degrades significantly if
the data set is imbalanced (Japkowicz & Stephen, 2002). In very imbalanced
domains, most standard classifiers will obtain higher predictive accuracies
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for the majority class than that of the minority class (Wang & Japkowicz,
2008). Classes with fewer examples in the training set have a lower prior
probability and a lower error cost. This raises difficulties when true error
cost of the minority class is greater than is implied by the distribution of
examples in the training set (Maloof, 2003).

Approaches for addressing class imbalance can be divided into two main
categories (Wu & Chang, 2003; Garcia et al., 2007; Wang & Japkowicz,
2008).

1. Balance the data set

2. Modify the classifier

Other areas of research on the topic of class imbalance include metrics
used to measure performance. Batista et al., (2000) show that the widely
used error rate and accuracy used for measuring classifier performance is mis-
leading for unbalanced data sets. (Provost & Fawcett , 1997; Fawcett, 2006)
use a Receiver Operating Characteristic (ROC) curve to measure classifier
performance. Another topic that has been the focus of a number of stud-
ies is class imbalance data complexity characteristics. These studies suggest
that poor classifier performance on class imbalance data sets can also be at-
tributed to factors such as the size of data set (Orriols & Bernardo, 2005),
distribution of data within each class (Japkowicz, 2001) and small disjuncts
(Weiss, 2003; Japkoweicz & Jo, 2004; Prati et al., 2004). These topics are
outside the scope of this literature review and will be discussed at a later
stage. Instead the review will focus on the aforementioned approaches to
class imbalance.

3.6.1 Balance the Data Set

Under-sampling and over-sampling are two methods for balancing a data
set. Under-sampling consists of eliminating elements of the over-sized class
until it matches the size of the other class (Japkowicz & Stephen, 2002).
Under-sampling (randomly or selectively) the majority class while keeping
the minority class is the simplest way (Kubat & Matwin, 1997). This method
results in information loss for the majority class (Wang & Japkowicz, 2008).
In over-sampling instances of the minority class are duplicated. Although
over-sampling does not lose any information about the majority class, an un-
natural bias is introduced in favour of the minority class (Wang & Japkowicz,
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2008). Another disadvantage of this method is that it creates noise which
could result in the loss of classifier performance. Both methods have been
criticized for altering the original class distribution (Garcia et al., 2007).

A lot of research conducted in the area of class imbalance attempts to
improve classification performance through data sampling techniques (Drum-
mond & Holte , 2003; Maloof, 2003; Barandela et al., 2004; Han et al., 2005).
Some researchers have highlighted the inadequacies of under-sampling and
over-sampling methods. Barandela et al. state, (2003):

“Replicating the minority class to eliminate imbalance in the
TS [Training Set] does not add new information to the sys-
tem. Moreover, working in that direction means to worsen the
known computational burden of some learning algorithms, such
as the NN rule and the Multi-Layer Perceptron. . . downsizing the
majority class can result in throwing away some useful informa-
tion”.

3.6.2 Modifying the Classifiers

As an alternative to the disadvantages presented by resampling techniques,
the imbalance problem can be addressed from an algorithmic standpoint.
Adapting existing algorithms and techniques can fall into the following cat-
egories (Garcia et al., 2007):

• Cost-sensitive learning,

• Classifier ensembles,

• Classifier biasing

• One-class classifiers

Cost-sensitive Learning The main objective in cost sensitive learning
is to minimise the cost of misclassification (Garcia et al., 2007). Given a
specification of costs for correct and incorrect predictions, an object should
be predicted to have the class that results in the lowest expected cost, where
the expectation is computed using the conditional probability of each class
given the object (Elkan, 2001). A confusion matrix C, as illustrated in Table
2, is used to measure the cost of predicting that an example belongs to
class i when in fact it belongs to class j (Elkan, 2001). The cost matrix
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rows correspond to alternative predicted classes, while columns correspond
to actual classes, i.e. row/column = i/j= predicted/actual.

Table 2: Cost Matrix
- actual negative actual positive

predict negative C(0,0) = c00 C(0,1) = c01

predict positive C(1,0) = c10 C(1,1) = c11

Some studies assign specific costs to the classification errors for positive
and negative examples (Gordon & Perlis, 1989; Domingos, 1989). Concep-
tually, the cost of labelling an example incorrectly should always be greater
than the cost of labeling it correctly (Elkan, 2001). Japkowicz and Stephen
(2002) propose the use of non-uniform error costs defined by means of the
class imbalance ratio present in the data set. Refer to Elkan (2001) for further
details on cost-sensitive learning.

Classifier Ensembles Ensembles consist of a set of individually trained
classifiers whose decisions are combined when classifying new objects. Re-
search has demonstrated that the predictive accuracy of a combination of
independent classifiers out performs that of the single best classifier (Garcia
et al., 2007). For the class imbalance problem, ensembles have been used to
combine several classifiers whose training sets have used under-sampling and
over-sampling techniques (Garcia et al., 2007).

Classifier Biasing This process involves biasing the discrimination based
process so as to compensate for class imbalance (Garcia et al., 2007). Garcia
et al., (2007) conducted a study of existing classifier biasing work, these in-
clude; Pazzani et al. (1994), who assigned different weights to the instances
of the different classes, Ezawa et al., (1996) bias the classifier in favour of
certain attribute relationships, Brandela et al. (2003) propose a weighted dis-
tance function to be used in the k-nearest neighbour classification. Weights
are assigned to the respective classes and not to the individual instances
(Garcia et al., 2007).

The final approach, OCC, is discussed in it entirety in a separate section.
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3.7 Conclusion

This section considered the traditional form of the Classification problem,
two-class classification. Definitions were provided and discussed in Section
3.1. Sections 3.2 and 3.3 examined the theoretical formulation of classifica-
tion. The concepts involved in Model Selection and Model Estimation were
reviewed. A concise description of classifier evaluation techniques was listed
in Section 3.4. Of particular interest to one-class-classification is the ROC
curve. In Section 3.5 existing models used in credit scoring techniques were
listed and discussed. In Section 3.6 the notion of biased or unbalanced data
sets was introduced. This final subsection marked the shift in emphasis from
two-class classification to OCC, which is reviewed in Section 4.
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4 One-Class Classification

The goal of one-class classification (OCC) (Juszczak et al., 2008) is to take
one of the classes, the target class, and distinguish it from all other possible
objects, called non-targets (Juszczak et al., 2008). OCC is often called out-
lier detection (Ritter & Gallegos, 1997), novelty detection (Bishop, 1994),
concept learning (Japkowicz, 1999), single-class classification (El-Yaniv &
Nisenson, 2007) and data description (Tax & Duin, 2000). OCC approaches
can be applied to problems that cannot easily be addressed by more conven-
tional approaches. One example of such problems is when non-target objects
are very expensive or difficult to obtain (Japkowicz et al., 1995). Applications
that utilise OCC or novelty detection include:

• Loan application processing - Identify potential defaults and thus pre-
vent loss (Hodge & Austin, 2004),

• Fraud detection - Detect fraudulent applications for credit cards (Chan
& Stolfo, 2001),

• Intrusion detection - to detect unauthorised computer network access
(Hodge & Austin, 2004),

• Activity Monitoring - Detect suspicious trades in the equity markets
(Hodge & Austin, 2004),

• Network Performance - Detect network bottlenecks in the performance
of computer networks (Hodge & Austin, 2004),

• Fault diagnosis - Detect fault in mechanical devices such as motors,
aeronautical instruments (Markou & Singh, 2003a; Weiss & Hirsch,
2000),

• Satellite image analysis - Identify oil spills (Kubat et al., 1997),

• Motion segmentation - Detect image features moving independently of
the background (Hodge & Austin, 2004),

• Medical condition monitoring - such as heart-rate monitors (Hodge &
Austin, 2004),

• Pharmaceutical research - identifying novel molecular structures (Tarassenko
et al., 1999; Hempstalk & Frank, 2008),
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• Hand written digit recognition (Tax & Duin, 1998)

• Detecting mislabelled data in a training data set (Hodge & Austin,
2004).

In all of these examples little or no non-target data is available. Some
financial institutions attempt to address the low-default portfolio problem by
accepting all credit applicants over a short period of time. Financially this
is costly as a higher proportion of loan-defaulters are accepted. Instead of
this practice, financial institutions use reject inference which results in fewer
loan defaults and helps gives rise to the low-default portfolio. In Figure 6 the
feature space is composed of an applicant’s income and the requested loan
amount. It is kept at 2-features in order to represent the classification prob-
lem in 2-dimensions. In this example an OCC classifier places a boundary
around the target data. If the distance of a specific instance to the target
class is within a specified threshold it is accepted as part of the target class,
otherwise it is rejected as non-target data. There are two distinct features of
all OCC classifiers. The first is “a measure of the distance d(z) or resemblance
(or probability) p(z) of an object z to the target class” (Tax p.57, 2001). The
second consideration is a threshold, θ, on this distance or resemblance (Tax,
2001). New objects are accepted as part of the target class when the distance
to the target class is smaller than the threshold or when the resemblance is
larger than the threshold (Tax, 2001).

From a broad perspective, much of the academic research into classifi-
cation focuses on theoretical statistical classifiers that assume well defined,
well sampled, balanced and stationary data distributions (Tax, 2001). This
is somewhat contrary to the data obtained by actual classifiers in a live-
environment which may contain noise, missing attributes, outliers/unbalanced
and non-stationary data distributions (Tax, 2001). One-class classifiers rep-
resent an attempt at addressing this gap. OCC has received much attention
from the machine learning and pattern recognition communities (El-Yaniv
& Nisenson, 2007). However, El-Yaniv and Nisenson (2007) state that “The
extensive body of work on SCC [Single Class Classification], which en-
compasses mainly empirical studies of heuristic approaches, suffers from a
lack of theoretical contributions and few principled (empirical) comparative
studies of the proposed solutions”. From this observation the author is of the
opinion that there is the scope to conduct a benchmark experiment compar-
ing OCC methods as well as popular two-class classification approaches.
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Figure 6: Low-Default Portfolio Problem. Loan defaulters are represented
by -. Successfully repaid loans are represented by +.

4.1 Problem Formulation

According to Tax (2001, p14) “the problem in one-class classification is to
make a description of a target set of objects and to detect which (new) objects
resemble this training set”. OCC attempts to maximise the detection of true
novel data while at the same time minimising the false positives (Markou &
Singh, 2003b). This is echoed by Tax (p.58, 2001) who states:

“The most important feature of one-class classifiers is the
trade off between the fraction of the target class that is accepted,
fT+, and fraction of outliers that is rejected, fO-”.

Identifying an outlier is a subjective exercise. There is no universally
accepted definition of what constitutes an outlier. Grubbs (1969) defined an
outlier as:

“An outlying observation, or outlier, is one that appears to
deviate markedly from other members of the sample in which it
occurs.”

A further definition is provided by Hawkin (1980):

55



“an outlier is an observation that deviates so much from other
observations as to arouse suspicions that it was generated by a
different mechanism.”

In this literature review outliers are not considered as noise points lying
outside a set of defined clusters. Separating noise and outliers is outside the
scope of this review. Outliers arise because of error (human or instrument),
natural deviations in populations, fraudulent behaviour or faults in systems
(Hodge & Austin, 2004). In the case of loan defaults, outliers can arise
because of changes in the behaviour of the system, in the sense that a person
has missed a scheduled loan repayment. Different systems respond to outliers
in different ways. If an outlier is due to a typographical error by an entry
clerk then the clerk can be notified and simply correct the error so the outlier
will be restored to a normal record (Hodge & Austin, 2004). In the case of
credit scoring, a bank manager is alerted and steps to minimise exposure to
loss are implemented.

A problem faced by most classification algorithms is that they fail at
automatically detecting novel classes because they are discriminators rather
than detectors (Markou & Singh, 2003b). This can be attributed to the fact
that many classification algorithms use open decision boundaries, such as a
hyperplane, to distinguish between classes and fail to decide when a feature
set does not represent any known class (Markou & Singh, 2003b). Hodge and
Austin (2004) offers three fundamental approaches to the problem of outlier
detection.

Type 1 - “Determine the outliers with no prior knowledge of the data”
(Hodge & Austin, 2004, p.88). This approach is essentially the same as
unsupervised clustering. The data is processed as a static distribution and
the most remote points are flagged as potential outliers. We have previously
stated that unsupervised learning is outside the scope of this review. However
future research (experiments) will be conducted to assess the applicability of
unsupervised learning methods.

Type 2 - Model both normality and abnormality. This approach requires
pre-labelled data and is akin to supervised learning. We have already dis-
missed this approach as “Classification algorithms require a good spread of
both normal and abnormal data” (Hodge & Austin, 2004, p.89). As previ-
ously discussed, the root of the low default portfolio problem is down to class
imbalance were one class is underrepresented. As a result of this it is difficult
to obtain a good spread of abnormal data. Type 2 methods are unsuitable
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for our research area.
Type 3 - “Model only normality or in very few cases model abnormality”

(Hodge & Austin, 2004, p.90). This approach uses labelled data but only
infers from target data. “It aims to define a boundary of normality” (Hodge
& Austin, 2004, p.90). An object is classed as target data if it lies within
the boundary and as non-target data otherwise. “This approach requires no
non-target data” (Hodge & Austin, 2004, p.90). This approach appears to
match the requirements of a OCC model.

The approach to addressing the low-default portfolio problem gains little
traction by splitting OCC into the broad categories of Type 1 and Type 2.
Supervised and Unsupervised learning are the broadest categories of machine
learning approaches available. Type 3 offers some light. The notion of defin-
ing a boundary or density around the target data is expanded by Tax (2001).
OCC approaches are discussed in detail a little later.

Before a further discussion on approaches can take place, it is necessary
to discuss the relative considerations when selecting an appropriate method-
ology for OCC.

4.2 One-Class Classification Considerations

There exist several important considerations or issues related to one-class
classification (OCC). Combining Tax (2001) and Markou & Singh (2003a)
these issues can be summarised as:

1. Principle of robustness and trade-off - A one-class classifier should offer
robust performance on test data that minimises the exclusion of target
data while maximising the exclusion of non-target data (Tax, 2001;
Markou & Singh, 2003a).

2. Principle of uniform data scaling - All test and training data should
lie within the same range after normalisation (Roberts & Tarassenko,
1994).

3. Principle of parameter minimisation - An OCC classifier should aim to
minimise the number of parameters that are set by the user (Markou
& Singh, 2003a). Consider this as the ease of operation by the user.
Tax (2001) also calls this the Magic Parameters.
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4. Principle of generalisation - “The one-class classification classifier should
be able to generalise without confusing generalised information as novel”
(Tax & Duin, 1998). The generalisation performance of one-class clas-
sifiers can be measured using three criteria (Moya et al., 1993). First,
within-class generalisation measures the classifiers performance on non-
trained known classes (Markou & Singh, 2003b). Between-class gener-
alisation indicates the performance on near-known class objects from
other classes (Markou & Singh, 2003b). Finally, out-of-class generalisa-
tion indicates the classifiers’ performance on unknown classes (Markou
& Singh, 2003b).

5. Principle of independence - The performance of the OCC classifier
should be independent of the number objects available and the amount
of features used. The classifier should display a reasonable performance
in relation to a low number of samples and noise (Markou & Singh,
2003a).

6. Principle of adaptability - the information on instances labelled as non-
target data during test should be used during retraining (Saunders &
Gero, 2000).

7. Computational complexity and Storage - The computational complex-
ity of a OCC classifier should be kept to a minimum (Markou & Singh,
2003a). Typically training is performed off-line, as a result training
costs are not a major consideration. However, training costs become a
factor when it is necessary to adapt to a changing environment (Tax,
2001). Changes in the credit scorecard environment include market
conditions, population drift or some low probability high impact event
(for example, a natural disaster).

8. Incorporation of known outliers - Outliers can be used to tighten the
description of the target data. It should be possible to add a parameter
to the one-class classifier to regulate the trade-off between a target and
outlier error (Tax, 2001).

4.3 One-Class Classification Approaches

This subsection identifies the main approaches to OCC. Related studies in-
clude Barnett and Lewis (1994) and Rousseeuw and Leroy (1996) who ex-

58



amined statistical approaches to identifying outliers. Tax (2001) describes a
range of statistical, neural network-based and machine learning approaches
to OCC. Tax’s list “does not pretend to be an exhaustive enumeration of all
possibilities” (Tax p.64, 2001). Markou and Sing (2003a, 2003b) describe
both a statistical approach and neural network approach to OCC. A similar
approach is detailed by Hodge and Austin (2004). Within this literature
review the method of describing OCC approaches is split into three main
sections; Statistical, Neural Networks and Machine Learning.

4.3.1 Statistical Approach

Statistical approaches are based on modelling the statistical properties of the
training data to estimate if a test sample comes from the same distribution.
The techniques used vary in their complexity (Oddin & Addisson, 2000).
The simplest method consists of constructing a density function for data of
a known class. The two main methods used to estimate the probability of a
density function are parametric and non-parametric methods (Desforges et
al., 1998).

Parametric: The parametric approach assumes that the data originates
from a family of known distributions, such as the normal (Gaussian) distri-
bution and certain parameters are calculated to fit this distribution (Markou
& Singh, 2003a). Parametric models can be rapidly evaluated for new in-
stances and are suitable for large data sets (Hodge & Austin, 2004). A
parametric model grows only with data complexity and not the number of
instances (Hodge & Austin, 2004). Their applicability is limited by enforc-
ing a pre-selected distribution model to fit the data (Hodge & Austin, 2004).
Estimating the density of the training data and setting a threshold on this
density represents a straightforward method of obtaining a one-class classifier
(Tarassenko et al., 1995). Of particular importance is the trade-off between
the recognition rate (error probability) and the proportion of data rejected
(reject probability) (Hansen et al., 1997). The reject rate is necessary to
safeguard against overfitting caused by noise and uncertainty.

Tax describes the Guassian model as a method for rejecting outliers based
on their density distribution. Gaussian mixture modelling (GMM) allows for
a more flexible density method by extending the normal distribution to a
mixture of Gaussians (Duda & Hart, 1973). An optimisation algorithm such
as Expectation-Maximisation (EM) is used to select the parameters of the
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model. GMM requires a large number of samples to train the model (Markou
& Singh, 2003a).

Other methods include minimum volume ellipsoid estimation, or MVE
(Rousseeuw & Leroy, 1999). MVE fits the smallest permissible ellipsoid
volume around the majority of the data distribution model (Hodge & Austin,
2004). Convex peeling is also another parametric method that works by
peeling away the instances on the boundaries of the data distribution’s convex
hull (Rousseeuw & Leroy, 1996). This results in peeling away the outliers.
Both methods are only applicable for low dimensional data (Hodge & Austin,
2004).

An extensive study of parametric outlier detection methods is detailed in
Markou & Singh (2003a).

Non-Parametric: In non-parametric approaches no assumptions on the
statistical properties of the data are made (Markou & Singh, 2003a). The
overall form of the model structure is not defined a priori, instead it is derived
from the data as are the parameters of the model. The k-nearest neighbour
algorithm is a non-parametric technique for estimating the density function
of data (Oddin & Addisson, 2000). A width parameter is set as a result
of the position of the instance in relation to other instances by considering
the k-nearest patterns in the training data to the test pattern (Markou &
Singh, 2003a). A drawback with this technique is that for large datasets a
larger number of computations have to be performed. The nearest neighbour
method, NN-d, can be derived from a local density estimation by the nearest
neighbour classifier (Duda & Hart, 1973). Hellman (1970) used the nearest
neighbour (NN) classifier for rejecting patterns with higher risk of being
misclassified. The advantage of NN-d is that it avoids explicitly estimating
the complete density of the data and uses the first nearest neighbour. This
method can be termed as a boundary method and follows one of the main
ideas in learning theory, that when only a limited amount of data is available
one should avoid solving a too hard intermediate problem. Roth (2005)
argues that while, theoretically, this line of reasoning seems appealing, in
practical applications it leads to problems. The restriction of estimating
only a boundary renders the task of deriving “a formal characterisation of
non-target data without prior assumptions on the expected fraction of outliers
or even on their distribution” (Roth p.1169, 2005) impossible. In practice,
however, it is difficult to justify any such prior assumptions. Roth (2005)
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states:

“The fundamental problem of the one-class approach lies in
the fact that outlier detection is a (partially) unsupervised task
which has been ’squeezed’ into a classification framework. The
missing part of information has been shifted to prior assumptions
which can probably only be justified, if the solution of the original
problem was known in advance”.

Another shortcoming of the boundary method is the fact that they rely
heavily on the distances between objects and as a result tend to be sensitive
to scaling of the features.

Further studies of non-parametric based novelty detection classification
methods appear in Markou and Singh (2003a), Hodge and Austin (2004),
Agyemang et al. (2006), Bakar et al. (2006), Patcha and Park (2007) and
Chandola et al. (2008).

4.3.2 Neural Networks

Typically, neural networks make no a priori assumptions on the properties
of data. They generalise well to unseen patterns and are capable of learn-
ing complex class boundaries (Hodge & Austin, 2004). Training can be a
lengthly process that involves traversing the training set numerous times in
order to allow the network to model the data correctly. Many neural net-
works are susceptible to the curse of dimensionality, though less so than
statistical methods (Hodge & Austin, 2004). Despite the difficulties with
neural network retraining and the vast amount of parameter settings, neural
networks are important novelty detectors (Markou & Singh, 2003b). Not all
neural network approaches are examined or mentioned in the following sec-
tion. Markou and Singh (2003b) offer an in-depth topology of neural network
based approaches to novelty detection.

Supervised Neural Networks: The learning process of supervised neural
networks is driven by the class labels. To correctly classify input, the neural
network uses the class labels to adjust its weights and thresholds. Multi-
layer perceptrons are the best known and most widely used class of neural
networks. Devising methods of novelty detection is a challenging task as
MLPs do not generate closed class boundaries. This can cause interference
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between the generalisation property of the network and its ability to detect
novelties (Moya et al., 1993).

According to Bishop (Bishop, 1994) one of the most important sources
of error in neural networks arises from novel input data. A network that
is trained to discriminate between a number of classes coming from a set
of distributions will be confused when it encounters data coming from an
entirely new distribution (Hodge & Austin, 2004). The novelty detection
is implemented by estimating the density of the training data, thus mod-
elling its distribution and checking whether an input data point comes from
this distribution (Markou & Singh, 2003b). The density estimation is done
by using either a kernel-based estimator or by a semi-parametric estimator
constructed from a Gaussian Mixture Model (Markou & Singh, 2003b). A
threshold is then placed on the output of the network and low confidence
indicates an outlier.

Other supervised neural networks used for novelty detection include an
auto-associative neural network (Japokowicz et al., 1995), Hopfield networks
(Hopfield, 1982) and the supervised radial basis function (RBF) network.

Unsupervised Neural Networks: Unsupervised neural networks are used
when pre-classified data is unavailable. Unsupervised neural networks con-
tain nodes which compete with one and other to represent portions of the
data set (Hodge & Austin, 2004). Training data is necessary in order for
the network to learn. Neural networks work on the assumption that related
vectors have common feature values that can be identified to topologically
model the data distribution (Hodge & Austin, 2004).

Most self-organising maps (SOM) (Kohonen, 1997) based approaches are
similar to statistical clustering. A threshold is set on some form of clus-
ter membership value to determine whether a sample belongs to a clus-
ter or not. SOMs are similar to k-means clustering with k equivalent to
the number of nodes (Hodge & Austin, 2004). However, SOMs employ a
user-specified global threshold distance whereas k-means autonomously de-
termines the boundary during training allowing local setting of the radius of
normality as defined by each cluster (Hodge & Austin, 2004).

4.3.3 Machine Learning

The following subsection examines a machine learning technique, support
vector machines, applied to the OCC problem.

62



Support Vector Machines: As previously discussed in Section 3.6.5 sup-
port vector machines (SVMs) are based on the concept of determining opti-
mal hyperplanes for separating different classes (Vapnik, 1998).

Tax and Duin create a Support Vector Data Description (SVDD) (Tax &
Duin, 1999, Tax & Duin, 1999b) to address the problem of OCC by distin-
guishing between the class of objects that are represented by the training set
and all other possible objects in the object space (Markou & Singh, 2003b).
In the SVDD a model f(x;w) is defined in such a way that instead of search-
ing for a optimal hyperplane it searches for a closed boiundary around the
data, a hypersphere. The hypersphere is characterised by a centre a and
radius R (Figure 7). Using a hypersphere and based on its minimum radius,
almost all of the objects in the data set are encompassed (Markou & Singh,
2003b). An object is rejected if its distance from the centre of the sphere is
larger than the radius of the sphere (Markou & Singh, 2003b). Objects lying
outside of the sphere are called slack variables, i.e. outliers. The optimal
hypersphere implements a trade off between two conflicting goals: (i) the
volume of the hypersphere and the number of target objects included; and
(ii) the size of the radius and the number of slack variables (Cherkassky &
Mulier, 2007).

Figure 7: Support Vector Data Description (Tax & Duin, 1999, Tax & Duin,
1999b)
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To find the optimal hypersphere an error function F is formulated so that

F (R, a) = R2 (28)

With the constraints that all of the training data xi are within that R2

‖xi − a‖2 ≤ R2, ∀i (29)

In order to allow for the possibility of outliers in the training set, the
distance from xi to the centre a should not be less thanR2 but larger distances
should be penalised. Therefore, slack variables ξi ≥ 0 may be introduced and
the error minimisation problem can be rewritten as

F (R, a, ξ) = R2 + C
∑
i

ξi (30)

where the variable C gives the trade-off between the volume of the sphere
(or simplicity) and the number of target objects rejected (misclassification
errors). This must be minimised under the constraints

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i (31)

Constraints (31) can be incorporated into (30) by using Lagrange mulit-
pliers. The resultant Lagrangian formula is

L(R, a, α, γ, ξ) = R2+C
∑
i

ξi−
∑
i

αi×
{
R2 + ξi −

(
‖xi‖2 − 2a · xi + ‖a‖2

)}
−
∑
i

γiξi

(32)
with the Lagrange multipliers αi ≥ 0 and γi ≥ 0. L should be minimised

with respect to R, ξ, a and maximised with respect to α and γ with the
constraints ∑

i

αi = 1 (33)

a =

∑
i αixi∑
i αi

=
∑
i

αixi (34)

C − αi − γi = 0 (35)

Since αi ≥ 0 and γi ≥ 0, the variables can be removed from Equation
(35) and the constraint 0 ≤ αi ≤ C can be used.
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Rewriting Equation (32) and resubstituting Equations (33, 34, 35) give
to maximise with respect to αi

L =
∑
i

αi (xi · xi)−
∑
ij

αiαj (xi · xj) (36)

with constraints 0 ≤ αi ≤ C,
∑
i αi = 1

Equation (34) states that the centre of the sphere is a linear combination
of data objects, with weight factors αi which are obtained by optimising
Equation (36). A data object is located on the boundary of the sphere when
equality in Equation (31) is achieved. For these data objects the coefficients
αi will be non-zero and are called support objects. Only these objects are
needed in the description of the sphere. The radius R of the sphere can
be calculated using the distance from the centre of the sphere to a support
vector with a weight less than C. Objects for which αi = C have hit the
upper bound in Equation (35) and are outside the sphere. These support
vectors are considered outliers.

To determine whether a test point z is within the sphere, the distance to
the centre of the has to be measured. A test object z is accepted when this
distance is less than the radius. Expressing the centre of the sphere in terms
of the support vectors, z is accepted when

(z · z)− 2
∑
i

αi (z · xi) +
∑
ij

αiαj (xi · xj) ≤ R2 (37)

SVDD with kernels: The previous method only computes a sphere around
the data in the input space. Rarely is the data so spherically distributed that
one can expect a very tight description. As the problem is stated completely
in terms of inner products between vectors (Equations (37) and (36)), the
method can be more flexible, analogous to Vapnik (1995). Inner products of
the objects (xi · xj) can be replaced by the kernel function K(xi, xj), when
this kernel K(xi, xj) satisfies Mercer’s theorem. This implicitly maps the
objects xi into some feature space and when a suitable feature space is cho-
sen, a better, more tighter description can be obtained. No explicit mapping
is required, the problem is expressed completely in terms of K(xi, xj). All
inner products (xi · xj) are replace by a proper K(xi, xj) and the problem of
finding a data domain description is given by

L =
∑
i

αiK(xi, xi)−
∑
ij

αiαjK(xi, xj) (38)
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with the constraints 0 ≤ αi ≤ C,
∑
i αi = 1. A test object z is accepted

when
K(z, z)− 2

∑
i

αiK(z, xi) +
∑
ij

αiαjK(xi, xj) ≤ R2. (39)

Different kernel functions K result in different description boundaries
in the original input space. The problem is to find a suitable kernel func-
tion K(xi, xj). Not all kernels perform equally well for the SVDD. Polyno-
mial kernels result in less compact boundary representations (Cherkassky &
Mulier, 2007). Additionally data points with the highest norms have a higher
chance of becoming support vectors (Cherkassky & Mulier, 2007). With a
radial basis function, the width kernel controls the flexibility of the boundary
(Cherkassky & Mulier, 2007).

A drawback with SVDD is that it ignores unlabelled data that may be
readily available (Peng et al., 2003). Partially supervised classification, also
referred to as semi-supervised learning, provides a solution to OCC problems
that utilise unlabelled data. Initially it is assumed that all unlabelled exam-
ples belong to a single class, the Expectation-Minimisation (EM) algorithm
is applied to refine the assumption. Peng et al., (2003) also offer a solution
to this problem by constructing a contrast classifier that discriminates be-
tween labelled and unlabelled data. The output of the contrast classifier is
a measure of difference, or contrast in density of a given data point between
labelled and unlabelled data (Peng et al., 2003).

Scholkopf and Smola (2002) provide an additional method of geometri-
cally enclosing a fraction of the target data. This is achieved by defining
a relationship between a hyperplane and the origin. Single-class SVM uses
a hyperplane to separate the training data from the origin with a maximal
margin (Cherkassky & Mulier, 2007). The hyperplane separates the surface
region containing objects from the region containing no data.

The hyperplane is maximally distant from the origin with all data points
lying on opposite sides of the origin (Markou & Singh, 2003b). Criticism of
the method is available in Campbell and Bennett (2001) and Manevitz and
Yousef (2007).

Additional studies of OCC methods are available in Campbell and Bennet
(2001), Manevitz and Yousef (2007), Diehl and Hampshire (2002), Ratsch et
al. (2002) and Davy and Godsill (2002).

Tax and Duin (2001) suggest creating artificial outliers uniformly in and
around the target class. The authors used a dimensional Gaussian distri-
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Figure 8: Single class SVM (Scholkopf & Smola, 2002)

bution for creating the outlier data and indicate that the method becomes
infeasible in very high dimensional data (Markou & Singh, 2003b).

Chandola et al. (2009) report that the basic SVM technique described in
Section 3.6.5 has been extended for anomaly detection in audio signal data
(Davy and Godsill 2002), novelty detection in power generation plants (King
et al. 2002), system call intrusion detection (Eskin et al., 2002; Heller et
al. 2003; Lazarevic et al. 2003), and detection of anomalies in temporal
sequences (Ma & Perkins 2003a; 2003b).

4.4 Non-Target Data Inclusion

Should a one-class classifier include non-target data in its training set? Tra-
ditionally OCC techniques were reserved for classification techniques where
only a single class of instances is exhibited at training time. At prediction
time, new instances with unknown class labels either belong to this target
class or a new class that was not available during training. Approaches have
since evolved, but in the literature there is still no definitive answer to this
question. Tax and Duin (2002) state:

”In one-class classification we assume that we have examples
from just one of the classes . . . one of the classes is character-
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ized well, while for the other class (almost) no measurements are
available”.

Similarly, Japkowicz et al., (1995) states:

“Novelty detection approaches consequentially require very few,
if any, negative training instances”.

From both these statements we can infer that only a small, or rare,
amount of non-target data can be employed during training. This review
will look at extending the capabilities of one-class classifiers and introducing
a small number non-target data. This then raises the question; is rarity an
absolute or relative property?

Raskutti & Kowalcyzk (2003) contend that in most case studies of class
imbalance, the imbalance ratio of minority to majority class is around 10:90.
In contrast to Tax and Japkowicz, Raskutti and Kowalcyzk (2003) assert that
where the minority class consists of around 13% of the data, then “one of
the classes is ignored completely and learning is accomplished using examples
from a single class”.

Recent research has addressed the issue of class imbalance, but few if any
studies address the issue of rare events (Khoshgoftaar et al., 2007). This
rarity dilemma warrants further research, the author is of the opinion that
one-class classifiers should make use of whatever data (target or non-target)
is available.

Of interest to this review is the problem related to OCC when negative
examples exist. The small number of negative examples prevents the pos-
sibility of making accurate assumptions about the characteristics of their
distribution. In this sense, OCC can characterise the target class (positive
examples) to distinguish it from all other non-target classes.

4.5 Conclusion

This Section examined the OCC problem. Section 4.1 considered the def-
inition of an outlier and the general approaches to outlier detection. The
characteristics of a one-class classifier were listed in Section 4.2. A brief
description of the approaches to OCC were described in Section 4.3. Of
particular interest to this review are the SVM approaches used by Tax and
Duin(1999; 1999b) and Scholkopf and Smola (2002). The question about the
inclusion of nontarget data in the training set of a one-class classifier was
discussed in Section 4.4.

68



5 Conclusion

This section concludes the literature review. The goal of this review was
to provide the reader with a snapshot of the proposed thesis subject area.
The topics covered included; the role of the literature review, credit risk and
scoring, classification and finally OCC. The review did not attempt an in-
depth study of any of the topics, instead a broad approach was employed.
This afforded an opportunity to establish a link between the topics, i.e. the
tie-in between traditional classification and OCC all within the context of
credit risk scorecards. The first Section of this literature review attempts
to establish the framework of the review. The three main concepts of this
section include Identification, Evaluation and Interpretation. In terms of fu-
ture work this provides an approach for identifying current works, evaluating
their intellectual context, and establishing the credibility and applicability of
works. The author believes that the research methodology used in Section
1.3 is fundamentally sound. The review of how sources are organised and
searched and can be employed for studies by the author.

Section 2 examined credit risk scorecards. The importance of credit scor-
ing was outlined through an examination of the history of credit and the
distinction between corporate and consumer credit. Any future publications
will, at least, require an overview of the credit domain. The legislative im-
portance of Basel 2 on credit scoring was also discussed. The idea of reject
inference was also examined. This involves inferring the performance of re-
jected applicants, i.e. Their credit score was below the credit cut off point.
The author is of the opinion that this would make an interesting sub-area
as classification techniques are directly applicable to estimating the reject
inference rate.

Section 3 provided an overview of classification. The theoretical frame-
work offered an insight into how a classification model functions. Future work
on this area should extenuate the role of the loss function, the author believes
that classification examples in literature tend to overlook the importance of
the loss function. Mainstream, but understandably vital, classification topics
such as bias and variance were also discussed. Future work must also expand
on the classification evaluation techniques listed in Section 3.4. A review of
classification techniques used for estimating the probability of default were
described in Section 3.6. Statistical methods are still the most popular, nu-
merous studies (Baesen, 2002) have been completed in order to survey the
effectiveness of such methods. Future thesis work would also benefit from
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such an approach as it establishes the basis or starting point of credit scoring
classification methods. Greater detail on the work of alternative methods
(SVMs etc.) needs to be compiled by the author. Class imbalance was used
as an introduction to OCC. Alternative techniques to OCC were discussed
in Section 3.6. For future work the strengths of one-class classifiers could be
enhanced by finding studies that highlight the limitations of methods that
are used to balance the data set or modifying the classifier (e.g. undersam-
pling, oversampling, cost-sensitive learning, classifier ensembles and classifier
biasing).

OCC was reviewed in Section 4. Perhaps greater emphasis should have
been placed on this section, in particular OCC approaches, as it is central to
the proposed thesis. Can a one-class classifier still be considered such if non-
target data is employed during its training? This question was explored in
Section 4.1 and the author is of the opinion that the one-class classifier should
employ whatever data is available during training. The characteristics of a
one-class classifier were also examined. Of these the most important of which
is identified by Tax (2001) “a measure of the distance d(z) or resemblance
(or probability) p(z) of an object z to the target class” (Tax p.57, 2001) and
a consideration or threshold σ on this distance or resemblance (Tax, 2001).

The approaches to categorising OCC methods vary within literature. Tax
(2001) offers a clear categorisation by splitting the methods into three areas;
density estimation, boundary estimation and reconstruction methods. How-
ever this approach is not exhaustive and the previously employed approach
of statistical, neural and machine learning was used. Future work should
consider a proper taxonomy of OCC approaches based on their characteris-
tics. Furthermore greater detail on machine learning approaches needs to be
furnished. Perhaps a comparative study of SVDD, one-class SVM and other
SVM approaches would yield worthwhile observations and results.

Overall this literature review provided the author with an opportunity
to consolidate the literature accumulated thus far. Undoubtedly blind spots
exist in the literature review. The implementation of credit scoring classifiers
and one-class classifiers requires further research, as the description of such
methods lacked a satisfactory depth.
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