
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Instructional Guides School of Multidisciplinary Technologies
(Former DIT)

2013

VB.NET Functions and Subs: Worked Analysis for a Mortgage VB.NET Functions and Subs: Worked Analysis for a Mortgage

Loan App. Loan App.

Jerome Casey
Technological University Dublin, jerome.casey@tudubln.ie

Follow this and additional works at: https://arrow.tudublin.ie/schmuldissoft

 Part of the Engineering Education Commons

Recommended Citation Recommended Citation
Casey, J. (2013). VB.NET functions and subs:worked analysis for a mortgage loan app.Software guide for
undergraduate students. Technological University Dublin.

This Other is brought to you for free and open access by the School of Multidisciplinary Technologies (Former DIT)
at ARROW@TU Dublin. It has been accepted for inclusion in Instructional Guides by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/schmuldissoft
https://arrow.tudublin.ie/schmuldist
https://arrow.tudublin.ie/schmuldist
https://arrow.tudublin.ie/schmuldissoft?utm_source=arrow.tudublin.ie%2Fschmuldissoft%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1191?utm_source=arrow.tudublin.ie%2Fschmuldissoft%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

jerome.casey@dit.ie 1

HIGHER CERT/BACHELOR OF TECHNOLOGY – DT036A

VISUAL BASIC PROGRAMMING 1

Functions & Sub Procedures

In this Lecture:

1. Functions and Sub Procedures.

2. The difference between arguments and parameters.

3. Passing a value by Reference or By Value.

4. Using a RichTextBox control to output information to the user via its .Text property

and AppendText method, setting and using tabs (vbTab), moving to a new line

(vbCrLf), changing font colour etc.

Structured Programming:

Structured program design requires that problems be broken into smaller problems to be

solved one at a time. Visual Basic has two devices, Sub procedures and Function

procedures that are used to break problems into manageable chunks. To distinguish them

from event procedures, Sub and Function procedures are referred to as general

procedures or methods. General procedures also:

1. eliminate repetitive code,

2. can be reused in other programs, and

3. allow a team of programmers to work on a single program.

A Sub procedure is a part of a program that performs one or more related tasks, has its

own name and is written as a separate part of the program. The simplest type of Sub

procedure has the form:

Private Sub ProcedureName(param1 As Single, param 2 As Integer etc.)

statement(s) that use param1, param2 etc.

End Sub

A Sub procedure is invoked with a statement of the form:

Call ProcedureName(argument1, argument2)

The word Call is optional. The rules for naming general procedures are identical to the

rules for naming variables. The name chosen for a Sub procedure should describe the task

it performs.

Sub procedures make a program easy to read, modify, and debug. The event procedure gives

a description of what the program does and the Sub procedures fill in the details. Another

benefit of Sub procedures is that they can be called several times during the execution of the

program. This feature is especially useful when there are many statements in the Sub

procedure.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 2

Program 1: Adding Two Numbers using Sub Procedures

This program is a very simple program to add two numbers and to demonstrate the use of

Sub procedures. A later exercise (Amortization) will show how they are used for more

substantial programming efforts.

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 ExplainPurpose()
 End Sub
Private Sub cmdSum_Click(sender As Object, e As EventArgs) Handles cmdAdd.Click
 Dim sngFirst As Single
 Dim sngSecond As Single
 sngFirst = Val(txtFirstNum.Text)
 sngSecond = Val(txtSecondNum.Text)
 Add(sngFirst, sngSecond)
End Sub

Private Sub Add(sng1 As Single, sng2 As Single)
 rtbOutput.Text = "The Sum is: " & (sng1 + sng2)
End Sub

Private Sub ExplainPurpose()
 rtbOutput.Text = "This Program accepts 2 numbers and outputs their sum "
End Sub

Private Sub cmdClear_Click(sender As Object, e As EventArgs) Handles cmdClear.Click
 txtFirstNum.Text = ""
 txtSecondNum.Text = ""
 rtbOutput.Text = ""
 txtFirstNum.Focus()
End Sub
End Class

The program uses two Sub procedures which are shown highlighted.

The statement Add(sngFirst, sngSecond) at 1. causes execution to jump to the

Private Sub Add(sng1 As Single, sng2 As Single) statement at 2., which assigns the

sngFirst to sng1 and the sngSecond to sng2. After the lines between a Sub procedure

statements are executed, execution returns to the line following this call, namely, the

End Sub statement in the event procedure.

1.

2.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 3

Arguments and Parameters:

The items appearing in the parentheses of a Call statement are called arguments. These

should not be confused with parameters, which appear in the heading of a Sub procedure.

The variables num1 and num2 appearing in the Sub procedure Add shown below are

called parameters. They are merely temporary place holders for the numbers passed to

the Sub procedure; their names are not important. The only essentials are their datatype,

quantity, and order. In the Add Sub procedure shown here, the parameters must be

numeric variables and there must be two of them.

Figure shows passing arguments to Parameters of a sub procedure. Arguments can be
constants, variables or expressions.

Other datatypes can be passed to a Sub procedure e.g. a String. In this case, the receiving

parameter in the Sub procedure must be followed by the declaration As String.

Passing Arguments ByVal or ByRef:

When you pass a value to a procedure you may pass it ByVal or ByRef (for by value or

by reference). The ByVal sends a copy of the argument’s value to the procedure so that

the procedure cannot alter the original value. The ByRef sends a reference to the

procedure indicating where the argument’s value is stored in memory so that the called

procedure can alter the argument’s original value. You specify how to pass the argument

by using the ByVal or ByRef keyword before the parameter in the procedure header. If

you don’t specify ByVal or ByRef then arguments are passed by value by default.

Private Sub SelectColor(ByVal IncomingColor As Color)

Function Procedures:

Visual Basic has a number of built-in functions that greatly extend its capability. These

functions perform such varied tasks as taking the square root of a number Sqr, counting

the number of characters in a string Len, and formatting data FormatCurrency. Functions

associate with one or more values, called the input, and a single value, called the output.

The function is said to return the output value. Often this value is assigned to a variable

such as: intCharacters = Len(strSentence)

which you can then use in subsequent lines of code. Remember the return value from the

MsgBox function? This variable must be of the same datatype as the return value.

 You can also write your own functions that can be called, calculates a value and

returns this value to the caller. Thus the main difference in coding a sub procedure and a

function procedure is that in the latter you must set up a return value. This return value

is placed in a variable that VB names with the same name as the function name.

Private Function Commission(ByVal decSalesin As Decimal) As Decimal
...... Commission = decSalesin * 0.35
End Function

Note: Somewhere in the function you must set the function name to a value.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 4

Program 2: Calculating Commission using a Function

Looking at the Salary program we covered previously, the commission block could be

written as a function and called from within the cmdCalc_Click event:

 Private Sub cmdCalc_Click(sender As Object etc.
..

 ' call commission function
 decCommission = Commission(decSales)
 End Sub

 Private Function Commission(decSalesin As Decimal) As Decimal
 If decSalesin <= 1000 Then
 Commission = decSalesin * 0.1
 ElseIf decSalesin <= 1500 Then
 Commission = decSalesin * 0.15
 ElseIf decSalesin <= 2000 Then
 Commission = decSalesin * 0.2
 ElseIf decSalesin <= 2500 Then
 Commission = decSalesin * 0.25
 ElseIf decSalesin <= 3000 Then
 Commission = decSalesin * 0.3
 Else
 Commission = decSalesin * 0.35
 End If
 End Function

You can also specify the datatype of the return value by adding the As clause after the

function name.

Here the function can be called within an expression, in which case it doesn’t need the

Call keyword.

When the function is called the value in decSales is passed to the function and assigned to

the named argument, decSalesin. Within the function process for every reference to

decSalesin the value of decSales is actually used.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 5

Program 3: Loan Analysis to demo Functions, Sub Procedures & Output to RichTextBox

Develop a program to analyze a loan. Assume the loan is repaid in equal monthly

payments and interest is compounded monthly. The program should request the amount

(principal) of the loan, the annual rate of interest, and the number of years over which the

loan is to be repaid. The four options to be provided by command buttons are as follows:

1. Calculate the Monthly Payment. The formula for the monthly payment is:

Monthly Payment = P * r / (1 – (1 + r) ^ (–n)) or nr

r
PPaymentMon




)1(1
*.

where

 P is the principal of the loan,

 r is the monthly interest rate (annual rate divided by 12) given as a number

between 0 (for 0 percent) and 1 (for 100 percent), and

n is the number of months over which the loan is to be repaid.

Since a payment computed in this manner can be expected to include fractions of a cent,

the value should be rounded up to the next nearest cent. This corrected payment can be

achieved using the formula:

Correct Monthly Payment = Round(Monthly Payment + 0.005, 2)

2. Display an Amortization Schedule, that is, a table showing the balance on the loan at

the end of each month for any year over the duration of the loan. Also show how much of

each monthly payment goes toward interest and how much is used to repay the principal.

Finally, display the total interest paid over the duration of the loan. The balances for

successive months are calculated with the formula:

NewBalance = (1 + r) * Oldbal – monPay

where

r is the monthly interest rate (annual rate / 12, a fraction between 0 and 1),

Oldbal is the balance for the preceding month (amount of loan left to be paid), and

monPay is the monthly payment.

3. Show the effect of Changes in the Interest Rate. Display a table giving the monthly

payment for each interest rate from 1 percent below to 1 percent above the specified

annual rate in steps of one-eighth of a percent.

4. Quit.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 6

Designing the Loan Analysis Program (Hierarchy Chart):

For each of the tasks described in the preceding options 1 to 4, the program must first

look at the text boxes to obtain the particulars of the loan to be analyzed. Thus, the first

division of the problem is into the following tasks:

1. Input the principal, interest, and duration.

2. Calculate the Monthly Payment.

3. Calculate the Amortization Schedule.

4. Display the effects of Interest Rate Changes.

5. Quit.

Task 1 is a basic input operation and Task 2 involves applying the formula given in Step

1; therefore, these tasks need not be broken down any further. The demanding work of

the program is done in Tasks 3 and 4, which can be divided into smaller subtasks.

3. Calculate Amortization Schedule. This task involves simulating the loan month by

month. First, the monthly payment must be computed. Then, for each month, the new

balance must be computed together with a decomposition of the monthly payment into

the amount paid for interest and the amount going toward repaying the principal. That is,

Task 3 is divided into the following subtasks:

3.1 Calculate monthly payment.

3.2 Calculate new balance.

3.3 Calculate amount of monthly payment for principal.

3.4 Calculate amount of monthly payment for interest.

4. Display the effects of interest-rate changes. A table is needed to show the effects of

changes in the interest rate on the size of the monthly payment. First, the interest rate is

reduced by one percentage point and the new monthly payment is computed. Then the

interest rate is increased by regular increments until it reaches one percentage point above

the original rate, with new monthly payment amounts computed for each intermediate

interest rate. The subtasks for this task are then:

4.1 Reduce the interest rate by 1 percent.

4.2 Calculate the monthly payment.

4.3 Increase the interest rate by 1/8 percent.

Hierarchy Chart for Loan Analysis Program

2. 3. 4. 1. 5.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 7

Pseudocode for the Loan Analysis Program:

Calculate Monthly Payment command button:

INPUT LOAN DATA (Sub procedure InputData)

COMPUTE MONTHLY PAYMENT (Function MonthlyPayment)

DISPLAY MONTHLY PAYMENT (Sub procedure ShowMonthlyPayment)

Display Interest Rate Change Table command button:

INPUT LOAN DATA (Sub procedure InputData)

DISPLAY INTEREST RATE CHANGE TABLE

 (Sub procedure ShowInterestChanges)

Decrease annual rate by .01 i.e. 1%

Do

 Display monthly interest rate

 COMPUTE MONTHLY PAYMENT (Function MonthlyPayment)

 Increase annual rate by .00125 i.e. going up in steps of 0.125%

Loop Until annual rate > original annual rate + .01 i.e. +1% greater than original

Display Amortization Schedule command button:

INPUT LOAN DATA (Sub procedure InputData)

DISPLAY AMORTIZATION SCHEDULE (Sub procedure ShowAmortSched)

Compute monthly interest rate

COMPUTE MONTHLY PAYMENT (Function MonthlyPayment)

Display amortization table

Display total interest paid

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 8

Tasks and Their Procedures:

Task Procedure

1. Input principal, interest, duration. InputData

2. Calculate monthly payment. ShowPayment

3. Calculate amortization schedule. ShowAmortSched

 3.1 Calculate monthly payment. MonthlyPayment
 3.2 Calculate new balance. Balance

 3.3 Calculate amount paid for loan. ShowAmortSched

 3.4 Calculate amount paid for interest. ShowAmortSched

4. Show effect of interest rate changes. ShowInterestChanges

 4.1 Reduce interest rate. ShowInterestChanges

 4.2 Compute new monthly payment. MonthlyPayment
 4.3 Increase interest rate. ShowInterestChanges

1. Tasks 3.1 and 3.2 are performed by functions. Using functions to compute these quantities

simplifies the computations in ShowAmortSched.

2. Since the monthly payment calculation was rounded up to the nearest cent, it is highly

likely that the payment needed in the final month to pay off the loan will be less than the

normal monthly payment. For this reason, Balance (called from ShowAmortSched) checks if

the outstanding balance of the loan (including interest due) is less than the regular monthly

payment. If so, it makes appropriate adjustments.

3. The standard formula for computing the monthly payment cannot be used if either:

(i). the interest rate is zero percent or

(ii). the loan duration is zero months.

Although both of these situations do not represent reasonable loan parameters, provisions are

made in the function MonthlyPayment so that the program can handle these situations.

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 9

Program 3 - Loan Analysis - The Interface and Functionality

The screenshots show the form design as well as the output in the rtbDisplay

RichTextBox obtained by clicking the respective command buttons for the given data

input.

Monthly Payment for a 30 Year Loan

Interest Rate Change Table for a 30 Year Loan

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 10

Amortization for Year 30 of the Loan

Inputting Year 30 in the Inputbox

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 11

Program-Loan Analysis: The Code
Public Class Form1
Dim decPrincipal As Decimal 'Amount of loan
Dim decYearlyRate As Decimal 'Annual rate of interest
Dim intNumMonths As Integer 'Number of months to repay loan

 Private Sub cmdPayment_Click(sender As Object, e As EventArgs) Handles cmdPayment.Click
 Call InputData(decPrincipal, decYearlyRate, intNumMonths)
 Call ShowMonthlyPayment(decPrincipal, decYearlyRate, intNumMonths)
 End Sub

 Private Sub cmdRateTable_Click(sender As Object, e As EventArgs) Handles cmdRateTable.Click
 Call InputData(decPrincipal, decYearlyRate, intNumMonths)
 Call ShowInterestChanges(decPrincipal, decYearlyRate, intNumMonths)
 End Sub

 Private Sub cmdAmort_Click(sender As Object, e As EventArgs) Handles cmdAmort.Click
 Call InputData(decPrincipal, decYearlyRate, intNumMonths)
 Call ShowAmortSched(decPrincipal, decYearlyRate, intNumMonths)
 End Sub

 Private Sub InputData(ByRef decPrincipal As Decimal, ByRef decYearlyRate As Decimal, ByRef intNumMonths As Integer)

 'Input: Pass back by reference 1.the loan amount, 2. yearly rate of interest, and 3. duration in months
 decPrincipal = Val(txtAmt.Text)
 decYearlyRate = Val(txtAPR.Text) / 100 ' convert % taken from textbox to decimal precision value
 intNumMonths = Val(txtYrs.Text) * 12

 rtbDisplay.ReadOnly = True
 rtbDisplay.SelectionTabs = New Integer() {5, 50, 120, 190}
 End Sub

 Private Sub ShowMonthlyPayment(decPrincipal As Decimal, decYearlyRate As Decimal, intNumMons As Integer)
 Dim decMonthlyRate As Decimal, strPrincipal As String, strApr As String
 Dim strYrs As String, decPay As Decimal, strPayment As String

 'Display monthly payment amount
 decMonthlyRate = decYearlyRate / 12 'monthly interest rate
 strPrincipal = FormatCurrency(decPrincipal, 2) 'euros with cent
 strApr = FormatNumber(decYearlyRate * 100) 'changing decimal precision to a %, e.g. 0.01 --> 1.00%
 strYrs = FormatNumber(intNumMons / 12, 0) 'convert months back to years
 decPay = MonthlyPayment(decPrincipal, decMonthlyRate, intNumMons)
 strPayment = FormatCurrency(decPay)

 rtbDisplay.Text = "" 'clear RichTextBox of any previous output
 rtbDisplay.Text &= "The monthly payment for a " & strPrincipal & " loan at " & vbCrLf
 rtbDisplay.Text &= strApr & " % annual rate of interest for "
 rtbDisplay.Text &= strYrs & " years Is " & strPayment & "."
 End Sub

Private Function MonthlyPayment(decPrincipal As Decimal, decMonthlyRate As Decimal, intNumMons As Integer) As Decimal

Dim decPayEst As Decimal

 'the standard formula for computing the monthly payment cannot be used if either
 'the loan duration is zero months or the interest rate is zero percent.
 If intNumMons = 0 Then
 decPayEst = decPrincipal
 ElseIf decMonthlyRate = 0 Then
 decPayEst = decPrincipal / intNumMons
 Else
 decPayEst = decPrincipal * decMonthlyRate / (1 - (1 + decMonthlyRate) ^ (-intNumMons))
 End If
 MonthlyPayment = Math.Round(decPayEst + 0.005, 2) 'round up to the nearest cent
End Function

Note: Somewhere in the function you must set the function name to a value. This is the value returned by

the function.

Note: Parameters passed

By Reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

mailto:jerome.casey@dit.ie

jerome.casey@dit.ie 12

 Private Sub ShowInterestChanges(decPrincipal As Decimal, decYearlyRate As Decimal, intNumMons As Integer)
 Dim decNewRate As Decimal, decMonthlyRate As Decimal, decPMent As Decimal, strPayment As String
 'Display effect of interest changes (from an interest rate of 1% lower up to 1% higher)
 'going up in steps of 0.125% i.e. 0.00125 in decimal precision
 rtbDisplay.Text = "" 'clear textbox of any previous output

 rtbDisplay.Text &= vbTab & vbTab & "Annual" & vbCrLf
 rtbDisplay.Text &= vbTab & vbTab & "Interest Rate" & vbTab & "Monthly Payment" & vbCrLf
 decNewRate = decYearlyRate - 0.01 ' lower bound is 1% lower than actual rate

 Do
 decMonthlyRate = decNewRate / 12 'monthly rate
 decPMent = MonthlyPayment(decPrincipal, decMonthlyRate, intNumMons)
 strPayment = FormatCurrency(decPMent)
 rtbDisplay.Text &= vbTab & vbTab & FormatPercent(decNewRate, 3) & vbTab & strPayment & vbCrLf
 decNewRate = decNewRate + 0.00125
 Loop Until decNewRate > decYearlyRate + 0.01 ' upper bound is 1% higher than actual rate

 End Sub

 Private Sub ShowAmortSched(decPrincipal As Decimal, decYearlyRate As Decimal, intNumMons As Integer)
 Dim strMsg As String, intStartMonth As Integer, decMonthlyRate As Decimal
 Dim decMonPayment As Decimal, decTotalInterest As Decimal
 Dim decYearInterest As Decimal, decOldBalance As Decimal
 Dim intMonthNum As Integer, decNewBalance As Decimal
 Dim decPrincipalPaid As Decimal, decInterestPaid As Decimal
 Dim decReductPrin As Decimal, intLoanYears As Integer

 'Display Amortization Schedule
 strMsg = "Please enter year (1-" & CStr(intNumMons / 12)
 strMsg = strMsg & ") for which amortization is to be shown:"
 intStartMonth = 12 * Val(InputBox(strMsg)) - 11
 rtbDisplay.Text = "" 'clear RichTextbox of any previous output

 'change the attributes of the text that will be appended to the control with the next call to the AppendText method.
 'use the AppendText method if you want to change color of headers. See Page 320 on RichTextBox
 rtbDisplay.SelectionColor = Color.Blue
 rtbDisplay.AppendText(vbTab & vbTab & "Amount Paid " & vbTab & "Amount Paid " & vbTab & "Balance at" & vbCrLf)
 rtbDisplay.SelectionColor = Color.Blue
 rtbDisplay.AppendText(vbTab & "Month" & vbTab & "for Principal" & vbTab & "for Interest" & vbTab & "End of Month" & vbCrLf)

 decMonthlyRate = decYearlyRate / 12 'monthly interest rate
 decMonPayment = MonthlyPayment(decPrincipal, decMonthlyRate, intNumMons)
 decTotalInterest = 0
 decYearInterest = 0
 decOldBalance = decPrincipal

 For intMonthNum = 1 To intNumMons 'calculations done for all months here e.g. if 30 yr loan then intNumMons=360
 decNewBalance = Balance(decMonPayment, decOldBalance, decMonthlyRate)
 decPrincipalPaid = decOldBalance - decNewBalance
 decInterestPaid = decMonPayment - decPrincipalPaid 'rem: monthlyPayment = principal + interest
 decTotalInterest = decTotalInterest + decInterestPaid

 'if block will filter/show only those months for the year specified in the inputbox
 If (intMonthNum >= intStartMonth) And (intMonthNum <= intStartMonth + 11) Then
 rtbDisplay.AppendText(vbTab & FormatNumber(intMonthNum, 0)) ' Month number
 rtbDisplay.AppendText(vbTab & FormatCurrency(decPrincipalPaid)) ' amount paid for principal
 rtbDisplay.AppendText(vbTab & FormatCurrency(decInterestPaid)) ' amount paid for interest
 rtbDisplay.AppendText(vbTab & FormatCurrency(decNewBalance) & vbCrLf)' balance at end of month
 decYearInterest = decYearInterest + decInterestPaid
 End If

 decOldBalance = decNewBalance
 Next intMonthNum
 'rem: monthlyPayment = principal + interest
 decReductPrin = 12 * decMonPayment - decYearInterest
 intLoanYears = intNumMons / 12

 rtbDisplay.AppendText(vbCrLf) 'skip a line
 rtbDisplay.AppendText(vbTab & "Reduction in Principal:") 'i.e. for year specified in inputbox
 rtbDisplay.AppendText(vbTab & vbTab & vbTab & FormatCurrency(decReductPrin) & vbCrLf)

 rtbDisplay.AppendText(vbTab & "Interest Paid:") 'i.e. for year specified in inputbox
 rtbDisplay.AppendText(vbTab & vbTab & vbTab & FormatCurrency(decYearInterest) & vbCrLf)

 rtbDisplay.AppendText(vbTab & "Total Interest Over " & intLoanYears & " Years:")
 'this sentence length crosses a number of tab positions
 rtbDisplay.AppendText(vbTab & vbTab & FormatCurrency(decTotalInterest))
 End Sub

 Private Function Balance(decMonPayment As Decimal, decPrincipal As Decimal,
 decMonthlyRate As Decimal) As Decimal
 Dim decNewBal As Decimal 'Compute balance remaining to be paid at the end of the month

 decNewBal = (1 + decMonthlyRate) * decPrincipal

 If decNewBal <= decMonPayment Then 'e.g. the final monthly instalment to be paid
 decMonPayment = decNewBal
 Balance = 0
 Else
 Balance = decNewBal - decMonPayment
 End If
 End Function

checks if the outstanding balance of the
loan (including interest due) is less than

the regular monthly payment. e.g. since
the monthly payment calculation is

rounded up to the nearest cent, it is

highly likely that the payment needed in
the final month to pay off the loan will be

less than the normal monthly payment.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156

mailto:jerome.casey@dit.ie

	VB.NET Functions and Subs: Worked Analysis for a Mortgage Loan App.
	Recommended Citation

	tmp.1446546365.pdf.sAQvS

