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Pathological Speech Classification
Using a Convolutional Neural Network

Nam H. Trinh, Darragh O’Brien

ADAPT Centre, School of Computing, Dublin City University, Ireland

Abstract

Convolutional Neural Networks (CNNs) have enabled significant improvements across a number of
applications in computer vision such as object detection, face recognition and image classification. An audio
signal can be visually represented as a spectrogram that captures the time-varying frequency content of the
signal. This paper describes how a CNN can be applied to the spectrogram of an audio signal to distinguish
pathological from healthy speech. We propose a CNN structure and implement it using Keras to test the
approach. A classification accuracy of over 95% is obtained in experiments on two public pathological
speech datasets.

Keywords: Pathological Speech, Audio Classification, Spectrogram, Convolutional Neural Network.

1 Introduction

Raw Speech Signal Feature Extraction

Deep Learning ModelPathological or healthy

Figure 1: PSC Model

In recent years, deep learning applications in health-
care have attracted considerable research attention.
Such applications enable early clinical diagnoses
from X-ray images or patients’ speech data. One ap-
plication is the use of deep neural networks to classify
speech data as pathological or healthy. Such patholo-
gies include neurological diseases such as Parkin-
son’s or Alzheimer’s disease. Several methods have
been proposed to distinguish between Parkinsonian
and healthy speech. CNNs have achieved considerable success in the field of computer vision and a CNN
approach to pathological speech detection has recently been proposed by [Alhussein and Muhammad, 2018].

In addition to reviewing relevant work in the area, this paper further explores the recently proposed CNN-
based method for classifying pathological speech by, firstly, testing an alternative CNN structure to that of
[Alhussein and Muhammad, 2018] and, secondly, by validating the CNN approach against two independent
speech datasets. The paper is organised as follows. In Section 2 an overview of related work in the area of
pathological speech classification is presented that includes a description of associated features, methods and
datasets. Section 3 describes our methodology and our proposed CNN model. Results are presented in Section
4 and Section 5 concludes.

2 Related Work

Selected related work is summarised as below. A typical Pathological Speech Classification (PSC) model
includes two main components: a feature extractor for speech signal processing that computes salient features
and a classifier (illustrated in Figure 1). Some early work used a Support Vector Machine (SVM) as a classifier



with Mel-Frequency Cepstral Coefficients (MFCCs) as input features. [Poorjam et al., 2018] proposed this
approach and achieved an accuracy of 88%.

With the emergence of deep learning algorithms, PSC models based on neural networks have also been
proposed. [Moon and Kim, 2018], [Smitha et al., 2018], [Fang et al., 2018] and [Shia and Jayasree, 2017] used
a Multilayer Perceptron (MLP) in their work. In their work, MFCCs served as input vectors to the MLP. MLP
drawbacks however, include overfitting and a long training time due to the large number of model parameters.
To address MLP issues, CNN-based models were proposed. Using a CNN-based approach [Alhussein and
Muhammad, 2018] achieved a state-of-the-art result (97.5% accuracy).

3 Methodology

Given in Figure 2 are example spectrograms extracted from pathological and healthy speech samples. Distortion
across the pathological speech sample is observed. By contrast, the frequency content of spectrograms from
healthy speech samples is more stable. The goal is to use a CNN to detect the distortions and instabilities in the
spectrogram indicative of pathological speech.

Figure 2: Spectrograms of a pathological speech sample (left) and
of a healthy speech sample (right)

In our work, spectrograms are ex-
tracted using Librosa [McFee et al., 2015].
The speech signals are first windowed
(with a window length of 25ms) and the
Short-time Fourier Transform (STFT) is
subsequently applied to extract the fre-
quency components of the audio signal.
The resulting image is fed to a CNN for
classification.

The architecture of the CNN model
used in this work is summarised in Fig-
ure 3. The input layer has shape 28x28x3.
The model contains three convolutional
layers, one max-pooling layer, two fully-connected layers and one output layer. The first convolutional layer
has 16 filters of size 3x3, with a same padding and a stride of one followed by a batch normalization layer
[Ioffe and Szegedy, 2015]. The second convolutional layer has 32 filters of size 3x3, with a same padding and
a stride of one followed by a batch normalization layer. The third convolutional layer has 64 filters of size 3x3,
with a same padding and a stride of one followed by a batch normalization layer. A max-pooling layer with a
size of two and a stride of two follows the convolutional layers and shrinks the size of the data by a factor of
two. This layer’s output is flattened and fed into two fully-connected layers with 128 and 64 neurons. The final
output layer is a single neuron for binary classification with a sigmoid activation function. The total number of
parameters is 1,638,113. We use Keras on top of Tensorflow to build the model.

4 Experiments and Results

The proposed CNN was tested against two datasets, namely, the Saarbrucken Voice Database [Barry and Pützer,
2007] and the Spanish Parkinson’s disease dataset [Orozco-Arroyave et al., 2014]. Below we describe both the
datasets and the results.

4.1 Datasets

The Saarbrucken Voice Database (SVD): SVD is a collection of speech samples from more than 2000 people.
There are three types of recording in the dataset: recordings of sustained vowel sounds (/a/,/u/ and /i/) at normal,
high and low pitch, recordings of sustained vowel sounds (/a/, /u/ and /i/) at rising-falling pitch, and recordings



Figure 3: CNN architecture

of a conversational sentence in German. In our work, we use a subset of SVD composed of 50 pathological
speech samples and 53 healthy speech samples of the sustained /a/ vowel. Multiple samples are extracted from
each file.

The Spanish Parkinson’s Disease Dataset (SPDD): SPDD includes speech samples from 50 Parkinson’s
disease patients and 50 healthy controls. Several types of speech are included: recordings of sustained vowels
in Spanish, recordings of some specific words and phonemes, recordings of three sets of different words, and
recordings of conversational speech. As with SVD, we use the sustained vowel /a/ recordings to test our model
and to compare its performance across two independent datasets.

4.2 Results

The CNN was trained using the Adam Optimizer [Kingma and Ba, 2014], the minibatch size was 32, the
number of epochs was 30. The CNN was trained on 80% of each dataset and tested against the remaining 20%
of that dataset.

The performance of the model on these datasets is summarised in Table 1. Results show that the model
achieves 99% test accuracy on SVD, which is competitive with that reported by [Alhussein and Muhammad,
2018] (in which reported accuracy is 97.5%). With SPDD, we achieve a 98.84% training accuracy and 96.70%
test accuracy. The gap between training accuracy and test accuracy indicates some overfitting when training
the model with this dataset.

Table 1: Achieved results with different datasets
Dataset Training Accuracy Test accuracy
SVD 99.81% 99.00%

SPDD 98.84% 96.70%

5 Conclusion

This paper describes our further study of the recently proposed CNN-based approach to pathological speech
classification in which spectrograms extracted from raw audio signals are fed into a CNN as input images.
The CNN model was built with three convolutional layers, one max-pooling layer and two fully-connected
layers using Keras on top of Tensorflow. The classification accuracy on the SVD was 99% which is comparable
with other state-of-the-art results in pathological speech classification using the same dataset. The model was
further validated against another, independent dataset, SPDD, where a test accuracy of 96.70% was achieved.
Our results confirm that the image-based approach using spectrograms as CNN inputs can be used to classify
speech signals with high accuracy.
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