The Role of Computer Simulation in the Context of Zero-emission Power Plants

Jim McGovern
Technological University Dublin, jim.mcgovern@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engschmecoth

Part of the Energy Systems Commons

Recommended Citation
McGovern, Jim : The Role of Computer Simulation in the Context of Zero-emission Power Plants. workshop on Zero-emission Power Cycles on 24th January, 1997, at University of Liège, Department of Nuclear Engineering and Power Plants, rue E. Solvay 21/C3, B-4000 Liège, Belgium. The workshop was organised by Ph. Mathieu and E. Iantovski

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
The Role of Computer Simulation in the Context of Zero-emission Power Plants

J. McGOVERN
University of Dublin, Ireland

Jan. 24th, 1997

WORKSHOP:
ZERO-EMISSION POWER CYCLES

Organized by
Ph. MATHIEU and E. IANTOVSKI

University of Liège
Department of Nuclear Engineering and Power Plants
rue E. Solvay 21/C3 - B-4000 Liège - BELGIUM
The role of computer simulation in the context of zero-emission power plants

J. McGovern
University of Dublin
Trinity College
Simulation

- Computer simulation is an ideal methodology for the development of potential zero-emission power plants.
- There has been a dramatic reduction in the cost of producing highly accurate power plant simulators.
- There is good experience with the validation of power plant simulators.
Goal and Strategy

- The goal is to make available a range of technically, economically and environmentally viable zero-emission power plants.
- This goal must be achieved at minimum risk and cost and in a way that will attract investment from funding bodies and industry.
Obstacles to realization

- Power plant technical uncertainties relating to the cycle, components and operating procedures
- Uncertainties relating to CO₂ disposal where carbon-containing fuels are oxidized

Simulation has a role in overcoming both obstacles
Today's Situation

- Quite a few potential zero-emission power plants have already been proposed. Many other schemes and variants are possible.
- The power industry is very conservative.
- Design improvements tend to be incremental.
- Radical departures from existing practice are prohibitively expensive.
How Did We Get Here?

- The transition from steam-only power plants to high efficiency combined cycle plants has been a slow and progressive one.
- This evolution might have been even slower if it had not been for the availability of highly developed aero gas turbine engines.
- Future developments need to be on more radical lines and should not be over-constrained by present technology.
Two Available Options

- Commit vast resources to designing and constructing a small number of prototype zero-emission power plants and evaluate these.
- Commit significant resources, but far less than for the first option, to computer simulation. Simulate many plants in outline. Select a small number and simulate these in great detail.
Recommendation

- Highly accurate computer simulation models are proposed for the development of zero-emission power plants.
- These plant simulators should be independently tested and evaluated.
- By building and fully testing virtual zero-emission plants first, the cost of implementing the real plants can be kept to a minimum.
Possible Plant Simulation Model

- Real time dynamic simulation of all plant components, validated by specialists in each technological area
- Component models and overall solution algorithm in FORTRAN 90
- Front end programmed in Visual Basic or C++
- Model can run on networked Pentium PCs running under Windows NT or Windows '95
CO₂ Disposal Options

- Appropriate simulation models for the long term storage of CO₂ can be developed.
- Here too, it is suggested, development costs can be minimised by placing considerable reliance on highly detailed simulation models.
- Models to be validated by a range of specialists.
Summary

- There is a need for a strong consortium of research groups and industrial companies to work together to simulate zero-emission power plants in the fine detail.
- This should give rise to a range of viable zero-emission power plant designs.
ATERG

The Applied Thermodynamics and Energy Research Group (ATERG) was founded in 1989 and is directed by Dr. Jim McGovern.
Also

It is proposed to establish a new campus company in 1997 to provide computer based technical simulation of energy transforming plants ...