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2
3 Pseudomonas aeruginosa and Its
4 Arsenal of Proteases: Weapons
5 to Battle the Host

6 Anna Clara M. Galdino, Marta H. Branquinha, André L.S. Santos
7 and Lívia Viganor

9 Abstract10

11 Pseudomonas aeruginosa is a ubiquitous and opportunistic human pathogen that
12 represents a critical problem to the clinician due to the increased number of
13 resistant strains isolated from hospital settings. In addition, there is a great
14 variety of pathologies associated with this versatile Gram-negative bacterium.
15 P. aeruginosa cells are able to produce an incredible arsenal of virulence factors,
16 especially secreted molecules that act singly or together to ensure the
17 establishment, maintenance, and persistence of a successful infection in
18 susceptible hosts. In this context, pseudomonal proteases roles are highlighted
19 due to their ability to cleave key host proteinaceous substrates as well as to
20 modulate several biological processes, for example, escaping and modulating the
21 host immune responses in the bacterial own favor. Proteases secreted by
22 P. aeruginosa include elastase A (LasA), elastase B (LasB), alkaline protease
23 (AP), protease IV (PIV), Pseudomonas small protease (PASP), large protease A
24 (LepA), MucD, and P. aeruginosa aminopeptidase (PAAP). In the present
25 review, we discuss the role of each of these relevant proteases produced by
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26 P. aeruginosa taking into consideration their main biological functions in the
27 bacterium–host interaction that favors the establishment of the infectious
28 process.

30 Keywords31

32 Pseudomonas aeruginosa � Proteases � Virulence factors

33
34 1 Introduction

35 Pseudomonads are bacteria well known for their metabolic versatility and wide-
36 spread spatiotemporal distribution [1]. One of the most important species of
37 pseudomonads is, with no doubt, Pseudomonas aeruginosa, which is a fascinating
38 ubiquitous Gram-negative bacterium with rod shape measuring 0.5–0.8 µm � 1.5–
39 3.0 µm (Fig. 1a) [1, 2]. P. aeruginosa presents the following metabolic features:
40 non-fermentative, catalase positive, oxidase positive, ammonia producer, and
41 usually aerobic, but it also can grow in an anaerobic environment if nitrate, citrate,
42 and arginine are available [3]. The production of 2-aminoacetophenone by the
43 bacterial cells generates the fruity grape-like odor that is characteristic of this
44 pseudomonad species. On blood agar plates, colonies of P. aeruginosa often dis-
45 play beta-hemolysis and a greenish metallic sheen due to the production of pig-
46 ments [2]. The characteristic that most distinguishes P. aeruginosa from the other
47 pseudomonads, and from the other species of Gram-negative non-fermenting bac-
48 teria, is its ability to produce pyocyanin, a blue-green phenazine pigment that gives
49 the green color to the bacterial colony (Fig. 1b) and also to the pus. This pigment
50 and several others, such as pyochelin (purple-cyan), pyoverdin (yellow, green and

Fig. 1 Scanning electron microscopy (a), showing the characteristic bacterial rod shape, and
colony morphology (b), evidencing the pyocyanin pigment, of Pseudomonas aeruginosa
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51 fluorescent), pyomelanin (light-brown), and pyorubin (red-brown), are secondary
52 metabolites of P. aeruginosa, which play an important role in bacterial nutrition,
53 such as iron acquisition and pathogenesis [2, 3]. Almost all P. aeruginosa strains
54 are motile due to the presence of a single polar flagellum that facilitates the loco-
55 motion and colonization of a wide range of environmental niches [2]. This
56 microorganism can grow within the temperature range from 4 to 42 °C in terrestrial
57 (soil) and aquatic habitats (polluted, salt, and freshwater) as well as on the surface
58 of animate hosts (insects, plants, animals, and humans) and inanimate surroundings,
59 mainly in the hospital environment (distilled water, disinfectants, sinks, medical
60 devices, and equipment), being an important causative agent of nosocomial
61 infections, particularly in intensive care units (ICUs) [1–4]. One of the interesting
62 characteristics of P. aeruginosa is its pan-genome, which presents a larger genetic
63 repertoire than the human genome. This intriguing feature explains the broad
64 metabolic capabilities of P. aeruginosa and its distribution and adaptability in
65 diverse environments [5].
66 P. aeruginosa is one of the most important bacterial species for public health
67 considerations due to its high resistance to different classes of antibiotics and its
68 capability to cause serious health care-associated as well as nosocomial infections
69 [6, 7]. Results reported from an International Nosocomial Infection Control Con-
70 sortium (INICC) surveillance study, performed between 2007 and 2012, in Latin
71 America, Asia, Africa, and Europe, in which prospective data were collected from
72 605,310 patients hospitalized in 503 ICUs, displayed frequencies of 42.8% of
73 Pseudomonas isolates resistant to amikacin and 42.4% to imipenem [8]. In the
74 USA, an estimated 51,000 health care-associated P. aeruginosa infections occur
75 each year, in which more than 6,000 (13%) of these are multidrug-resistant and 400
76 deaths per year are attributed to these infections [9]. The analyses based on data
77 extracted from the Public Health England (PHE) voluntary surveillance database in
78 the period 2008–2012 showed that 92% of Pseudomonas spp. isolates identified
79 from bacteremia in 3,457 reports were P. aeruginosa [10]. In Brazil, the National
80 Health Surveillance Agency (ANVISA), through the National Monitoring Micro-
81 bial Resistance Network Health Services (RM Network), published a report that
82 shows the main etiologic agents and the resistance phenotypes responsible for
83 causing primary bloodstream infections associated with the use of central venous
84 catheter in adult patients interned at ICUs from Brazilian hospitals between January
85 and December 2013. According to that study, 18,233 notifications were reported, of
86 which 1,850 (10.1%) were caused by P. aeruginosa, being the fifth pathogen most
87 often reported as the etiologic agent. The resistance rate to the carbapenems reached
88 37.4% (692 P. aeruginosa isolates) [11]. Additionally, the Infectious Diseases
89 Society of America has highlighted P. aeruginosa as part of a faction of
90 antibiotic-resistant bacteria, called ‘the ESKAPE pathogens’—Enterococcus fae-
91 cium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
92 Pseudomonas aeruginosa, and Enterobacter spp., capable of ‘escaping’ the bac-
93 tericidal action of antibiotics and mutually representing new paradigms in patho-
94 genesis, transmission, and resistance [12].

Pseudomonas aeruginosa and Its Arsenal of Proteases … 3
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95 P. aeruginosa is extensively resistant to multiple drugs and is increasingly
96 resistant to most available antibiotics, being a great emergency problem in the
97 hospital settings worldwide [13]. Interestingly, P. aeruginosa has evolved over time
98 in its ability to find new ways to be resistant to different classes of chemical
99 compounds as well as to build strategies to exchange genetic materials, allowing

100 that other bacteria also become drug-resistant [5]. Generally, resistance usually
101 occurs due to a combination of factors acting synergistically: (i) P. aeruginosa is
102 intrinsically resistant to antimicrobial agents due to its outer membrane/cell
103 envelope composition that reduces the permeability of several drugs; and
104 (ii) P. aeruginosa expresses a powerful repertoire of resistance mechanisms that can
105 be developed through mutations in the genomic content that regulates resistance
106 genes, and also acquired from other organisms via plasmids, transposons, or bac-
107 teriophages [14].
108 As a major opportunistic pathogen for humans, P. aeruginosa causes a plenty
109 variety of acute and chronic infections and presents significant levels of morbidity
110 and mortality [15, 16]. P. aeruginosa typically infects through airways, wounds,
111 urinary tract, ear canal, via ocular and implanted medical devices (e.g., catheters or
112 ventilators). Thereby, it is the main cause of eschars, conjunctivitis, keratitis, corneal
113 ulcer, osteomyelitis, otitis, urinary infections, surgical site infections, bloodstream
114 infections in ICUs and hospital-acquired pneumonia in immunocompromised indi-
115 viduals, mainly in patients with severe burn wounds, AIDS, lung cancer, chronic
116 obstructive pulmonary disease, bronchiectasis, and cystic fibrosis [16–18].
117 It is known that Gram-negative bacteria are common causes of a huge diversity
118 of infections including, intra-abdominal infections (IAIs), urinary tract infections
119 (UTIs), ventilator-associated pneumonia (VAP), and bacteremia [19]. In particular,
120 P. aeruginosa is one of the most important pathogens in the hospital setting, being
121 responsible for 27% of all pathogens and 70% of all Gram-negative bacteria
122 causing health care-associated infections in the USA, and it is the most common
123 Gram-negative organism causing VAP and the second most common organism
124 causing catheter-associated UTIs [7, 19]. The Centers for Disease Control and
125 Prevention found that P. aeruginosa totalized 7.1% of health care-associated
126 infection in the USA in 2011, being the second most common cause of pneumonia
127 in hospital settings and the third most common Gram-negative bacterium to cause
128 bloodstream infections [20]. P. aeruginosa is also a major cause of concern in the
129 cystic fibrosis setting, being the most common pathogen isolated from cystic
130 fibrosis sputum, and approximately 70% of adult cystic fibrosis patients are
131 chronically colonized by this microorganism [21, 22].
132 The pathogenic potential of P. aeruginosa is not only due to its metabolic/genetic
133 versatility and both intrinsic and acquired antibiotic resistance. Its ability to form
134 biofilm and to produce an arsenal of virulence attributes, including cell-associated
135 determinants (e.g., lipopolysaccharide, pili, and flagellum) and soluble secreted
136 factors (e.g., extracellular polysaccharides, exotoxins, pigments, and proteases), is
137 very important for the survival and adaptation of this pathogen in distinct envi-
138 ronments [17, 22, 23].
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139 2 Pseudomonas aeruginosa: Establishing and Maintaining
140 an Infection

141 In order to establish an infection, P. aeruginosa count on a suite of virulence factors
142 (Fig. 2) [17, 24]. These factors act together not only causing injuries on the host
143 epithelial cell lining but also induce dysfunctions in bacterial physiology, such as
144 cell shape, membrane permeability, and protein synthesis, as well as manipulate/
145 overcome host defenses, down-modulating the immune responses and preventing
146 P. aeruginosa endocytosis and obstructing clearance mechanisms, thereby allowing
147 this microbe to persist in cells/tissues and to establish an infection in the host
148 [25, 26]. The virulence of P. aeruginosa is mediated by multiple mechanisms, but
149 the major contributor is the production of extracellular proteases. In general, these
150 enzymes regulate multiple cellular and physiological processes and are essential to

external membranelipid A

O polysaccharide

LPS

polar flagellum

pilus

DNA

plasmid

ribosome

extracellular molecules

•
••

• •

•••
•• •

•• •• ••• •

proteases
exotoxin A

exoenzymes (S, U)
phospholipase C

pigments (pyocyanin, pyoverdine)
rhamnolipids

soluble lectins
alginate

secretion systems

Fig. 2 Virulence factors expressed/produced by P. aeruginosa cells: (i) lipopolysaccharide
(LPS) that induces cytokine production, (ii) pili that help bacterial adherence to the respiratory
epithelial cells, (iii) flagellum that participates in mobility, adherence, and internalization events,
(iv) extracellularly released molecules like proteases (responsible for the cleavage of key host
proteins), exotoxin A (inhibition of host protein synthesis), exoenzyme S (induces cytotoxic
effect), exoenzyme U (antiphagocytic effect), phospholipase C (cleavage of membrane phospho-
lipids), pigments (many biological effects, like pyocyanin that induces free radicals in host cells),
rhamnolipids (detergent action), soluble lectins (inhibition of beating of lung cells), and alginate
(phagocytosis inhibition, antifungal action, and host immune responses)
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151 the success of the infection. They degrade a wide array of host proteins, impairing
152 host defenses and destroying physical barriers that normally prevent attachment and
153 penetration of the bacteria [26–28].

154
155 3 Proteolytic Enzymes Produced by Pseudomonas
156 aeruginosa

157 P. aeruginosa is able to extracellularly release different kinds of proteases (Fig. 3),
158 which together are responsible for invasion and destruction of host tissues. Because
159 of the relevant roles played by proteases on the physiopathology of P. aeruginosa,
160 it has been shown that the majority of environmental and clinical strains of
161 P. aeruginosa exhibited proteolytic activity, particularly elastase activity [29–31].
162 According to Stover and co-workers [32], approximately 3% of the whole
163 P. aeruginosa genome is composed by open reading frames that encode proteases
164 [32]. Thus, the high genomic variability allows the bacterium to adapt its virulence
165 arsenal machinery to support the variations of environment conditions, and for that,
166 protease production in P. aeruginosa can vary greatly (Fig. 4) [32].
167 The expression of extracellular proteolytic enzymes in P. aeruginosa is directly
168 influenced by environmental factors and changes in the physicochemical properties
169 of culture medium (e.g., nutrients, temperature, pH, and aeration), which signifi-
170 cantly modulate the production of these crucial virulence factors [26, 33]. In
171 addition, the amount of protease produced depends on the cell cycle moment (e.g.,
172 lag, exponential, or stationary growth phase) and on the growing lifestyle (e.g.,
173 planktonic or biofilm). For instance, the total protease production (Fig. 5a) as well
174 as the specific elastase secretion increases along the first 48 h of in vitro cultivation

Elastase A (LasA)

Elastase B (LasB)

Alkaline protease (AP)

Protease IV (PIV)

Pseudomonas small protease (PASP)

Large exoprotease A (LepA)

MucD

P. aeruginosa aminopeptidase (PAAP)

Pseudomonas aeruginosa – PROTEASES
Fig. 3 Proteases secreted by
P. aeruginosa cells
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175 of P. aeruginosa planktonic cells (Fig. 5b). Further, according to Hastie and
176 co-workers [34], after 85 h of bacterial growth, the elastase production dropped off.

177 3.1 Elastase B

178 One of the best proteases characterized in Pseudomonas is elastase B (LasB), also
179 known as pseudolysin. This 33-kDa enzyme belongs to the M4 thermolysin-like
180 family of neutral, Zn-dependent metallo-endopeptidases (Fig. 6). This enzyme is
181 encoded by lasB gene as a pre-pro-protein, containing at the N-terminal region a
182 signal peptide of 23 amino acids that transport the enzyme through the inner
183 membrane to periplasmic place by bacterial secretory system [35].
184 The first and the most studied substrate of elastase B is bovine and human elastin
185 [36–38]. Some reports correlate the elastinolytic activity of elastase B to Pseu-
186 domonas infections in cystic fibrosis patients [39–43]. Histological studies have
187 detected altered elastin fibers in lung alveoli of cystic fibrosis patients on autopsy,
188 indicating a probable elastase activity on cystic fibrosis lung [39]. In addition, the
189 elastase activity is associated with vascular inflammation during P. aeruginosa
190 infection, since the disorganization of elastin fiber in vascular tissue caused by
191 protease degradation was observed [44]. Previously, our group analyzed the pro-
192 duction of virulence attributes in 96 clinical strains of P. aeruginosa recovered from
193 patients attended at hospitals located in three states of Brazil (Espírito Santo, Minas
194 Gerais, and Rio de Janeiro), and it was shown that all bacterial strains exhibited a

I II III IV V VI VII VIII

118 kDa

90 kDa

80 kDa

50 kDa

36 kDa

Fig. 4 Production of extracellular proteases in clinical isolates of P. aeruginosa recovered from
different anatomical sites. The proteolytic profiles were characterized by sodium dodecyl
sulfate-containing polyacrylamide gel electrophoresis (SDS-PAGE) containing 0.1% gelatin as the
protein substrate. Profile I—118 + 50 kDa; Profile II—118 + 90 + 50 kDa; Profile III—
90 + 50 kDa; Profile IV—118 + 80 + 50 kDa; Profile V—90 + 80 kDa; Profile VI—118 kDa;
Profile VII—90 kDa, and Profile VIII—36 kDa
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(a)

(b)

Fig. 5 Protease detection in P. aeruginosa. a Total extracellular protease production was analyzed
by the degradation of casein (1%) incorporated into Luria Bertani agar medium up to 48 h at 37 °C.
b The elastase activity was measured in the cell-free culture supernatant obtained from
P. aeruginosa cells grown in tryptic soy broth up to 48 h at 37 °C, using the fluorogenic peptide
substrate Abz-Ala-Gly-Leu-Ala-p-Nitro-Benzyl-Amide. Results were expressed as fluorescence
arbitrary units (FAU). In parallel, the number of bacterial cells along each time point was evaluated
by plating cells onto agar medium and expressed as colony-forming units (CFU)

Fig. 6 Elastase of P. aeruginosa is a typical zinc-metalloprotease. The purified elastase B is able
to cleave the fluorogenic peptide substrate Abz-Ala-Gly-Leu-Ala-p-Nitro-Benzyl-Amide along the
time. Conversely, 1,10-phenanthroline (1,10-Phen), a metalloprotease inhibitor, at 10 lMwas able
to block the substrate cleavage. FAU, fluorescence arbitrary units

8 A.C.M. Galdino et al.
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195 homogeneous elastase activity, with an average of 1069.28 ± 213.95 fluorogenic
196 arbitrary units (FAU) with no correlation with the original anatomical site of iso-
197 lation [16]. On the other hand, P. aeruginosa strains recovered from trachea, uri-
198 nary tract, and wounds of patients attended at University Medical Center/Texas
199 Tech Health Sciences Center were able to produce different amounts of elastase
200 [45]. Woods and co-workers [46] showed that Canadian P. aeruginosa strains
201 isolated from acute lung infections showed the highest production of elastase
202 (0.053 ± 0.021 mg/ml) compared with elastase activity of strains isolated from
203 burns, wounds, cystic fibrosis lung, and blood.
204 LasB is also able to cleave other host extracellular matrix proteins, such as
205 collagen type III and IV. Interestingly, after subcutaneous injection of purified
206 elastase B into mice, an intense degradation of basement membranes was observed,
207 and elastase B was responsible for severe hemorrhage and tissue damage [47].
208 Several studies have demonstrated that LasB-associated epithelial disruption is
209 mediated by the attack to intracellular tight junctions and cytoskeleton reorgani-
210 zation via inhibition of protein kinase C and activation of EGFR, ERK1/2 and
211 NFjB, urokinase, and protease-activated receptor 2 (PAR-2) [48–53]. Elastase B
212 can also interfere with the host bacterial clearance by degrading several components
213 of innate and adaptive immune defense, including tumor necrosis factor-a (TNF-a),
214 interferon-c (IFN-c) and interleukin-2 (IL-2), monocyte chemotactic protein-1
215 (MCP-1), and epithelial neutrophil activating protein-78 (ENA-78) [52–57]. In
216 addition, it was shown that elastase B was efficient in the inactivation of key
217 components of the complement system such as fluid-phase and cell-bound C1 and
218 C3 and fluid-phase C5, C8, and C9 [44]. This multifunctional enzyme is also able to
219 cleave surfactant protein A and D (SP-A and SP-D), also known as collectin. SP-A
220 and SP-D are synthesized by alveolar type II epithelial cells and are responsible for
221 the recognition and binding to oligosaccharides present on the cell surface of many
222 bacteria to be phagocytized by host macrophages [58]. Previously, Meyer and
223 co-workers [59] have reported that a decrease on the SP-A and SP-D levels in
224 bronchoalveolar lavage (BAL) was observed in the lung of cystic fibrosis indi-
225 viduals. Also, SP-D knockout mice were more sensible to P. aeruginosa corneal
226 infections when compared to wild-type animals, and only the wild-type mice
227 recovered completely of the infection [60]. Based on this, elastase B was suggested
228 to be responsible for the SP-D degradation in the eye [25, 26]. Furthermore,
229 pseudomonal elastase can interact with host adaptive immune system by degrading
230 immunoglobulins [61–63]. Bainbrigde and Flick [61] showed that elastase B was
231 able to cleave IgG molecules recovered from cystic fibrosis patients and the
232 degradation products bound to IgG-receptors of human neutrophils, thereby
233 inhibiting the opsonization of bacterial invaders. Lomholt and Kilian [63] reported
234 the IgA degradation in tears from patients infected with P. aeruginosa. They also
235 observed that isogenic mutants of P. aeruginosa knockout to either elastase or
236 alkaline protease were not able to completely inhibit the IgA degradation, indicating
237 that several proteases were working in concert to cleave IgA.
238 Furthermore, elastase B plays a key role in the differentiation of pseudomonal
239 biofilms. Tielen et al. [64] showed that strains that overexpress lasB gene were not

Pseudomonas aeruginosa and Its Arsenal of Proteases … 9
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240 able to form robust biofilms, and they observed the formation of few microcolonies
241 after 72 h of contact with glass surface. Those authors also assigned that lasb-
242 overexpressed strain shifted the composition of its extracellular polymeric sub-
243 stances, reducing the alginate content as well as enhancing the rhamnolipids con-
244 centration [64]. However, Yu et al. [65] demonstrated that elastase B is crucial for
245 biofilm formation. They observed that DlasB mutant decreased the biofilm for-
246 mation through down-regulation of rhamnolipids synthesis.

247 3.2 Elastase A

248 Another extracellular protease produced by P. aeruginosa is elastase A (LasA),
249 a metalloprotease that belongs to the subgroup A of M23 family of staphylolytic
250 or b-lytic zinc metallo-endopeptidases. LasA is codified as an elastase A
251 pre-pro-protein with molecular mass of 40 kDa [66, 67]. After its synthesis in
252 intracellular bacterial environment, LasA is secreted via type II secretion machinery
253 and when it is secreted to the extracellular space, LasA is immediately converted to
254 its mature and active form of 27 kDa due to the cleavage by other pseudomonal-
255 secreted endopeptidases, such as LasB, LysC, and protease IV [68, 69].
256 Elastase A is also called as staphylolysin, because it is able to cleave the pen-
257 taglycine bonds in the peptidoglycan of Staphylococcus aureus [70]. As well, LasA
258 degrades several glycine-rich synthetic peptides [71]. However, LasA exhibited a
259 limited elastinolytic activity [72]. Kessler and co-workers [71] showed that LasA
260 prefers cleaving Gly–Ala peptide bonds within the Gly-Gly-Ala sequences sur-
261 rounded by apolar sequences. Such sequences are uncommon in elastin, resulting in
262 low elastinolytic activity [26, 73]. Besides its own intrinsic elastinolytic activity,
263 LasA enhances significantly the elastinolytic activity of other proteases, including
264 LasB in P. aeruginosa, but also human leukocyte elastase and human neutrophil
265 elastase [74, 75]. Moreover, LasA is responsible for inducing shedding of the host
266 cell surface proteoglycan syndecan-1 (co-receptor proteins), which has been shown
267 to be important for P. aeruginosa survival [25, 26].

268 3.3 Alkaline Protease

269 Another pseudomonal protein shown to be important for phagocytic evasion is
270 alkaline protease (AprA), which is also known as aeruginolysin. Alkaline protease
271 is a 50-kDa zinc-metalloprotease, member of subfamily B of the M10 peptidase
272 family and metzincin superfamily. AprA, encoded by aprA gene, has a C-terminal
273 secretion signal located within the last 50 amino acids residues necessary to be
274 translocated and secreted by AprD, APrE, and AprF membrane proteins, which
275 form the bacterial type I secretory machinery [35].
276 It was reported that alkaline protease is able to degrade a large number of host
277 proteins, including fibronectin and laminin, important components of basal lamina
278 and endothelium. Therefore, alkaline protease develops an important function in

AQ4
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279 invasion and hemorrhagic tissue necrosis in infections caused by P. aeruginosa
280 [76]. Furthermore, this protease was found in many isolates of P. aeruginosa
281 recovered from different human anatomical sites with especial elevated expression
282 in clinical isolates from eyes, gastrointestinal tract, and mucoid wounds exacerbated
283 in cystic fibrosis patients [25, 61]. AprA is important to bacterial escape from the
284 host immunological defenses, degrading complement proteins (C1q, C2, and C3)
285 and cytokines (IFN-c, TNF-a and IL-6) [76]. Also, alkaline protease and elastase B
286 are able to inhibit chemotaxis of neutrophils and block efficiently the phagocytosis,
287 which gives the pathogen an advantage in escaping from phagocyte cells that are
288 one of the first lines of host defense mechanisms [25, 31, 77, 78]. Moreover,
289 alkaline protease is able to inhibit flagellin recognition by TLR5 due to the
290 degradation of free flagellin monomers, helping P. aeruginosa cells to avoid the
291 immune detection [79]. This enzyme has also been shown to aid P. aeruginosa
292 survival in iron limitations conditions during human infections by cleaving trans-
293 ferrin that increase the siderophore-mediated iron uptake [80]. Gupta and
294 co-workers [81] also reported that treatment of mouse corneal tissue with alkaline
295 protease (50 ng) increases the binding of P. aeruginosa to the epithelial surface.

296 3.4 Protease IV

297 P. aeruginosa secretes a serine-type protease designated as protease IV (PIV) or
298 lysyl endopeptidase (PrpL), a 26-kDa protease belonging to the chymotrypsin
299 family S1 that has been demonstrated to be an important virulence factor in the
300 rabbit cornea, but is found in clinical isolates recovered from all the anatomical sites
301 analyzed [35, 82]. Its catalytic domain is formed by the triad His72, Asp122, and
302 Ser198. Moreover, it was demonstrated that the residue Ser197 adjacent to Ser198 is
303 critical to the catalytic activity [83]. Protease IV is encoded by piv gene (PA4175),
304 with a full length of 48 kDa, which is initially expressed in the cytoplasm in a
305 pre-pro-enzyme form and then processed to the 26-kDa mature protease after its
306 secretion into the extracellular milieu [83].
307 PIV participates in the tissue invasion/damage processes and hemorrhagic events
308 due to the cleavage of fibrinogen. It is well known that fibrinogen is required after
309 vascular damage, but the degradation of fibrinogen by PIV leads to hemorrhage
310 during P. aeruginosa infection [84]. PIV is also important to evade host immune
311 defenses because it is able to degrade plasminogen, immunoglobulin, C1q and C3,
312 and host antimicrobial peptide LL-37 [25, 68]. Furthermore, Malloy and co-workers
313 [82] observed that PIV degrades the surfactant proteins, SP-A, SP-D, and SP-B, by
314 a time- and dose-depended way in cell-free bronchoalveolar lavage fluid. Those
315 authors reported that degradation of SPs by protease IV reduced the association
316 among bacteria and alveolar macrophage. Interestingly, the incubation of pul-
317 monary surfactant with pseudomonal protease IV reduced the ability of the sur-
318 factant to diminish the superficial tension within the lung [82]. Protease IV has been
319 shown to be an iron-regulated protein, suggesting that its expression is regulated
320 irrespective of quorum sensing system, which is distinct from other pseudomonal

Pseudomonas aeruginosa and Its Arsenal of Proteases … 11

Layout: T1 Grey Book ID: 416541_1_En Book ISBN: 978-981-10-6140-0

Chapter No.: 16 Date: 19-8-2017 Time: 11:46 am Page: 11/17

A
u

th
o

r 
P

ro
o

f

andre
Realce
it must be in italic form



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

321 proteases [69]. Protease IV has also been correlated to ring abscess lesions present
322 in pseudomonal keratitis [68]. Corroborating this finding, Engel et al. [85] showed
323 that protease IV-deficient mutants exhibited lower ocular virulence in rabbits when
324 intrastromally infected.

325 3.5 Pseudomonas Small Protease

326 P. aeruginosa small protease (PASP) is described as a 18.5-kDa secreted
327 zinc-dependent leucine aminopeptidase. PASP gene has been found in a large
328 number of P. aeruginosa clinical strains, but its higher expression is found during
329 the ocular infection [86]. Previous reports showed that PASP is found only in the
330 bacterial supernatant culture. According to Tang and co-workers [86], the sequence
331 of PASP gene appears to have a signal peptide consistent with that needed for type
332 II secretion system.
333 Direct inoculation of purified PASP into the rabbit cornea causes severe ocular
334 pathology, including epithelial erosion and ulcer in stroma, edema, and neutrophil
335 infiltration into the corneal stroma [87]. PASP has also been demonstrated to
336 cleavage host proteins required for maintaining structure of cornea, such as colla-
337 gens, fibrinogen (but not fibrin), complement C3, and antimicrobial peptide LL-37.
338 Studies of PASP, coupled with those of PIV, strongly support the hypothesis that
339 Pseudomonas proteases play a major role in keratitis [87].

340 3.6 Large Exoprotease A

341 Large exoprotease A (LepA) is an exoprotease with molecular mass of *100 kDa
342 produced by P. aeruginosa. LepA, as well as thrombin and trypsin, cleaves human
343 protease-activated receptors (PARs) 1, 2, and 4 in order to activate the critical
344 transcription factor NF-jB, which is associated with host inflammatory and
345 immune responses [49, 88].

346 3.7 MucD

347 MucD was reported to be a serine endoprotease that is localized within the
348 periplasmic space. Data suggest that MucD induced a significant reduction on the
349 levels of IL-1b, neutrophil-chemoattractant chemokines KC, and macrophage-
350 inflammatory protein-2 (MIP-2) in the early stages of bacterial infection as well as it
351 inhibited the recruitment of polymorphonuclear (PMN) cells into the cornea. Fur-
352 thermore, a decrease in PMN cells recruited to infection site favored the estab-
353 lishment of infection by P. aeruginosa. MucD may be secreted to the extracellular
354 space, interfering with the biological functions of cytokines and chemokines, but
355 further investigation is needed to understand the mechanisms underlying the role of
356 MucD in keratitis [89, 90].
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357 3.8 Aminopeptidase

358 The P. aeruginosa aminopeptidase (PAAP) or leucine aminopeptidase has been
359 speculated as complementary enzyme to the activity of other endopeptidases. PAAP
360 has an important function in bacterial physiology; it acts releasing free amino
361 acids/small peptides from protein fragments produced by the others P. aeruginosa
362 endopeptidases, thereby providing low molecular mass nutrients that can be taken up
363 by the bacterium, which in turn may promote bacterial growth and proliferation [26].

364
365 4 Conclusions

366 P. aeruginosa is a metabolically versatile bacterium that can cause a wide range of
367 severe opportunistic infections in hospitalized patients. To cause this huge variety
368 of infections, P. aeruginosa has an arsenal of proteases that are involved in critical
369 events of bacterial pathogenicity and virulence, which are important for survival in
370 the host, tissue invasion, and evasion of host immune defenses. Therefore, this
371 review has highlighted the importance of each pseudomonal protease in bacterial
372 physiology and/or in infectious events. In this context, inhibitors able to block the
373 proteases produced by P. aeruginosa cells would represent a new drug class quite
374 promising to combat this widespread bacterial pathogen.
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