
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference Papers School of Science and Computing (Former ITT)

2003

Managing Content-Initiated Application Delivery With a Client-Side Managing Content-Initiated Application Delivery With a Client-Side

Agent Agent

Niall Roche
Technological University Dublin, niall.roche@tudublin.ie

Gary Clynch
Technological University Dublin, gary.clynch@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/ittscicon

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Roche, N. and Clynch, G. Managing content-initiated application delivery with a client-side agent. 2nd
IASTED Conference on Communications, Internet & Information Technology, Scottsdale, Arizona, USA,
2003.

This Conference Paper is brought to you for free and open access by the School of Science and Computing (Former
ITT) at ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator
of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

Funder: Enterprise Ireland Innovation Partnership Programme

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/ittscicon
https://arrow.tudublin.ie/ittsci
https://arrow.tudublin.ie/ittscicon?utm_source=arrow.tudublin.ie%2Fittscicon%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fittscicon%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

MANAGING CONTENT-INITIATED APPLICATION DELIVERY WITH A

CLIENT-SIDE AGENT

Niall Roche

Department of Computing,

Institute of Technology Tallaght,

Dublin, IRELAND

Abstract

Mobile devices have evolved with improvements in

processing power and support for various application

environments such as MExE [1]. Currently a large

number of devices and platforms exist, each with various

attributes. Such diversity results in problems providing

appropriate applications to these devices. This paper

outlines need for an integrated approach to application

delivery for mobile devices. The solution allows suitable

applications to be delivered to devices. Application

management is removed from non-technical mobile

device users through the presence of a client-side agent to

manage the complexity of application provisioning,

device resource management and application

management.

Key Words

Software Agents, Application Provisioning, Application

Management, Mobile Devices, Resource Management

1. Introduction

Due to the rapid expansion in the use of mobile devices

and the demands of mobile users for increased

functionality, a new method of managing mobile

applications is needed to meet these growing

expectations. In addition, the large numbers of differing

mobile platforms and operating systems require

application developers and content providers to provide

specific content and application solutions to specific

devices. It is becoming increasingly evident that an

integrated approach to content generation and delivery is

necessary to manage these multiple device types.

Management of device specific issues such as differing

platforms, operating systems, application environments

and connectivity options should be left to mobile

middleware and not involve content authors or end users.

This paper describes a solution based on an intelligent

client-side agent interacting with a provisioning server to

provide deliver small applications and intelligent post-

delivery management of delivered applications.

Gary Clynch

Department of Computing

Institute of Technology Tallaght,

Dublin, IRELAND

Section 2 of this paper describes the general problem area.

The overall solution architecture is described in section 3

including a description of the client-side agent. Section 5

explains the current progress of the project with section 6

detailing the conclusions made in this paper.

2. Problem Area

At present most services available to mobile users are in

the form of browser-centric applications, the user must

request the service he/she requires from a remote server

that processes the request, producing an appropriate

response. In this approach, the majority of the service

logic resides on the server and, as a result, is only

available to the mobile user during connected periods.

Due to recent advances in mobile device technologies,

such as the support for application environments for

example Mobile Execution Environment (MExE) [1],

devices such as PDAs posses the power necessary to

process required services, or a part of the logic required

for such services, at the client side. The opportunities for

taking advantage of client side processing rather than

simple content rendering have only recently been

considered.

Current approaches based on MExE Class marks such as

the Java 2 Micro Edition (J2ME) [3] and other mobile

application environments such as Microsoft’s .NET

Compact [4] utilise client side application environments

to do processing either locally or in communication with a

remote server, moving some of the logic to the client and

thus permitting a degree of offline usage. These

application environments operate by the delivery of small

applications to the device on request from the user such as

that described by OTA (Over the Air) delivery

specification [5]. Delivery of these applications is a

specialised task requiring knowledge of various possible

requesting devices and their capabilities, standards and

limitations while taking into consideration the low

bandwidth plus limited and unreliable connectivity of

mobile devices, when compared to desktop devices.

To address the issue of providing an architecture that

effectively utilises client side processing and provides

offline usage, requires extensive knowledge of device

application and processing capabilities and is a complex

task when compared with traditional content development

techniques involving mark-up and server side scripting. A

way of specifying the behaviour required of the device,

rather than what specific application is for a specific

device class, using traditional content generation

techniques, could reduce complexity for content authors.

In addition to the issues associated with content

generation, end users have an increased responsibility to

be familiar with the processing capabilities of their device

and the tasks required to initiate delivery, installation

updating and removal of applications. This may be

familiar to users of desktop computer environment, but

may be difficult for users of mobile devices that are not

familiar with such concepts. A way of automating

negotiation of required applications and management of

delivered applications and components that does not

directly involve the user would be preferable. In addition

if users could interact with the logic supplied in delivered

applications via the use of a familiar browser-centric

environment, this would reduce the requirements of the

user to be familiar with the various device specific

application interfaces, everything being available from the

browser.

An example application could be a currency converter

that uses the latest rates from financial markets, that is

referenced in a content page to carry out conversion of

amounts of various currencies specified by the user,

calculating and outputting the results. The currency

converter component could be provisioned and stored in a

cache of components and could be used by several

different content pages e.g. banking, travel and stock

portfolio pages. The component could be implemented as

a client application or applet, depending on device type or

as a server side component where a device does not have

the necessary resources to support an agent.

Other examples could be a form validation application

that users validation components to ensure correct user

input and a generic calendar process that utilises built-in

calendar and appointment functionality present on many

devices. In general components are modular in nature, to

ensure maximum utility and reusability and where

possible can take advantage of native functionality of the

device.

Application could be designed in a modular fashion

requiring the collaboration of a number of reusable

components. Some of these components may already be

present on the device, while others may need to be

delivered to the client to execute the application. These

components may reside on the device and operate under

the management of software present on the device, as

described in section 3.1

The practice of developing applications for delivery from

content requires contributions from a number of sources.

Component developers are required to create the

components required to implement the application on a

particular platform and have knowledge of the strengths

and weaknesses of the target platform. Application

administrators are responsible for gathering all required

components and resources and packaging them for

delivery. Content authors create content and embed

generic references to applications in content (independent

of the actual application that will be delivered).

3. Architecture Overview

To deliver appropriate applications to requesting devices

a number of components, both client-side and server-side

are required. This section outlines how the various

components interact to achieve this task and proceeds to

describe the client-side agent managing application

delivery.

At the server-side, publishing components are required to

allow content providers to upload application variants and

their associated resources and components. Management

components are required to decide what application

variants are delivered to which device, and or, user. In

addition, content authors require access to a content

server on which to publish content with generic

application references embedded in the content. At the

client-side, an agent manages communication with the

server to achieve effective application delivery and post-

delivery execution and management.

In order to address the issues associated with provisioning

applications and components to devices that support them

and to provide an appropriate representation of the

application to devices that do not support execution of

applications, the adoption of standards was identified as a

key enabler to a successful solution. Existing and

emerging standards such as MExE [1], OMA Generic

Download [6], JSR 124 [2] (Client Provisioning

Framework) and UaProf [7] were considered to be of

most value.

MExE (Mobile Execution Environment): A set of

recognised class marks that define a set of recognised

functionality that is known to be present on the device.

This permits devices to be considered in terms of

available functionality when determining which potential

variants of an application could be supported by, and

delivered to, the device.

The Open Mobile Alliance (OMA) Generic Download

Architecture: an open standard identifying accepted

practices of how resources such as applications can be

delivered to a mobile device utilising existing standards

such as HTTP [9].

User Agent Profile: a standard defined by the OMA for

specifying device identification and device attributes such

as hardware specifications supported content types and

application environments present and is useful for

determining what application variants and representations

are supported.

The Client Provisioning Framework: an open API

based on how to deliver bundles that can contain and

applications to devices and currently being defined by the

Java Specification Request (JSR) number 124. JSR 124

also identifies a customisable Matcher API that is useful

for comparing available bundles with device attributes

(specified by UA-Prof) to compute the most appropriate

bundle to be delivered to a requesting device based on

device attributes and user preferences allowing for

graceful degradation of service.

Provisioning of applications components and resources to

the device can be achieved using the JSR 124 API as a

basis of communication between the agent and the

provisioning server. JSR 124 allows standardisation in

how developers specify what application variants and

resources/components are appropriate for which devices.

The approach is standards based and extensible to

incorporate new devices and application types.

The JSR 124 API defines the notion of a delivery adapter

that encapsulates the logic of how to deliver entities to a

particular device using a particular protocol. A simple

example is an adapter that implements the OTA standard

to deliver MIDP applications to J2ME devices.

This abstract delivery adapter approach has been adopted

for interaction with the client-side agent and a

Provisioning Server (as defined by JSR 124) through an

agent adapter, which encapsulates the logic of agent –

server component and resource negotiation and delivery.

The required resources and components are packaged in a

download bundle multipart mime format using

compression where possible.

The solution also requires a transformation server to

transform generic references to applications contained to

content capable of referring to applications or components

available on the requesting device. A content transformer

using information supplied by the agent, about the device

capabilities, manages this transformation process.

The various components of the architecture are illustrated

in figure 1.

Figure 1: Solution Architecture

Content pages with process references

User

Transformation

Server

 Content

Transformer

Mobile Device

Agent

Transformed Content

Download

Bundle

Provisioning Server

JSR124+Additions

Agent Adapter

Repository

Applications + Components

Content Server

Browser

Content Authors
Application/ Component

developers

3.1 Client-side Agent

The key component of this architecture is a client-side

agent that is required to automate the selecting, delivery,

post-delivery execution, management and eventual

removal of, applications, all in a manner transparent to the

device user. The agent is necessary as without it the

responsibility would be on the user to initiate application

delivery, installation, management and removal, requiring

knowledge of the device and the issues associated with

application management on the device.

Once content containing an application description is

returned to the mobile agent, the agent will determine if it

requires resources or components to be delivered or

updated. If items are needed then the agent will negotiate

delivery of these items with the Provisioning Server.

Once all application requirements are present on the

device, the agent responds to user requests via the

browser and manages the retrieval and updating of

components in response to user actions.

3.1.1 Agent Description

The agent functions primarily as a resource manager for

the host device, agents have advantages as a resource

manager as mentioned in Bradshaw [9], having

knowledge of the capabilities of the device and execution

environment. The agent acts on behalf of the user to

configure the device in order to use the application

required by the content requested. The agent

accomplishes this by managing device resources in

response to changes in the device environment, e.g.

changes in available memory.

A mobile agent can have advantages in the downloading

of software as described in [10][11] in particular the

automation of software deployment, installation and

maintenance. The agent removes the responsibility of

complex device configuration from a user by replacing it

with agent intelligence. The user does not need to be

concerned with what applications require what

components/plug-ins and be required to endure complex

installation and removal procedures. The agent will have

the intelligence to know what components are required,

how to get them and install and remove them.

The decision as to what components are to be stored and

removed are based on the agent examining application

usage patterns. The agent tracks component usage

recording what components are used by each application

and how often. When components need to be removed to

make room for newer ones, the agent will make a decision

based on a metric of how useful a component is. The

metric is based on size required by the new components,

the size of existing components and how often they are

used. The decision is based on the best compromise of

utility versus resource requirements and does not need

user involvement in the decision making process.

The agent operates in a semi-autonomous fashion

responding to user requests for content and content

references to applications and components. In addition, it

can act according to external events such as

component/content expiration upon which it can obtain

the latest version independent of user action. The agent

can also respond to other events such as messages

received from the provisioning server. The agent

functions in both connected and disconnected scenarios

fetching components and checking for updates when a

connection is available. In order to preserve device

resources, the agent may function continuously or may

suspend operations if not required for long periods with

operation resumed in response to events.

The interface between user and various types of agent has

been described in various research [12][13]. The design of

the agent as described in this solution makes use of the

browser present on the device to communicate with the

user. A user may not necessarily know that they are

communicating with an agent, as they get a similar,

though more powerful user experience similar to making

a request to a regular remote web server. This approach

removes the responsibility for interface and presentation

logic to be part of the agent instead moving it to a

medium more suitable and familiar for the user. An

important aspect of this approach is the reduction of the

impact of implementation specific user-interface features

facilitating a multi-platform and implementation language

neutral agent design.

3.1.2 Agent Functionality

Local server functionality: The Agent functions as a local

web server on the device, browser requests for content are

made to localhost and are converted to corresponding

remote requests, once the requested resource is obtained it

is returned to the browser. This approach allows a limited

degree of mobile browsing in an offline scenario.

Component Management: The Agent maintains a cache of

components that are available to a number of applications.

The cache is updated according to space available on the

device and in response to component usage patterns.

Application Management: The Agent is responsible for

determining what components/resources an application

needs to execute. The Agent will then compare cached

components/resources and will negotiate delivery of

resources/components from the provisioning server.

Version Management: If a component present on the

agent has expired, or the agent determines that a newer of

a component is available, it can obtain the latest version.

The agent resolves compatibility issues such as a

particular application requiring specific component

versions, ensuring backward compatibility.

4 Agent Interactions

The following diagram (figure 2) illustrates a sample

interaction between the user via a browser and an agent in

order to download content requiring components.

Figure 2, Agent Interaction

Components +

Resources

request

Content Response

Component +

Resource Response

Content page with reference

to components + resources

Browser Agent Content

Request
Internet

Transformation

Server

Agent

Provisioning

Server

Component Cache

Components

+ Resources Resource Storage

Browser Agent

Component +

Resource Requests

Browser Agent
Component Cache

Resource Storage

Step 1

Step 2

Step 4

Step 3

4.1 Agent Interaction

The interaction of the agent with the device browser and

remote servers to deliver applications is illustrated in

Figure 1 and can be outlined as follows:

Step 1: The device browser requests content from the

agent, if a connection is available, the agent requests the

latest version from the transformation server, which

obtains and suitably transforms the content based on the

capabilities of the requesting device, as identified by the

agent. The server returns the content to the agent. E.g. a

travel site requiring a currency converter component.

Step 2: Should all required resources and components not

be present in the cache, or be up to date, the agent

requests delivery from the provisioning server. The

provisioning server responds with the required resources,

components and, if required, updates. The new

components are stored in the cache then

installed/registered and made ready for use on the device.

E.g. agent downloads suitable currency converter

application from provisioning server.

Step 3: Once all application requirements are present and

up to date, the content is returned to the browser for

processing. E.g. content displayed with browser link to

launch installed currency converter application.

Step 4: The agent handles requests from the browser for

resources and components. Components either execute

within the browser or are activated through the browser

and execute externally. Finally, the agent will manage

updating and removal of applications and components as

required. E.g. agent checks for currency rate changes and

updates local rates.

5. Status of Research

At present, a number of prototypes are being developed

including agents for Windows notebook and Pocket

PC 2002 clients using the .NET1.1 and .NET

Compact Frameworks [4], with a Symbian OS 7

deployment using PersonalJava 1.2 [14] under

investigation. Sample applications include currency

conversion and instant messaging applications. A server

solution has been implemented in Java using Tomcat

4.1 with device identification and content mapping helped

through the Everix mobility platform from

MobileAware Ltd. (www.mobileaware.com).

6. Conclusion

In conclusion, to effectively address the issues associated

with different mobile devices and platforms, an integrated

approach to content and application management is

necessary. An integrated approach is required due to the

increasing responsibilities of content authors and

application developers to create suitable content and

applications for an expanding and increasingly diverse set

of devices.

The solution described in this paper defines an integrated

solution to addressing these issues, with mobile

middleware removing the responsibilities from content

authors and application developers. The solution provides

an approach that separates the intent of the content author

from the low-level implementation details.

A client side agent, where feasible, can be deployed to a

device. The agent automates issues such as deployment

and management of mobile applications that embody the

specialised content the user requests. This agent in

cooperation with a provisioning server, negotiate delivery

and post execution management of applications and its

required components, ensuring the user has the most

current version of each.

References

[1] MExE Forum. “MExE Mobile Execution

Environment White Paper”, MExE Forum white paper,

December 2000.

[2] Java Community Process. “JSR 124 J2EE Client

Provisioning Specification”, JCP Specification, May

2001.

[3] Java Community Process. “JSR 37 Mobile

Information Device Profile for the J2ME Platform”, JCP

Specification, September 2000.

[4] Andy Wigley, Stephen Wheelwright, “.NET Compact

Framework”, Microsoft Press, 2003.

[5] Sun Microsystems, “Over The Air User Initiated

Provisioning for Mobile Information Device Profile”,

May 2001.

[6] Open Mobile Alliance, “Download Architecture

Version 1.0” OMA Technical Specification, June 2002

[7] WAP Forum, “WAG UAProf” WAP Forum

Technical Specification, October 2001.

[8] Fielding, et al, “Hypertext transfer Protocol --

HTTP/1.1”, RFC 2616 Internet Official Protocol, June

1999.

[9] J. Bradshaw Software Agents (Menlo Park, CA: AAAI

Press/The MIT Press, 1997).

[10] S. Krause, T. Magedanz, Mobile Service Agents

enabling Intelligence on Demand in Telecommunications,

Proc. IEEE GLOBCOM’96, London GB, 1996, 78 – 85.

[11] O. Fouial1, N. Houssos, N. Boukhatem, Software

Downloading Solutions for Mobile Value-Added Service

Provision.

[12] P. Mihailescu, MAE – Mobile Agent Environment

for Resource Limited Devices.

[13] A. da Silva, M. da Silva, A. Romão, Web-based

Agent Applications: User Interfaces and Mobile Agents

[14] Sun Microsystems, “PersonalJava Application

Environment Specification”, August 1999.

	Managing Content-Initiated Application Delivery With a Client-Side Agent
	Recommended Citation

	Microsoft Word - 371822-convertdoc.input.360394.CLpU5.doc

